passagemath-groups 10.6.4__cp310-cp310-macosx_13_0_x86_64.whl → 10.6.22__cp310-cp310-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-groups might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: passagemath-groups
3
- Version: 10.6.4
3
+ Version: 10.6.22
4
4
  Summary: passagemath: Groups and Invariant Theory
5
5
  Author-email: The Sage Developers <sage-support@googlegroups.com>
6
6
  Maintainer: Matthias Köppe, passagemath contributors
@@ -28,9 +28,9 @@ Classifier: Programming Language :: Python :: Implementation :: CPython
28
28
  Classifier: Topic :: Scientific/Engineering :: Mathematics
29
29
  Requires-Python: <3.14,>=3.10
30
30
  Description-Content-Type: text/x-rst
31
- Requires-Dist: passagemath-categories~=10.6.4.0
32
- Requires-Dist: passagemath-gap~=10.6.4.0
33
- Requires-Dist: passagemath-modules~=10.6.4.0
31
+ Requires-Dist: passagemath-categories~=10.6.22.0
32
+ Requires-Dist: passagemath-gap~=10.6.22.0
33
+ Requires-Dist: passagemath-modules~=10.6.22.0
34
34
  Provides-Extra: test
35
35
  Requires-Dist: passagemath-repl; extra == "test"
36
36
  Provides-Extra: coxeter3
@@ -84,15 +84,12 @@ It was created in October 2024 with the following goals:
84
84
  serverless deployment with Javascript,
85
85
  - developing a native Windows port.
86
86
 
87
- `Full documentation <https://doc.sagemath.org/html/en/index.html>`__ is
87
+ `Full documentation <https://passagemath.org/docs/latest/html/en/index.html>`__ is
88
88
  available online.
89
89
 
90
90
  passagemath attempts to support and provides binary wheels suitable for
91
91
  all major Linux distributions and recent versions of macOS.
92
92
 
93
- For the Linux aarch64 (ARM) platform, some third-party packages are still missing
94
- wheels; see the `instructions for building them from source <https://github.com/passagemath/passagemath?tab=readme-ov-file#full-installation-of-passagemath-from-binary-wheels-on-pypi>`__.
95
-
96
93
  Binary wheels for native Windows (x86_64) are are available for a subset of
97
94
  the passagemath distributions. Use of the full functionality of passagemath
98
95
  on Windows currently requires the use of Windows Subsystem for Linux (WSL)
@@ -1,23 +1,23 @@
1
1
  passagemath_groups.dylibs/libreadline.8.3.dylib,sha256=W__imvR7w3nSOaoVIOIfo7OnwY2C1psgp4oKtb2mAoI,316256
2
- passagemath_groups.dylibs/libgap.9.dylib,sha256=M25ub3wzmsdLUYNUeBkyp2lyR0WYnHuCBMi1w3tyAcw,2557824
2
+ passagemath_groups.dylibs/libgap.9.dylib,sha256=duHrje4bcfXrpi7fe27F55Hoqe-_gQ_XnlcJrSrK_x8,2557824
3
3
  passagemath_groups.dylibs/libgmp.10.dylib,sha256=CHW4cQCJWByKPnXFo9gwyT8UTuUhJZPnF1bVpjPXPXk,580928
4
- passagemath_groups-10.6.4.dist-info/RECORD,,
5
- passagemath_groups-10.6.4.dist-info/WHEEL,sha256=RpI2f7qWECrFv3jwk06i6A13TXjBn5AxATfaWklqEPg,137
6
- passagemath_groups-10.6.4.dist-info/top_level.txt,sha256=Kmzulf9WsphADFQuqgvdy5mvTLDj_V2zkFHU2s3UXos,6
7
- passagemath_groups-10.6.4.dist-info/METADATA,sha256=KVMf6PaRgQexF7lOOuHNOSnvW0OBTMxziUT67sCvvks,5382
4
+ passagemath_groups-10.6.22.dist-info/RECORD,,
5
+ passagemath_groups-10.6.22.dist-info/WHEEL,sha256=RpI2f7qWECrFv3jwk06i6A13TXjBn5AxATfaWklqEPg,137
6
+ passagemath_groups-10.6.22.dist-info/top_level.txt,sha256=Kmzulf9WsphADFQuqgvdy5mvTLDj_V2zkFHU2s3UXos,6
7
+ passagemath_groups-10.6.22.dist-info/METADATA,sha256=P_ULgbc3lfdDX1FQ-w6b9Swsw-5rTUc6nrGO8l0N_yA,5126
8
8
  sage/all__sagemath_groups.py,sha256=JOSY5oJmS67eaWpSs14SBcD7be6NMKH05esJQj8sNOI,525
9
9
  sage/groups/finitely_presented.py,sha256=hLccjNjrj880fFeiLu9W7Z7Xz1HewuyJTVKNWrUsVMI,70042
10
10
  sage/groups/fqf_orthogonal.py,sha256=8cx71JJorwsFoSPzVLBg1rI_dA9dfGeWDqA6GAuqRh8,20181
11
11
  sage/groups/free_group.py,sha256=iMxfq5y8gA91i7XdpCmlL2N-5s2h_oYYohITmhMpVXo,29468
12
12
  sage/groups/all__sagemath_groups.py,sha256=g4HxEDA-YDJcTYHqA5pGLBIy7gpzg-BEVb2Jn7mTJD8,1147
13
- sage/groups/artin.py,sha256=Mm9gAYlUfq7kA8z44A2jTgdGaaDPM_TgGeXuj1nZf50,41096
13
+ sage/groups/artin.py,sha256=CQHII1jKlBJZ_3GEyH-D22lS06prmIYcagTE7eg_RKc,41353
14
14
  sage/groups/finitely_presented_named.py,sha256=dKB2M78fw5W7RTHCGy-VB_X9co9UbFcQQYSdBr945Rc,20597
15
15
  sage/groups/all.py,sha256=ia6P1nJW_QxBEPMNKdT6ZE8v7J0z8qlMbX2uD3lBJU8,229
16
16
  sage/groups/raag.py,sha256=WbkPRhwCopLc2PtJ_Zcy_QASzsHcsp84_fM1x_dUcWw,28842
17
17
  sage/groups/cubic_braid.py,sha256=LEStrE9YiJAb5acsybhoQhth5fh-wbtn7uLjYyLoO1o,86974
18
18
  sage/groups/group_semidirect_product.py,sha256=7XqgwRR8i-KAWQdRXE8uoNbYDG-mDTqFw2uyqhDGCwY,17910
19
19
  sage/groups/cactus_group.py,sha256=O0FTBvGw8y3nRSR1aGPn5FdEv3jILG7QK_g_lZYdLPc,32895
20
- sage/groups/braid.py,sha256=BGOPYX4UtA-s1TKDOGvGcB1dqBrwY85GZaLU-rOLzsA,139760
20
+ sage/groups/braid.py,sha256=6LyEbj9KCOyR7v1HhHWYyd62XqGSHcIOQVQF_TuWCXk,140495
21
21
  sage/groups/finitely_presented_catalog.py,sha256=Ylc_cx0Sv6eKH9J-n4xotqWK0Hc4pNrwZ3iRPe-gh1s,1251
22
22
  sage/groups/group_exp.py,sha256=KjhnaTnqnNKvBmYZJEbUge2-RydGSkued1JFXSLzeoo,11190
23
23
  sage/groups/kernel_subgroup.py,sha256=hZVsh5UYfq6MPxekXwlRuQyPuHq0Fk6SlNnN-5Yja6A,7706
@@ -29,10 +29,10 @@ sage/groups/misc_gps/all.py,sha256=-vXQHOTG46Zum7Q6k0kcJO43yJo09AIX-El8fzXA7eI,4
29
29
  sage/groups/misc_gps/misc_groups_catalog.py,sha256=TbpMPXGhwFpeOMlXdwdIGItBLV0XSvfN4oQRbKbMK9o,1627
30
30
  sage/groups/abelian_gps/all.py,sha256=yQQEiBWy_vtucLyFb_q1OIqgiC_DIE9KUzNWpdGTa4A,906
31
31
  sage/groups/semimonomial_transformations/semimonomial_transformation.pyx,sha256=9j9eS_uZYdCUQrTJDs4VhpO_7SeSzXdnzh0cACFNtkk,11298
32
- sage/groups/semimonomial_transformations/semimonomial_transformation.cpython-310-darwin.so,sha256=_Nn9QA0gCyN1r-pdgS9ti-ZQu_CqIRjB6iHlGNH-3AQ,160832
32
+ sage/groups/semimonomial_transformations/semimonomial_transformation.cpython-310-darwin.so,sha256=ftGRKfoRDZH3ygkdqT212c0vzNPat0los1CbssqPRBU,160832
33
33
  sage/groups/semimonomial_transformations/all.py,sha256=-vXQHOTG46Zum7Q6k0kcJO43yJo09AIX-El8fzXA7eI,45
34
34
  sage/groups/semimonomial_transformations/semimonomial_transformation_group.py,sha256=QflEYRK_oDUf8axx4kwcUR4aMOQNmE_faY1lzOdrAvQ,18312
35
35
  sage/groups/semimonomial_transformations/semimonomial_transformation.pxd,sha256=wivg7LyXn_ZMrADRUmabPEYNitTRZCvs2htLN3E0v9g,297
36
36
  sage/geometry/all__sagemath_groups.py,sha256=-vXQHOTG46Zum7Q6k0kcJO43yJo09AIX-El8fzXA7eI,45
37
- sage/geometry/palp_normal_form.cpython-310-darwin.so,sha256=vgeye2jcF1Mz1NBTdaj9f2_3Og3HRIt9aCLDXDI2y1s,255120
37
+ sage/geometry/palp_normal_form.cpython-310-darwin.so,sha256=6-LO3uf2iufmQD8dH-oq81ifZS_ESrtjbm2Q8ipK9SA,255120
38
38
  sage/geometry/palp_normal_form.pyx,sha256=HfDpZHxffoxG2pxTrXO0ucRlEDZcrtzHBoZ0CoHm5lI,17498
Binary file
sage/groups/artin.py CHANGED
@@ -272,6 +272,7 @@ class ArtinGroupElement(FinitelyPresentedGroupElement):
272
272
  Next, we show ``elm`` is not the identity by using the embedding of
273
273
  the affine braid group `\widetilde{B}_n \to B_{n+1}`::
274
274
 
275
+ sage: # needs sage.libs.braiding
275
276
  sage: B.<t1,t2,t3,t4> = BraidGroup(5)
276
277
  sage: D = t1 * t2 * t3 * t4^2
277
278
  sage: t0 = D * t3 * ~D
@@ -291,7 +292,7 @@ class ArtinGroupElement(FinitelyPresentedGroupElement):
291
292
  (Bigelow gave an example of the representation not being faithful for
292
293
  `B_5`, but it is still open for `B_4`)::
293
294
 
294
- sage: emb.burau_matrix() != 1
295
+ sage: emb.burau_matrix() != 1 # needs sage.libs.braiding
295
296
  True
296
297
 
297
298
  We also verify the result using the elements in [BQ2024]_ Remark 4.2::
@@ -300,8 +301,8 @@ class ArtinGroupElement(FinitelyPresentedGroupElement):
300
301
  sage: bp = s1 * ~s4 * s1^2 * s3^-2 * ~s2 * s4 * s1 * ~s3 * s2 * ~s4 * s3 * s1 * s4 * s1 * ~s2 * s4^-2 * s3
301
302
  sage: alpha = ap * s3 * ~ap
302
303
  sage: beta = bp * s2 * ~bp
303
- sage: elm = alpha * beta * ~alpha * ~beta
304
- sage: elm.burau_matrix()
304
+ sage: elm = alpha * beta * ~alpha * ~beta # needs sage.libs.braiding
305
+ sage: elm.burau_matrix() # needs sage.libs.braiding
305
306
  [1 0 0 0]
306
307
  [0 1 0 0]
307
308
  [0 0 1 0]
sage/groups/braid.py CHANGED
@@ -70,7 +70,6 @@ AUTHORS:
70
70
 
71
71
  from itertools import combinations
72
72
 
73
- from sage.algebras.free_algebra import FreeAlgebra
74
73
  from sage.categories.action import Action
75
74
  from sage.categories.groups import Groups
76
75
  from sage.combinat.permutation import Permutation, Permutations
@@ -2159,6 +2158,8 @@ class Braid(FiniteTypeArtinGroupElement):
2159
2158
  sage: burau.subs({t:q}).change_ring(db_base) == db_simp
2160
2159
  True
2161
2160
  """
2161
+ from sage.algebras.free_algebra import FreeAlgebra
2162
+
2162
2163
  R = LaurentPolynomialRing(ZZ, variab)
2163
2164
 
2164
2165
  n = self.strands()
@@ -2315,7 +2316,7 @@ class Braid(FiniteTypeArtinGroupElement):
2315
2316
 
2316
2317
  sage: B = BraidGroup(4)
2317
2318
  sage: b = B([1, 2, 1, 2, 3, -1, 2, 1, 3])
2318
- sage: b.super_summit_set_element()
2319
+ sage: b.super_summit_set_element() # needs sage.libs.braiding
2319
2320
  (s0*s2*s0*s1*s2*s1*s0, s0^-1*s1^-1*s0^-1*s2^-1*s1^-1*s0^-1*s1*s0*s2*s1*s0)
2320
2321
  """
2321
2322
  to_sss = send_to_sss(self)
@@ -2331,7 +2332,7 @@ class Braid(FiniteTypeArtinGroupElement):
2331
2332
 
2332
2333
  sage: B = BraidGroup(4)
2333
2334
  sage: b = B([1, 2, 1, 2, 3, -1, 2, -1, 3])
2334
- sage: b.ultra_summit_set_element()
2335
+ sage: b.ultra_summit_set_element() # needs sage.libs.braiding
2335
2336
  (s0*s1*s0*s2*s1, s0^-1*s1^-1*s0^-1*s2^-1*s1^-1*s0^-1*s1*s2*s1^2*s0)
2336
2337
  """
2337
2338
  to_uss = send_to_uss(self)
@@ -2347,7 +2348,7 @@ class Braid(FiniteTypeArtinGroupElement):
2347
2348
 
2348
2349
  sage: B = BraidGroup(4)
2349
2350
  sage: b = B([1, 2, 1, 2, 3, -1, 2, -1, 3])
2350
- sage: b.sliding_circuits_element()
2351
+ sage: b.sliding_circuits_element() # needs sage.libs.braiding
2351
2352
  (s0*s1*s0*s2*s1, s0^2*s1*s2)
2352
2353
  """
2353
2354
  to_sc = send_to_sc(self)
@@ -2362,7 +2363,7 @@ class Braid(FiniteTypeArtinGroupElement):
2362
2363
 
2363
2364
  sage: B = BraidGroup(4)
2364
2365
  sage: b = B([1, 2, 1, 2, 3, -1, 2, -1, 3])
2365
- sage: b.trajectory()
2366
+ sage: b.trajectory() # needs sage.libs.braiding
2366
2367
  [s0^-1*s1^-1*s0^-1*s2^-1*s1^-1*s2*s0*s1*s2*s1*s0^2*s1*s2^2,
2367
2368
  s0*s1*s2^3,
2368
2369
  s0*s1*s2*s1^2,
@@ -2382,7 +2383,7 @@ class Braid(FiniteTypeArtinGroupElement):
2382
2383
 
2383
2384
  sage: B = BraidGroup(4)
2384
2385
  sage: b = B([1, 2, 1, 2, 3, -1, 2, 1])
2385
- sage: b.cyclic_slidings()
2386
+ sage: b.cyclic_slidings() # needs sage.libs.braiding
2386
2387
  [[s0*s2*s1*s0*s1*s2, s0*s1*s2*s1*s0^2, s1*s0*s2^2*s1*s0],
2387
2388
  [s0*s1*s2*s1^2*s0, s0*s1*s2*s1*s0*s2, s1*s0*s2*s0*s1*s2]]
2388
2389
  """
@@ -2671,7 +2672,7 @@ class BraidGroup_class(FiniteTypeArtinGroup):
2671
2672
  sage: B1 = BraidGroup(5) # indirect doctest
2672
2673
  sage: B1
2673
2674
  Braid group on 5 strands
2674
- sage: TestSuite(B1).run()
2675
+ sage: TestSuite(B1).run() # needs sage.libs.braiding
2675
2676
  sage: B1.category()
2676
2677
  Category of infinite groups
2677
2678
 
@@ -2906,6 +2907,7 @@ class BraidGroup_class(FiniteTypeArtinGroup):
2906
2907
 
2907
2908
  TESTS::
2908
2909
 
2910
+ sage: # needs sage.libs.singular
2909
2911
  sage: B = BraidGroup(3)
2910
2912
  sage: g1, g2, mu3 = B._links_gould_representation()
2911
2913
  sage: R1, R1I = g1
@@ -3507,11 +3509,11 @@ class BraidGroup_class(FiniteTypeArtinGroup):
3507
3509
  sage: b = B((1,-2,-1,3,2,1))
3508
3510
  sage: bm = mirr(b); bm
3509
3511
  s0^-1*s1*s0*s2^-1*s1^-1*s0^-1
3510
- sage: bm == ~b
3512
+ sage: bm == ~b # needs sage.libs.braiding
3511
3513
  False
3512
- sage: bm.is_conjugated(b)
3514
+ sage: bm.is_conjugated(b) # needs sage.libs.braiding
3513
3515
  False
3514
- sage: bm.is_conjugated(~b)
3516
+ sage: bm.is_conjugated(~b) # needs sage.libs.braiding
3515
3517
  True
3516
3518
  """
3517
3519
  gens_mirr = [~g for g in self.gens()]