passagemath-graphs 10.5.47__cp310-cp310-macosx_14_0_arm64.whl → 10.6.1__cp310-cp310-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {passagemath_graphs-10.5.47.dist-info → passagemath_graphs-10.6.1.dist-info}/METADATA +27 -17
- passagemath_graphs-10.6.1.dist-info/METADATA.bak +304 -0
- passagemath_graphs-10.6.1.dist-info/RECORD +263 -0
- sage/all__sagemath_graphs.py +3 -2
- sage/combinat/abstract_tree.py +188 -17
- sage/combinat/cluster_algebra_quiver/interact.py +1 -2
- sage/combinat/cluster_algebra_quiver/mutation_type.py +518 -519
- sage/combinat/cluster_algebra_quiver/quiver.py +233 -205
- sage/combinat/designs/covering_design.py +2 -6
- sage/combinat/designs/database.py +11 -10
- sage/combinat/designs/designs_pyx.cpython-310-darwin.so +0 -0
- sage/combinat/designs/designs_pyx.pyx +2 -2
- sage/combinat/designs/evenly_distributed_sets.cpython-310-darwin.so +0 -0
- sage/combinat/designs/evenly_distributed_sets.pyx +4 -4
- sage/combinat/designs/gen_quadrangles_with_spread.cpython-310-darwin.so +0 -0
- sage/combinat/designs/incidence_structures.py +2 -2
- sage/combinat/designs/latin_squares.py +53 -20
- sage/combinat/designs/orthogonal_arrays.py +2 -1
- sage/combinat/designs/orthogonal_arrays_find_recursive.cpython-310-darwin.so +0 -0
- sage/combinat/designs/orthogonal_arrays_find_recursive.pyx +22 -21
- sage/combinat/designs/resolvable_bibd.py +191 -157
- sage/combinat/designs/subhypergraph_search.cpython-310-darwin.so +0 -0
- sage/combinat/designs/subhypergraph_search.pyx +4 -4
- sage/combinat/designs/twographs.py +2 -2
- sage/combinat/finite_state_machine.py +6 -6
- sage/combinat/nu_tamari_lattice.py +1 -1
- sage/combinat/posets/bubble_shuffle.py +247 -0
- sage/combinat/posets/d_complete.py +3 -3
- sage/combinat/posets/elements.py +3 -3
- sage/combinat/posets/hasse_cython.cpython-310-darwin.so +0 -0
- sage/combinat/posets/hasse_cython.pyx +1 -1
- sage/combinat/posets/hasse_diagram.py +16 -22
- sage/combinat/posets/hochschild_lattice.py +158 -0
- sage/combinat/posets/incidence_algebras.py +14 -16
- sage/combinat/posets/lattices.py +51 -53
- sage/combinat/posets/linear_extension_iterator.cpython-310-darwin.so +0 -0
- sage/combinat/posets/linear_extensions.py +12 -13
- sage/combinat/posets/moebius_algebra.py +4 -4
- sage/combinat/posets/poset_examples.py +73 -23
- sage/combinat/posets/posets.py +294 -103
- sage/databases/knotinfo_db.py +2 -1
- sage/graphs/asteroidal_triples.cpython-310-darwin.so +0 -0
- sage/graphs/asteroidal_triples.pyx +24 -3
- sage/graphs/base/boost_graph.cpython-310-darwin.so +0 -0
- sage/graphs/base/boost_graph.pxd +3 -3
- sage/graphs/base/c_graph.cpython-310-darwin.so +0 -0
- sage/graphs/base/c_graph.pyx +1 -1
- sage/graphs/base/dense_graph.cpython-310-darwin.so +0 -0
- sage/graphs/base/dense_graph.pxd +5 -3
- sage/graphs/base/dense_graph.pyx +44 -0
- sage/graphs/base/graph_backends.cpython-310-darwin.so +0 -0
- sage/graphs/base/sparse_graph.cpython-310-darwin.so +0 -0
- sage/graphs/base/static_dense_graph.cpython-310-darwin.so +0 -0
- sage/graphs/base/static_sparse_backend.cpython-310-darwin.so +0 -0
- sage/graphs/base/static_sparse_backend.pyx +8 -5
- sage/graphs/base/static_sparse_graph.cpython-310-darwin.so +0 -0
- sage/graphs/base/static_sparse_graph.pyx +86 -15
- sage/graphs/bipartite_graph.py +59 -36
- sage/graphs/centrality.cpython-310-darwin.so +0 -0
- sage/graphs/centrality.pyx +82 -9
- sage/graphs/cographs.py +1 -1
- sage/graphs/comparability.cpython-310-darwin.so +0 -0
- sage/graphs/comparability.pyx +64 -26
- sage/graphs/connectivity.cpython-310-darwin.so +0 -0
- sage/graphs/convexity_properties.cpython-310-darwin.so +0 -0
- sage/graphs/convexity_properties.pyx +52 -9
- sage/graphs/digraph.py +439 -95
- sage/graphs/digraph_generators.py +176 -104
- sage/graphs/distances_all_pairs.cpython-310-darwin.so +0 -0
- sage/graphs/dot2tex_utils.py +1 -1
- sage/graphs/edge_connectivity.cpython-310-darwin.so +0 -0
- sage/graphs/generators/basic.py +1 -1
- sage/graphs/generators/distance_regular.cpython-310-darwin.so +0 -0
- sage/graphs/generators/distance_regular.pyx +2 -2
- sage/graphs/generators/families.py +40 -30
- sage/graphs/generators/random.py +2 -2
- sage/graphs/generators/smallgraphs.py +3 -3
- sage/graphs/generic_graph.py +559 -86
- sage/graphs/generic_graph_pyx.cpython-310-darwin.so +0 -0
- sage/graphs/generic_graph_pyx.pyx +58 -11
- sage/graphs/genus.cpython-310-darwin.so +0 -0
- sage/graphs/genus.pyx +3 -4
- sage/graphs/graph.py +291 -8
- sage/graphs/graph_coloring.cpython-310-darwin.so +0 -0
- sage/graphs/graph_coloring.pyx +2 -2
- sage/graphs/graph_database.py +67 -12
- sage/graphs/graph_decompositions/bandwidth.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/clique_separators.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/clique_separators.pyx +24 -3
- sage/graphs/graph_decompositions/cutwidth.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/fast_digraph.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/fast_digraph.pyx +1 -1
- sage/graphs/graph_decompositions/graph_products.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/graph_products.pyx +67 -21
- sage/graphs/graph_decompositions/modular_decomposition.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/slice_decomposition.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/slice_decomposition.pyx +34 -8
- sage/graphs/graph_decompositions/tree_decomposition.cpython-310-darwin.so +0 -0
- sage/graphs/graph_decompositions/vertex_separation.cpython-310-darwin.so +0 -0
- sage/graphs/graph_generators.py +45 -32
- sage/graphs/graph_generators_pyx.cpython-310-darwin.so +0 -0
- sage/graphs/graph_generators_pyx.pyx +15 -15
- sage/graphs/graph_latex.py +1 -1
- sage/graphs/graph_list.py +52 -9
- sage/graphs/graph_plot.py +7 -0
- sage/graphs/hyperbolicity.cpython-310-darwin.so +0 -0
- sage/graphs/hyperbolicity.pyx +5 -3
- sage/graphs/independent_sets.cpython-310-darwin.so +0 -0
- sage/graphs/isoperimetric_inequalities.cpython-310-darwin.so +0 -0
- sage/graphs/isoperimetric_inequalities.pyx +42 -6
- sage/graphs/line_graph.cpython-310-darwin.so +0 -0
- sage/graphs/line_graph.pyx +153 -37
- sage/graphs/matching_covered_graph.py +87 -62
- sage/graphs/orientations.py +3 -18
- sage/graphs/path_enumeration.cpython-310-darwin.so +0 -0
- sage/graphs/path_enumeration.pyx +2 -2
- sage/graphs/spanning_tree.cpython-310-darwin.so +0 -0
- sage/graphs/strongly_regular_db.cpython-310-darwin.so +0 -0
- sage/graphs/strongly_regular_db.pyx +34 -34
- sage/graphs/traversals.cpython-310-darwin.so +0 -0
- sage/graphs/traversals.pyx +13 -12
- sage/graphs/trees.cpython-310-darwin.so +0 -0
- sage/graphs/tutte_polynomial.py +1 -1
- sage/graphs/views.cpython-310-darwin.so +0 -0
- sage/graphs/views.pyx +1 -1
- sage/graphs/weakly_chordal.cpython-310-darwin.so +0 -0
- sage/graphs/weakly_chordal.pyx +50 -8
- sage/groups/perm_gps/partn_ref/refinement_graphs.cpython-310-darwin.so +0 -0
- sage/knots/free_knotinfo_monoid.py +3 -3
- sage/knots/knotinfo.py +102 -82
- sage/knots/link.py +72 -39
- sage/topology/cubical_complex.py +4 -5
- sage/topology/delta_complex.py +4 -4
- sage/topology/simplicial_complex.py +0 -1
- sage/topology/simplicial_complex_catalog.py +6 -0
- sage/topology/simplicial_complex_examples.py +4 -16
- sage_wheels/share/graphs/brouwer_srg_database.json +1 -0
- sage_wheels/share/graphs/graphs.db +0 -0
- sage_wheels/share/graphs/isgci_sage.xml +11116 -0
- sage_wheels/share/graphs/smallgraphs.txt +565 -0
- passagemath_graphs-10.5.47.dist-info/RECORD +0 -256
- {passagemath_graphs-10.5.47.dist-info → passagemath_graphs-10.6.1.dist-info}/WHEEL +0 -0
- {passagemath_graphs-10.5.47.dist-info → passagemath_graphs-10.6.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,565 @@
|
|
1
|
+
A \cup K_1 Fr?__
|
2
|
+
\co{A \cup K_1} FK~^W
|
3
|
+
gem \cup K_1 Eq{?
|
4
|
+
\co{gem \cup K_1} ELBw
|
5
|
+
co-fork \cup K_1 EDaW
|
6
|
+
\co{co-fork \cup K_1} Ey\_
|
7
|
+
net \cup K_1 FjGO?
|
8
|
+
\co{net \cup K_1} FSvnw
|
9
|
+
P_3 Bg
|
10
|
+
\co{P_3} BO
|
11
|
+
triangle Bw
|
12
|
+
3K_1 B?
|
13
|
+
claw Cs
|
14
|
+
co-claw CJ
|
15
|
+
P_4 Ch
|
16
|
+
paw Cx
|
17
|
+
co-paw CE
|
18
|
+
C_4 Cr
|
19
|
+
2K_2 CK
|
20
|
+
diamond Cz
|
21
|
+
co-diamond CC
|
22
|
+
K_4 C~
|
23
|
+
4K_1 C?
|
24
|
+
K_5 D~{
|
25
|
+
5K_1 D??
|
26
|
+
K_{1,4} Ds_
|
27
|
+
\co{K_{1,4}} DJ[
|
28
|
+
K_{1,5} Esa?
|
29
|
+
\co{K_{1,5}} EJ\w
|
30
|
+
P_3 \cup 2K_1 Do?
|
31
|
+
\co{P_3 \cup 2K_1} DN{
|
32
|
+
claw \cup K_1 Ds?
|
33
|
+
\co{claw \cup K_1} DJ{
|
34
|
+
P_3 \cup P_4 Fh?GG
|
35
|
+
\co{P_3 \cup P_4} FU~vo
|
36
|
+
3P_3 HgCG?C@
|
37
|
+
\co{3P_3} HVzv~z}
|
38
|
+
P DrG
|
39
|
+
\co{P} DKs
|
40
|
+
bull D{O
|
41
|
+
butterfly D{c
|
42
|
+
co-butterfly DBW
|
43
|
+
butterfly \cup K_1 E{c?
|
44
|
+
\co{butterfly \cup K_1} EBZw
|
45
|
+
cricket DiS
|
46
|
+
co-cricket DTg
|
47
|
+
K_5 - e D~k
|
48
|
+
\co{K_5 - e} D?O
|
49
|
+
C_5 Dhc
|
50
|
+
P_2 \cup P_3 D`C
|
51
|
+
\co{P_2 \cup P_3} D]w
|
52
|
+
W_4 Dl{
|
53
|
+
\co{W_4} DQ?
|
54
|
+
W_4 \cup K_1 El{?
|
55
|
+
\co{W_4 \cup K_1} EQBw
|
56
|
+
fork DiC
|
57
|
+
co-fork DTw
|
58
|
+
dart DvC
|
59
|
+
co-dart DGw
|
60
|
+
P_5 DhC
|
61
|
+
house DUw
|
62
|
+
gem Dh{
|
63
|
+
co-gem DU?
|
64
|
+
K_{2,3} D]o
|
65
|
+
K_2 \cup K_3 D`K
|
66
|
+
3K_2 E`?G
|
67
|
+
\co{3K_2} E]~o
|
68
|
+
cross EiD?
|
69
|
+
co-cross ETyw
|
70
|
+
X_{37} EhMG
|
71
|
+
\co{X_{37}} EUpo
|
72
|
+
fish ErCW
|
73
|
+
co-fish EKz_
|
74
|
+
4-fan EhFw
|
75
|
+
co-4-fan EUw?
|
76
|
+
A EhSG
|
77
|
+
\co{A} EUjo
|
78
|
+
H EgSG
|
79
|
+
\co{H} EVjo
|
80
|
+
R ElCO
|
81
|
+
\co{R} EQzg
|
82
|
+
C_4 \cup P_2 El?G
|
83
|
+
\co{C_4 \cup P_2} EQ~o
|
84
|
+
K_{3,3} EFz_
|
85
|
+
2K_3 EwCW
|
86
|
+
K_{3,3} \cup K_1 FFz_?
|
87
|
+
\co{K_{3,3} \cup K_1} FwC^w
|
88
|
+
3K_3 HwCW?CB
|
89
|
+
K_{3,3,3} HFzf~z{
|
90
|
+
P_2 \cup P_4 Eh?G
|
91
|
+
\co{P_2 \cup P_4} EU~o
|
92
|
+
E EhC_
|
93
|
+
\co{E} EUzW
|
94
|
+
star_{1,2,4} Gp_GGC
|
95
|
+
co-star_{1,2,4} GM^vvw
|
96
|
+
star_{1,2,5} Hp_GGC@
|
97
|
+
co-star_{1,2,5} HM^vvz}
|
98
|
+
domino ErGW
|
99
|
+
co-domino EKv_
|
100
|
+
domino \cup K_1 FrGW?
|
101
|
+
\co{domino \cup K_1} FKvfw
|
102
|
+
twin-C_5 EhdG
|
103
|
+
co-twin-C_5 EUYo
|
104
|
+
X_{58} EhFo
|
105
|
+
\co{X_{58}} EUwG
|
106
|
+
C_6 EhEG
|
107
|
+
\co{C_6} EUxo
|
108
|
+
C_6 \cup K_1 FhEG?
|
109
|
+
\co{C_6 \cup K_1} FUxvw
|
110
|
+
K_{3,3}-e EFz?
|
111
|
+
2K_3 + e EwCw
|
112
|
+
K_{3,3}-e \cup K_1 FFz??
|
113
|
+
\co{K_{3,3}-e \cup K_1} FwC~w
|
114
|
+
K_{3,3}+e Efz_
|
115
|
+
K_3 \cup P_3 EWCW
|
116
|
+
2P_3 EgCG
|
117
|
+
\co{2P_3} EVzo
|
118
|
+
X_{197} EgC?
|
119
|
+
\co{X_{197}} EVzw
|
120
|
+
X_{198} EhK?
|
121
|
+
\co{X_{198}} EUrw
|
122
|
+
X_{199} FhCNo
|
123
|
+
\co{X_{199}} FUzoG
|
124
|
+
6-fan FhCNw
|
125
|
+
co-6-fan FUzo?
|
126
|
+
X_{200} FhENo
|
127
|
+
\co{X_{200}} FUxoG
|
128
|
+
X_{201} H~|_{A?
|
129
|
+
\co{X_{201}} H?A^B|~
|
130
|
+
X_{202} H{S{aSf
|
131
|
+
X_{203} LhEH?C@CG?_@A@
|
132
|
+
\co{X_{203}} LUxu~z}zv~^}|}
|
133
|
+
X_{98} Elhg
|
134
|
+
\co{X_{98}} EQUO
|
135
|
+
S_3 Ey[g
|
136
|
+
net EDbO
|
137
|
+
S_3 \cup K_1 Fy[g?
|
138
|
+
\co{S_3 \cup K_1} FDbVw
|
139
|
+
X_{18} ElCG
|
140
|
+
\co{X_{18}} EQzo
|
141
|
+
X_5 E|EG
|
142
|
+
\co{X_5} EAxo
|
143
|
+
P_6 EhCG
|
144
|
+
\co{P_6} EUzo
|
145
|
+
W_5 Ehfw
|
146
|
+
\co{W_5} EUW?
|
147
|
+
5-pan EhcG
|
148
|
+
\co{5-pan} EUZo
|
149
|
+
6-pan FhEGG
|
150
|
+
\co{6-pan} FUxvo
|
151
|
+
C_4 \cup 2K_1 El??
|
152
|
+
\co{C_4 \cup 2K_1} EQ~w
|
153
|
+
K_3 \cup 2K_1 Dw?
|
154
|
+
\co{K_3 \cup 2K_1} DF{
|
155
|
+
antenna EjCg
|
156
|
+
co-antenna ESzO
|
157
|
+
X_{45} EhQg
|
158
|
+
\co{X_{45}} EUlO
|
159
|
+
twin-house Elr?
|
160
|
+
co-twin-house EQKw
|
161
|
+
C_7 FhCKG
|
162
|
+
\co{C_7} FUzro
|
163
|
+
X_{12} FrYxw
|
164
|
+
\co{X_{12}} FKdE?
|
165
|
+
X_{13} FlwWG
|
166
|
+
\co{X_{13}} FQFfo
|
167
|
+
X_{36} FhhWW
|
168
|
+
\co{X_{36}} FUUf_
|
169
|
+
X_{42} FxE\g
|
170
|
+
\co{X_{42}} FExaO
|
171
|
+
X_{11} FrYXw
|
172
|
+
\co{X_{11}} FKde?
|
173
|
+
X_{35} FhFj?
|
174
|
+
\co{X_{35}} FUwSw
|
175
|
+
X_{41} FhO_W
|
176
|
+
\co{X_{41}} FUn^_
|
177
|
+
X_{70} FHFv_
|
178
|
+
\co{X_{70}} FuwGW
|
179
|
+
longhorn FhCH_
|
180
|
+
co-longhorn FUzuW
|
181
|
+
T_2 FhC_G
|
182
|
+
\co{T_2} FUz^o
|
183
|
+
X_{14} FlwWW
|
184
|
+
\co{X_{14}} FQFf_
|
185
|
+
X_{20} FhCiG
|
186
|
+
\co{X_{20}} FUzTo
|
187
|
+
X_{34} Fy\HG
|
188
|
+
\co{X_{34}} FDauo
|
189
|
+
X_{40} FhhoW
|
190
|
+
\co{X_{40}} FUUN_
|
191
|
+
X_{38} FhCKg
|
192
|
+
\co{X_{38}} FUzrO
|
193
|
+
X_{32} FhFh?
|
194
|
+
\co{X_{32}} FUwUw
|
195
|
+
X_9 FhEhO
|
196
|
+
\co{X_9} FUxUg
|
197
|
+
P_7 FhCGG
|
198
|
+
\co{P_7} FUzvo
|
199
|
+
X_3 FrGX?
|
200
|
+
\co{X_3} FKvew
|
201
|
+
X_2 FhDOG
|
202
|
+
\co{X_2} FUyno
|
203
|
+
X_1 Fy\`G
|
204
|
+
\co{X_1} FDa]o
|
205
|
+
X_8 FrGWW
|
206
|
+
\co{X_8} FKvf_
|
207
|
+
X_7 Fl_GW
|
208
|
+
\co{X_7} FQ^v_
|
209
|
+
X_6 Fl_GO
|
210
|
+
\co{X_6} FQ^vg
|
211
|
+
star_{1,2,3} FhCG_
|
212
|
+
\co{star_{1,2,3}} FUzvW
|
213
|
+
X_{33} FhEj?
|
214
|
+
\co{X_{33}} FUxSw
|
215
|
+
rising sun F~p`_
|
216
|
+
co-rising sun F?M]W
|
217
|
+
X_{10} FrGXW
|
218
|
+
\co{X_{10}} FKve_
|
219
|
+
X_{27} FlGHG
|
220
|
+
\co{X_{27}} FQvuo
|
221
|
+
X_{39} FhhOW
|
222
|
+
\co{X_{39}} FUUn_
|
223
|
+
X_{17} FrCZW
|
224
|
+
\co{X_{17}} FKzc_
|
225
|
+
X_{46} FhUjW
|
226
|
+
\co{X_{46}} FUhS_
|
227
|
+
X_{15} Flw[W
|
228
|
+
\co{X_{15}} FQFb_
|
229
|
+
W_6 FqG^w
|
230
|
+
\co{W_6} FLv_?
|
231
|
+
W_7 GhCKN{
|
232
|
+
\co{W_7} GUzro?
|
233
|
+
BW_3 FqG[o
|
234
|
+
\co{BW_3} FLvbG
|
235
|
+
X_{31} FhFx?
|
236
|
+
\co{X_{31}} FUwEw
|
237
|
+
X_{30} FhOgW
|
238
|
+
\co{X_{30}} FUnV_
|
239
|
+
parachute F|dwG
|
240
|
+
parapluie FAYFo
|
241
|
+
X_{82} FvKxO
|
242
|
+
\co{X_{82}} FGrEg
|
243
|
+
P_8 GhCGGC
|
244
|
+
\co{P_8} GUzvvw
|
245
|
+
X_{50} GhEhh[
|
246
|
+
\co{X_{50}} GUxUU_
|
247
|
+
K_{4,4} G?~vf_
|
248
|
+
2K_4 G~?GW[
|
249
|
+
X_{52} GhElh[
|
250
|
+
\co{X_{52}} GUxQU_
|
251
|
+
X_{74} G?pk`c
|
252
|
+
\co{X_{74}} G~MR]W
|
253
|
+
X_{80} GhELQk
|
254
|
+
\co{X_{80}} GUxqlO
|
255
|
+
X_{51} GhElH[
|
256
|
+
\co{X_{51}} GUxQu_
|
257
|
+
X_{22} GhSIhC
|
258
|
+
\co{X_{22}} GUjtUw
|
259
|
+
X_{53} GhElj[
|
260
|
+
\co{X_{53}} GUxQS_
|
261
|
+
2C_4 Gl?GGS
|
262
|
+
\co{2C_4} GQ~vvg
|
263
|
+
X_{47} GhEhhW
|
264
|
+
\co{X_{47}} GUxUUc
|
265
|
+
X_{49} GhElhW
|
266
|
+
\co{X_{49}} GUxQUc
|
267
|
+
X_{26} GkQAhS
|
268
|
+
\co{X_{26}} GRl|Ug
|
269
|
+
X_{19} GhCI@C
|
270
|
+
\co{X_{19}} GUzt}w
|
271
|
+
X_{77} GxEG_G
|
272
|
+
\co{X_{77}} GExv^s
|
273
|
+
X_{48} GhElHW
|
274
|
+
\co{X_{48}} GUxQuc
|
275
|
+
X_{25} GDhXGo
|
276
|
+
\co{X_{25}} GyUevK
|
277
|
+
X_{28} GlUad?
|
278
|
+
\co{X_{28}} GQh\Y{
|
279
|
+
S_4 G~fB@_
|
280
|
+
X_{178} GnfB@_
|
281
|
+
\co{X_{178}} GOW{}[
|
282
|
+
X_{179} H{OebQc
|
283
|
+
\co{X_{179}} HBnX[lZ
|
284
|
+
X_{180} G|?GWS
|
285
|
+
\co{X_{180}} GA~vfg
|
286
|
+
X_{181} G|GGWS
|
287
|
+
\co{X_{181}} GAvvfg
|
288
|
+
X_{182} Gh{GGK
|
289
|
+
\co{X_{182}} GUBvvo
|
290
|
+
X_{183} IgCNwC@?W
|
291
|
+
\co{X_{183}} IVzoFz}~_
|
292
|
+
sunlet_4 Gl`@?_
|
293
|
+
\co{sunlet_4} GQ]}~[
|
294
|
+
X_{185} GhRHhC
|
295
|
+
\co{X_{185}} GUkuUw
|
296
|
+
X_{186} Ghqihc
|
297
|
+
X_{187} Glqihc
|
298
|
+
\co{X_{187}} GQLTUW
|
299
|
+
X_{188} Glqihs
|
300
|
+
\co{X_{188}} GQLTUG
|
301
|
+
X_{189} GhdWJS
|
302
|
+
\co{X_{189}} GUYfsg
|
303
|
+
X_{190} GVWs]G
|
304
|
+
\co{X_{190}} GgfJ`s
|
305
|
+
X_{191} GhfPYS
|
306
|
+
\co{X_{191}} GUWmdg
|
307
|
+
X_{192} GhfPYs
|
308
|
+
\co{X_{192}} GUWmdG
|
309
|
+
X_{193} Gheml_
|
310
|
+
\co{X_{193}} GUXPQ[
|
311
|
+
X_{194} IAzpsX_WG
|
312
|
+
\co{X_{194}} I|CMJe^fo
|
313
|
+
X_{164} Gl`H?c
|
314
|
+
\co{X_{164}} GQ]u~W
|
315
|
+
X_{165} Gl`H?_
|
316
|
+
\co{X_{165}} GQ]u~[
|
317
|
+
X_{166} EhD_
|
318
|
+
\co{X_{166}} EUyW
|
319
|
+
X_{167} EhTO
|
320
|
+
\co{X_{167}} EUig
|
321
|
+
X_{168} EhPo
|
322
|
+
\co{X_{168}} EUmG
|
323
|
+
X_{169} EhGg
|
324
|
+
\co{X_{169}} EUvO
|
325
|
+
X_{170} EhGw
|
326
|
+
\co{X_{170}} EUv?
|
327
|
+
X_{171} EhCw
|
328
|
+
\co{X_{171}} EUz?
|
329
|
+
X_{172} EhCO
|
330
|
+
\co{X_{172}} EUzg
|
331
|
+
X_{173} FhEKG
|
332
|
+
\co{X_{173}} FUxro
|
333
|
+
X_{174} IheAHCPBG
|
334
|
+
\co{X_{174}} IUX|uzm{o
|
335
|
+
X_{175} FhFrw
|
336
|
+
\co{X_{175}} FUwK?
|
337
|
+
X_{176} FhCJo
|
338
|
+
\co{X_{176}} FUzsG
|
339
|
+
X_{177} FhCO?
|
340
|
+
\co{X_{177}} FUznw
|
341
|
+
claw \cup 3K_1 Fs???
|
342
|
+
\co{claw \cup 3K_1} FJ~~w
|
343
|
+
X_{29} G?bFF_
|
344
|
+
\co{X_{29}} G~[ww[
|
345
|
+
C_8 GhCGKC
|
346
|
+
\co{C_8} GUzvrw
|
347
|
+
X_{195} IzKWWMBoW
|
348
|
+
\co{X_{195}} ICrffp{N_
|
349
|
+
X_{196} L~[ww[F?{BwFwF
|
350
|
+
\co{X_{196}} L?bFFbw~B{FwFw
|
351
|
+
X_{71} GiGWGO
|
352
|
+
\co{X_{71}} GTvfvk
|
353
|
+
X_{79} GhELQg
|
354
|
+
\co{X_{79}} GUxqlS
|
355
|
+
X_{83} GjbiJC
|
356
|
+
\co{X_{83}} GS[Tsw
|
357
|
+
X_{84} ElD?
|
358
|
+
\co{X_{84}} EQyw
|
359
|
+
X_{85} FhD?_
|
360
|
+
\co{X_{85}} FUy~W
|
361
|
+
X_{86} Fhfco
|
362
|
+
\co{X_{86}} FUWZG
|
363
|
+
X_{87} Fhdiw
|
364
|
+
\co{X_{87}} FUYT?
|
365
|
+
X_{88} Fy[kg
|
366
|
+
\co{X_{88}} FDbRO
|
367
|
+
X_{89} FhfJo
|
368
|
+
\co{X_{89}} FUWsG
|
369
|
+
X_{90} Fhfmo
|
370
|
+
\co{X_{90}} FUWPG
|
371
|
+
X_{91} HgCg?Cd
|
372
|
+
\co{X_{91}} HVzV~zY
|
373
|
+
X_{92} FErF?
|
374
|
+
\co{X_{92}} FxKww
|
375
|
+
X_{93} FErf?
|
376
|
+
\co{X_{93}} FxKWw
|
377
|
+
X_{94} HgSG?S@
|
378
|
+
\co{X_{94}} HVjv~j}
|
379
|
+
X_{95} EXCW
|
380
|
+
\co{X_{95}} Eez_
|
381
|
+
X_{96} EgTg
|
382
|
+
\co{X_{96}} EViO
|
383
|
+
claw \cup triangle Fs?GW
|
384
|
+
\co{claw \cup triangle} FJ~v_
|
385
|
+
X_{97} F~Gwg
|
386
|
+
\co{X_{97}} F?vFO
|
387
|
+
X_{99} FFzc?
|
388
|
+
\co{X_{99}} FwCZw
|
389
|
+
X_{100} FgCNw
|
390
|
+
\co{X_{100}} FVzo?
|
391
|
+
X_{101} FwC\g
|
392
|
+
\co{X_{101}} FFzaO
|
393
|
+
X_{102} FgC^g
|
394
|
+
\co{X_{102}} FVz_O
|
395
|
+
X_{184} F^rCW
|
396
|
+
\co{X_{184}} F_Kz_
|
397
|
+
X_{103} FxmLO
|
398
|
+
\co{X_{103}} FEPqg
|
399
|
+
X_{104} FxELO
|
400
|
+
co-X_{104} FExqg
|
401
|
+
X_{105} FhFNW
|
402
|
+
\co{X_{105}} FUwo_
|
403
|
+
X_{108} GUzrv{
|
404
|
+
\co{X_{108}} GhCKG?
|
405
|
+
X_{109} GhCMLw
|
406
|
+
\co{X_{109}} GUzpqC
|
407
|
+
X_{110} G{iuLw
|
408
|
+
\co{X_{110}} GBTHqC
|
409
|
+
X_{111} GhKMKg
|
410
|
+
\co{X_{111}} GUrprS
|
411
|
+
X_{112} GjCMNW
|
412
|
+
\co{X_{112}} GSzpoc
|
413
|
+
X_{113} GxCJLw
|
414
|
+
\co{X_{113}} GEzsqC
|
415
|
+
X_{114} GVvJuC
|
416
|
+
\co{X_{114}} GgGsHw
|
417
|
+
X_{106} FjFLw
|
418
|
+
\co{X_{106}} FSwq?
|
419
|
+
X_{107} FhmLO
|
420
|
+
\co{X_{107}} FUPqg
|
421
|
+
X_{115} GRvNUC
|
422
|
+
\co{X_{115}} GkGohw
|
423
|
+
X_{116} GVrRMw
|
424
|
+
\co{X_{116}} GgKkpC
|
425
|
+
X_{117} GR~eNW
|
426
|
+
\co{X_{117}} Gk?Xoc
|
427
|
+
X_{118} Gb[MNW
|
428
|
+
\co{X_{118}} G[bpoc
|
429
|
+
X_{119} G}CJi{
|
430
|
+
\co{X_{119}} G@zsT?
|
431
|
+
X_{120} GhKM[{
|
432
|
+
\co{X_{120}} GUrpb?
|
433
|
+
X_{121} GxKJKg
|
434
|
+
\co{X_{121}} GErsrS
|
435
|
+
X_{122} G{guHo
|
436
|
+
\co{X_{122}} GBVHuK
|
437
|
+
X_{123} G[X}J_
|
438
|
+
\co{X_{123}} Gbe@s[
|
439
|
+
X_{124} GkirLw
|
440
|
+
\co{X_{124}} GRTKqC
|
441
|
+
X_{125} GvvLuC
|
442
|
+
\co{X_{125}} GGGqHw
|
443
|
+
X_{126} GSW]J_
|
444
|
+
\co{X_{126}} Gjf`s[
|
445
|
+
X_{127} F`GV_
|
446
|
+
\co{X_{127}} F]vgW
|
447
|
+
X_{128} FhV]o
|
448
|
+
\co{X_{128}} FUg`G
|
449
|
+
X_{129} FhCeo
|
450
|
+
\co{X_{129}} FUzXG
|
451
|
+
X_{130} FhDAG
|
452
|
+
\co{X_{130}} FUy|o
|
453
|
+
X_{131} GJEw[_
|
454
|
+
\co{X_{131}} GsxFb[
|
455
|
+
X_{132} FhDEg
|
456
|
+
\co{X_{132}} FUyxO
|
457
|
+
X_{133} Fh}`_
|
458
|
+
\co{X_{133}} FU@]W
|
459
|
+
X_{134} FhDWG
|
460
|
+
\co{X_{134}} FUyfo
|
461
|
+
X_{135} GHPjn?
|
462
|
+
\co{X_{135}} GumSO{
|
463
|
+
X_{136} GXPjn?
|
464
|
+
\co{X_{136}} GemSO{
|
465
|
+
X_{137} GxPjn?
|
466
|
+
\co{X_{137}} GEmSO{
|
467
|
+
X_{138} HQr?OJK
|
468
|
+
\co{X_{138}} HlK~nsr
|
469
|
+
X_{139} HQr?OJk
|
470
|
+
\co{X_{139}} HlK~nsR
|
471
|
+
X_{140} HQr?OJm
|
472
|
+
\co{X_{140}} HlK~nsP
|
473
|
+
X_{141} HQR?OJm
|
474
|
+
\co{X_{141}} Hlk~nsP
|
475
|
+
X_{142} Gl_fa_
|
476
|
+
\co{X_{142}} GQ^W\[
|
477
|
+
X_{143} Gl_fq_
|
478
|
+
\co{X_{143}} GQ^WL[
|
479
|
+
X_{144} Gl`fa_
|
480
|
+
\co{X_{144}} GQ]W\[
|
481
|
+
X_{145} Glpfa_
|
482
|
+
\co{X_{145}} GQMW\[
|
483
|
+
X_{146} Gl`fi_
|
484
|
+
\co{X_{146}} GQ]WT[
|
485
|
+
X_{147} Gh`fy_
|
486
|
+
\co{X_{147}} GU]WD[
|
487
|
+
X_{148} Gl`fq_
|
488
|
+
\co{X_{148}} GQ]WL[
|
489
|
+
X_{149} Glpfq_
|
490
|
+
\co{X_{149}} GQMWL[
|
491
|
+
X_{150} Glpfy_
|
492
|
+
\co{X_{150}} GQMWD[
|
493
|
+
X_{151} Gl`fy_
|
494
|
+
\co{X_{151}} GQ]WD[
|
495
|
+
X_{152} GO?O~C
|
496
|
+
\co{X_{152}} Gn~n?w
|
497
|
+
X_{153} HO?O~Nr
|
498
|
+
\co{X_{153}} Hn~n?oK
|
499
|
+
X_{154} HO?O~Mr
|
500
|
+
\co{X_{154}} Hn~n?pK
|
501
|
+
X_{155} IO?P{~f{w
|
502
|
+
\co{X_{155}} In~mB?WB?
|
503
|
+
X_{156} IO?P{~fkw
|
504
|
+
\co{X_{156}} In~mB?WR?
|
505
|
+
X_{157} IO?Pk~fkw
|
506
|
+
\co{X_{157}} In~mR?WR?
|
507
|
+
X_{158} IOAPk~fkw
|
508
|
+
\co{X_{158}} In|mR?WR?
|
509
|
+
X_{159} FJTNo
|
510
|
+
\co{X_{159}} FsioG
|
511
|
+
X_{160} GjTJwC
|
512
|
+
X_{161} GjTjwC
|
513
|
+
\co{X_{161}} GSiSFw
|
514
|
+
X_{162} FJTno
|
515
|
+
\co{X_{162}} FsiOG
|
516
|
+
X_{163} Ehp_
|
517
|
+
\co{X_{163}} EUMW
|
518
|
+
K_{3,4}-e FEzf?
|
519
|
+
\co{K_{3,4}-e} FxCWw
|
520
|
+
K_{3,4} FFzf?
|
521
|
+
K_3 \cup K_4 FwCWw
|
522
|
+
P_9 HhCGGC@
|
523
|
+
\co{P_9} HUzvvz}
|
524
|
+
X_{24} HLCgLS@
|
525
|
+
\co{X_{24}} HqzVqj}
|
526
|
+
X_{73} HhEI?_C
|
527
|
+
\co{X_{73}} HUxt~^z
|
528
|
+
X_{21} HhSIgC_
|
529
|
+
\co{X_{21}} HUjtVz^
|
530
|
+
X_{43} HhD@GcA
|
531
|
+
\co{X_{43}} HUy}vZ|
|
532
|
+
X_{55} HhEljZc
|
533
|
+
\co{X_{55}} HUxQScZ
|
534
|
+
X_{54} HhEljYs
|
535
|
+
\co{X_{54}} HUxQSdJ
|
536
|
+
BW_4 HhCGKEi
|
537
|
+
\co{BW_4} HUzvrxT
|
538
|
+
X_{56} HhEljZ{
|
539
|
+
\co{X_{56}} HUxQScB
|
540
|
+
X_{23} HhSIkCa
|
541
|
+
\co{X_{23}} HUjtRz\
|
542
|
+
X_{72} IheMB?oE?
|
543
|
+
\co{X_{72}} IUXp{~Nxw
|
544
|
+
X_{75} IhEI@?CA?
|
545
|
+
\co{X_{75}} IUxt}~z|w
|
546
|
+
X_4 IhEFHCxAG
|
547
|
+
\co{X_4} IUxwuzE|o
|
548
|
+
X_{76} IhEI@CCAG
|
549
|
+
\co{X_{76}} IUxt}zz|o
|
550
|
+
X_{81} IkCOK?@A?
|
551
|
+
\co{X_{81}} IRznr~}|w
|
552
|
+
T_3 IhCGG_@?G
|
553
|
+
\co{T_3} IUzvv^}~o
|
554
|
+
X_{44} IhCH?cA?W
|
555
|
+
\co{X_{44}} IUzu~Z|~_
|
556
|
+
X_{59} JhC?GC@?HA?
|
557
|
+
\co{X_{59}} JUz~vz}~u|_
|
558
|
+
X_{57} JhEljXz{@y_
|
559
|
+
\co{X_{57}} JUxQSeCB}D?
|
560
|
+
K_2 \cup claw Es?G
|
561
|
+
\co{K_2 \cup claw} EJ~o
|
562
|
+
2P_4 Gh?GGC
|
563
|
+
\co{2P_4} GU~vvw
|
564
|
+
eiffeltower FhCoG
|
565
|
+
co-eiffeltower FUzNo
|