passagemath-gap-pkg-semigroups 10.6.30__cp310-cp310-macosx_13_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.

Files changed (354) hide show
  1. gap/pkg/semigroups/CHANGELOG.md +1699 -0
  2. gap/pkg/semigroups/CONTRIBUTING.md +91 -0
  3. gap/pkg/semigroups/GNUmakefile +110 -0
  4. gap/pkg/semigroups/GNUmakefile.in +110 -0
  5. gap/pkg/semigroups/GPL +674 -0
  6. gap/pkg/semigroups/LICENSE +16 -0
  7. gap/pkg/semigroups/Makefile +26 -0
  8. gap/pkg/semigroups/Makefile.gappkg +225 -0
  9. gap/pkg/semigroups/PackageInfo.g +529 -0
  10. gap/pkg/semigroups/README.md +102 -0
  11. gap/pkg/semigroups/VERSIONS +112 -0
  12. gap/pkg/semigroups/aclocal.m4 +375 -0
  13. gap/pkg/semigroups/autogen.sh +25 -0
  14. gap/pkg/semigroups/bin/aarch64-apple-darwin23-default64-kv10/semigroups.so +0 -0
  15. gap/pkg/semigroups/config.guess +1807 -0
  16. gap/pkg/semigroups/config.log +1158 -0
  17. gap/pkg/semigroups/config.status +1131 -0
  18. gap/pkg/semigroups/config.sub +1960 -0
  19. gap/pkg/semigroups/configure +9742 -0
  20. gap/pkg/semigroups/configure.ac +71 -0
  21. gap/pkg/semigroups/data/doc/greens.pickle +1 -0
  22. gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
  23. gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
  24. gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
  25. gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
  26. gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
  27. gap/pkg/semigroups/data/tst/bipart4 +10 -0
  28. gap/pkg/semigroups/data/tst/pperm10 +1 -0
  29. gap/pkg/semigroups/data/tst/tables.gz +0 -0
  30. gap/pkg/semigroups/data/tst/testdata +1 -0
  31. gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
  32. gap/pkg/semigroups/data/tst/trans3 +7 -0
  33. gap/pkg/semigroups/data/tst/trans3-old +7 -0
  34. gap/pkg/semigroups/environment.yml +7 -0
  35. gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
  36. gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
  37. gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
  38. gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
  39. gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
  40. gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
  41. gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
  42. gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
  43. gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
  44. gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
  45. gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
  46. gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
  47. gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
  48. gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
  49. gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
  50. gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
  51. gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
  52. gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
  53. gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
  54. gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
  55. gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
  56. gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
  57. gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
  58. gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
  59. gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
  60. gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
  61. gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
  62. gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
  63. gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
  64. gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
  65. gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
  66. gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
  67. gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
  68. gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
  69. gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
  70. gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
  71. gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
  72. gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
  73. gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
  74. gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
  75. gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
  76. gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
  77. gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
  78. gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
  79. gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
  80. gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
  81. gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
  82. gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
  83. gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
  84. gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
  85. gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
  86. gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
  87. gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
  88. gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
  89. gap/pkg/semigroups/gap/elements/elements.gd +11 -0
  90. gap/pkg/semigroups/gap/elements/elements.gi +121 -0
  91. gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
  92. gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
  93. gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
  94. gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
  95. gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
  96. gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
  97. gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
  98. gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
  99. gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
  100. gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
  101. gap/pkg/semigroups/gap/elements/star.gd +21 -0
  102. gap/pkg/semigroups/gap/elements/star.gi +21 -0
  103. gap/pkg/semigroups/gap/elements/trans.gd +13 -0
  104. gap/pkg/semigroups/gap/elements/trans.gi +50 -0
  105. gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
  106. gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
  107. gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
  108. gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
  109. gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
  110. gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
  111. gap/pkg/semigroups/gap/fp/word.gd +15 -0
  112. gap/pkg/semigroups/gap/fp/word.gi +67 -0
  113. gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
  114. gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
  115. gap/pkg/semigroups/gap/greens/acting.gd +81 -0
  116. gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
  117. gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
  118. gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
  119. gap/pkg/semigroups/gap/greens/generic.gd +117 -0
  120. gap/pkg/semigroups/gap/greens/generic.gi +630 -0
  121. gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
  122. gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
  123. gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
  124. gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
  125. gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
  126. gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
  127. gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
  128. gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
  129. gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
  130. gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
  131. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
  132. gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
  133. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
  134. gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
  135. gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
  136. gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
  137. gap/pkg/semigroups/gap/main/acting.gd +36 -0
  138. gap/pkg/semigroups/gap/main/acting.gi +779 -0
  139. gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
  140. gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
  141. gap/pkg/semigroups/gap/main/graded.gd +26 -0
  142. gap/pkg/semigroups/gap/main/graded.gi +355 -0
  143. gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
  144. gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
  145. gap/pkg/semigroups/gap/main/orbits.gd +24 -0
  146. gap/pkg/semigroups/gap/main/orbits.gi +512 -0
  147. gap/pkg/semigroups/gap/main/semiact.gd +20 -0
  148. gap/pkg/semigroups/gap/main/semiact.gi +821 -0
  149. gap/pkg/semigroups/gap/main/setup.gd +61 -0
  150. gap/pkg/semigroups/gap/main/setup.gi +1094 -0
  151. gap/pkg/semigroups/gap/obsolete.gd +9 -0
  152. gap/pkg/semigroups/gap/obsolete.gi +14 -0
  153. gap/pkg/semigroups/gap/options.g +55 -0
  154. gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
  155. gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
  156. gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
  157. gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
  158. gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
  159. gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
  160. gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
  161. gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
  162. gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
  163. gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
  164. gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
  165. gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
  166. gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
  167. gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
  168. gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
  169. gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
  170. gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
  171. gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
  172. gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
  173. gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
  174. gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
  175. gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
  176. gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
  177. gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
  178. gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
  179. gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
  180. gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
  181. gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
  182. gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
  183. gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
  184. gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
  185. gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
  186. gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
  187. gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
  188. gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
  189. gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
  190. gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
  191. gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
  192. gap/pkg/semigroups/gap/tools/display.gd +24 -0
  193. gap/pkg/semigroups/gap/tools/display.gi +749 -0
  194. gap/pkg/semigroups/gap/tools/io.gd +17 -0
  195. gap/pkg/semigroups/gap/tools/io.gi +543 -0
  196. gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
  197. gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
  198. gap/pkg/semigroups/gap/tools/utils.gd +19 -0
  199. gap/pkg/semigroups/gap/tools/utils.gi +756 -0
  200. gap/pkg/semigroups/gapbind14/.ccls +18 -0
  201. gap/pkg/semigroups/gapbind14/.clang-format +104 -0
  202. gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
  203. gap/pkg/semigroups/gapbind14/LICENSE +674 -0
  204. gap/pkg/semigroups/gapbind14/README.md +76 -0
  205. gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
  206. gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
  207. gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
  208. gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
  209. gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
  210. gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
  211. gap/pkg/semigroups/gapbind14/demo/configure +34 -0
  212. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
  213. gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
  214. gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
  215. gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
  216. gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
  217. gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
  218. gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
  219. gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
  220. gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
  221. gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
  222. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
  223. gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
  224. gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
  225. gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
  226. gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
  227. gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
  228. gap/pkg/semigroups/init.g +150 -0
  229. gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
  230. gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
  231. gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
  232. gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
  233. gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
  234. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
  235. gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
  236. gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
  237. gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
  238. gap/pkg/semigroups/m4/find_gap.m4 +94 -0
  239. gap/pkg/semigroups/makedoc.g +153 -0
  240. gap/pkg/semigroups/prerequisites.sh +62 -0
  241. gap/pkg/semigroups/read.g +105 -0
  242. gap/pkg/semigroups/release.toml +6 -0
  243. gap/pkg/semigroups/tst/extreme/README +2 -0
  244. gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
  245. gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
  246. gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
  247. gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
  248. gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
  249. gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
  250. gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
  251. gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
  252. gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
  253. gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
  254. gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
  255. gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
  256. gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
  257. gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
  258. gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
  259. gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
  260. gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
  261. gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
  262. gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
  263. gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
  264. gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
  265. gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
  266. gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
  267. gap/pkg/semigroups/tst/standard/README +2 -0
  268. gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
  269. gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
  270. gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
  271. gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
  272. gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
  273. gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
  274. gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
  275. gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
  276. gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
  277. gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
  278. gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
  279. gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
  280. gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
  281. gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
  282. gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
  283. gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
  284. gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
  285. gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
  286. gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
  287. gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
  288. gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
  289. gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
  290. gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
  291. gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
  292. gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
  293. gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
  294. gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
  295. gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
  296. gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
  297. gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
  298. gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
  299. gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
  300. gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
  301. gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
  302. gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
  303. gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
  304. gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
  305. gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
  306. gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
  307. gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
  308. gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
  309. gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
  310. gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
  311. gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
  312. gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
  313. gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
  314. gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
  315. gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
  316. gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
  317. gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
  318. gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
  319. gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
  320. gap/pkg/semigroups/tst/standard/options.tst +54 -0
  321. gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
  322. gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
  323. gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
  324. gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
  325. gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
  326. gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
  327. gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
  328. gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
  329. gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
  330. gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
  331. gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
  332. gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
  333. gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
  334. gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
  335. gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
  336. gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
  337. gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
  338. gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
  339. gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
  340. gap/pkg/semigroups/tst/testinstall.tst +1815 -0
  341. gap/pkg/semigroups/tst/teststandard.g +22 -0
  342. gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
  343. gap/pkg/semigroups/tst/workspaces/load.g +11 -0
  344. gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
  345. gap/pkg/semigroups/tst/workspaces/save.g +14 -0
  346. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA +93 -0
  347. passagemath_gap_pkg_semigroups-10.6.30.dist-info/METADATA.bak +94 -0
  348. passagemath_gap_pkg_semigroups-10.6.30.dist-info/RECORD +354 -0
  349. passagemath_gap_pkg_semigroups-10.6.30.dist-info/WHEEL +6 -0
  350. passagemath_gap_pkg_semigroups-10.6.30.dist-info/top_level.txt +1 -0
  351. passagemath_gap_pkg_semigroups.dylibs/libsemigroups.2.dylib +0 -0
  352. sage/all__sagemath_gap_pkg_semigroups.py +1 -0
  353. sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
  354. sage/libs/gap_pkg_semigroups.cpython-310-darwin.so +0 -0
@@ -0,0 +1,703 @@
1
+ #############################################################################
2
+ ##
3
+ #W extreme/attrinv.tst
4
+ #Y Copyright (C) 2012-15 Wilf A. Wilson
5
+ ##
6
+ ## Licensing information can be found in the README file of this package.
7
+ #
8
+ #############################################################################
9
+ ##
10
+
11
+ #@local A, B, C, D, I, I2, I5, J, J2, P, Q, R, S, T, U, V, VPR, W, WW, a, b
12
+ #@local cosets, d, f, f1, f2, f3, g, gens, h, h1, h2, inv, iso, m, m1, m2, t
13
+ #@local tmp, w, ww, x, xx, y, yy, z, zz
14
+ gap> START_TEST("Semigroups package: extreme/attrinv.tst");
15
+ gap> LoadPackage("semigroups", false);;
16
+
17
+ #
18
+ gap> SEMIGROUPS.StartTest();
19
+
20
+ # AttributesInverseTest1: JoinIrreducibleDClasses
21
+ gap> S := InverseSemigroup([
22
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
23
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
24
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
25
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
26
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);
27
+ <inverse partial perm semigroup of rank 7 with 5 generators>
28
+ gap> iso := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
29
+ gap> A := Range(iso);
30
+ <inverse bipartition semigroup of degree 7 with 5 generators>
31
+ gap> I := SemigroupIdeal(S, PartialPerm([1, 3, 4, 5, 7], [1, 3, 4, 5, 7]));
32
+ <inverse partial perm semigroup ideal of rank 7 with 1 generator>
33
+ gap> B := InverseSemigroup([
34
+ > Bipartition([[1, -6], [2, -4], [3, -3], [4, 5, 6, 7, -1, -2, -5, -7]]),
35
+ > Bipartition([[1, -4], [2, -5], [3, 6, 7, -2, -3, -7], [4, -1], [5, -6]]),
36
+ > Bipartition([[1, -6], [2, -5], [3, 5, 7, -3, -4, -7], [4, -2], [6, -1]])]);
37
+ <inverse block bijection semigroup of degree 7 with 3 generators>
38
+ gap> J := SemigroupIdeal(B,
39
+ > Bipartition([[1, -1], [2, 3, 5, 7, -2, -3, -5, -7], [4, -4],
40
+ > [6, -6]]),
41
+ > Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7], [3, -3]]));
42
+ <inverse bipartition semigroup ideal of degree 7 with 2 generators>
43
+ gap> D := JoinIrreducibleDClasses(S);;
44
+ gap> Length(D) = 1;
45
+ true
46
+ gap> D := D[1];;
47
+ gap> PartialPerm([4], [4]) in D and PartialPerm([3], [6]) in D;
48
+ true
49
+ gap> Size(D);
50
+ 49
51
+ gap> D := JoinIrreducibleDClasses(I);;
52
+ gap> Length(D) = 1;
53
+ true
54
+ gap> D := D[1];;
55
+ gap> PartialPerm([4], [4]) in D and PartialPerm([1], [4]) in D;
56
+ true
57
+ gap> Size(D);
58
+ 49
59
+ gap> D := JoinIrreducibleDClasses(A);;
60
+ gap> Length(D) = 1;
61
+ true
62
+ gap> D[1] = DClass(A, Bipartition([[1], [2], [3], [4, -4], [5], [6], [7], [-1],
63
+ > [-2], [-3], [-5], [-6], [-7]]));
64
+ true
65
+ gap> Size(D);
66
+ 1
67
+ gap> Set(JoinIrreducibleDClasses(B)) =
68
+ > Set([DClass(B,
69
+ > Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7],
70
+ > [3, -3]])),
71
+ > DClass(B,
72
+ > Bipartition([[1, -1],
73
+ > [2, 3, 4, 5, 6, 7, -2, -3, -4, -5, -6, -7]]))]);
74
+ true
75
+ gap> Set(JoinIrreducibleDClasses(J)) =
76
+ > Set([DClass(J,
77
+ > Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7],
78
+ > [3, -3]])),
79
+ > DClass(J,
80
+ > Bipartition([[1, 2, 3, 4, 5, 7, -1, -2, -3, -4, -5, -7],
81
+ > [6, -6]]))]);
82
+ true
83
+
84
+ # AttributesInverseTest2: IsJoinIrreducible
85
+ gap> S := InverseSemigroup([
86
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
87
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
88
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
89
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
90
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
91
+ gap> iso := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
92
+ gap> A := Range(iso);;
93
+ gap> I := SemigroupIdeal(S,
94
+ > PartialPerm([1, 3, 4, 5, 7], [1, 3, 4, 5, 7]));;
95
+ gap> B := InverseSemigroup([
96
+ > Bipartition([[1, -6], [2, -4], [3, -3], [4, 5, 6, 7, -1, -2, -5, -7]]),
97
+ > Bipartition([[1, -4], [2, -5], [3, 6, 7, -2, -3, -7], [4, -1], [5, -6]]),
98
+ > Bipartition([[1, -6], [2, -5], [3, 5, 7, -3, -4, -7], [4, -2], [6, -1]])]);;
99
+ gap> J := SemigroupIdeal(B,
100
+ > Bipartition([[1, -1], [2, 3, 5, 7, -2, -3, -5, -7], [4, -4],
101
+ > [6, -6]]),
102
+ > Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7], [3, -3]]));;
103
+ gap> x := PartialPerm([1, 2, 4, 6], [2, 3, 1, 4]);; xx := x ^ iso;;
104
+ gap> x in S;
105
+ true
106
+ gap> IsJoinIrreducible(S, x);
107
+ false
108
+ gap> x in I;
109
+ true
110
+ gap> IsJoinIrreducible(I, x);
111
+ false
112
+ gap> xx in A;
113
+ true
114
+ gap> IsJoinIrreducible(A, xx);
115
+ false
116
+ gap> y := PartialPerm([5], [3]);; yy := y ^ iso;;
117
+ gap> IsJoinIrreducible(S, y);
118
+ true
119
+ gap> IsJoinIrreducible(I, y);
120
+ true
121
+ gap> IsJoinIrreducible(A, yy);
122
+ true
123
+ gap> P := Bipartition([[1, 3, 5, 6, 7, -3, -4, -5, -6, -7], [2, -2],
124
+ > [4, -1]]);;
125
+ gap> IsJoinIrreducible(B, P);
126
+ false
127
+ gap> IsJoinIrreducible(J, P);
128
+ false
129
+ gap> Q := Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7],
130
+ > [3, -3]]);;
131
+ gap> IsJoinIrreducible(B, Q);
132
+ true
133
+ gap> IsJoinIrreducible(J, Q);
134
+ true
135
+ gap> R := Bipartition([[1, -4],
136
+ > [2, 3, 4, 5, 6, 7, -1, -2, -3, -5, -6, -7]]);;
137
+ gap> IsJoinIrreducible(B, R);
138
+ true
139
+ gap> IsJoinIrreducible(J, R);
140
+ true
141
+
142
+ # AttributesInverseTest3: Minorants 1
143
+ gap> S := InverseSemigroup([
144
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
145
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
146
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
147
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
148
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
149
+ gap> iso := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
150
+ gap> A := Range(iso);;
151
+ gap> I := SemigroupIdeal(S,
152
+ > PartialPerm([1, 3, 4, 5, 7], [1, 3, 4, 5, 7]));;
153
+ gap> B := InverseSemigroup([
154
+ > Bipartition([[1, -6], [2, -4], [3, -3], [4, 5, 6, 7, -1, -2, -5, -7]]),
155
+ > Bipartition([[1, -4], [2, -5], [3, 6, 7, -2, -3, -7], [4, -1], [5, -6]]),
156
+ > Bipartition([[1, -6], [2, -5], [3, 5, 7, -3, -4, -7], [4, -2], [6, -1]])]);;
157
+ gap> J := SemigroupIdeal(B,
158
+ > Bipartition([[1, -1], [2, 3, 5, 7, -2, -3, -5, -7],
159
+ > [4, -4], [6, -6]]),
160
+ > Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7], [3, -3]]));;
161
+ gap> x := PartialPerm([1, 2, 4, 6], [2, 3, 1, 4]);;
162
+ gap> Minorants(S, x);
163
+ [ <empty partial perm>, [2,3], [1,2], [6,4], [4,1], [2,3][4,1], [1,2][6,4],
164
+ [2,3][6,4], [6,4,1], [4,1,2], [1,2,3], [4,1,2,3], [2,3][6,4,1], [6,4,1,2],
165
+ [1,2,3][6,4] ]
166
+ gap> Minorants(I, x);
167
+ [ <empty partial perm>, [2,3], [1,2], [4,1], [6,4], [1,2,3], [2,3][4,1],
168
+ [1,2][6,4], [2,3][6,4], [6,4,1], [4,1,2], [4,1,2,3], [2,3][6,4,1],
169
+ [6,4,1,2], [1,2,3][6,4] ]
170
+ gap> Minorants(A, x ^ iso);
171
+ [ <bipartition: [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ -1 ],
172
+ [ -2 ], [ -3 ], [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
173
+ <bipartition: [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6, -4 ], [ 7 ], [ -1 ],
174
+ [ -2 ], [ -3 ], [ -5 ], [ -6 ], [ -7 ]>,
175
+ <bipartition: [ 1 ], [ 2 ], [ 3 ], [ 4, -1 ], [ 5 ], [ 6 ], [ 7 ], [ -2 ],
176
+ [ -3 ], [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
177
+ <bipartition: [ 1, -2 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ -1 ],
178
+ [ -3 ], [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
179
+ <bipartition: [ 1 ], [ 2, -3 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ], [ -1 ],
180
+ [ -2 ], [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
181
+ <bipartition: [ 1 ], [ 2, -3 ], [ 3 ], [ 4 ], [ 5 ], [ 6, -4 ], [ 7 ],
182
+ [ -1 ], [ -2 ], [ -5 ], [ -6 ], [ -7 ]>,
183
+ <bipartition: [ 1, -2 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6, -4 ], [ 7 ],
184
+ [ -1 ], [ -3 ], [ -5 ], [ -6 ], [ -7 ]>,
185
+ <bipartition: [ 1, -2 ], [ 2, -3 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7 ],
186
+ [ -1 ], [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
187
+ <bipartition: [ 1 ], [ 2 ], [ 3 ], [ 4, -1 ], [ 5 ], [ 6, -4 ], [ 7 ],
188
+ [ -2 ], [ -3 ], [ -5 ], [ -6 ], [ -7 ]>,
189
+ <bipartition: [ 1 ], [ 2, -3 ], [ 3 ], [ 4, -1 ], [ 5 ], [ 6 ], [ 7 ],
190
+ [ -2 ], [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
191
+ <bipartition: [ 1, -2 ], [ 2 ], [ 3 ], [ 4, -1 ], [ 5 ], [ 6 ], [ 7 ],
192
+ [ -3 ], [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
193
+ <bipartition: [ 1, -2 ], [ 2, -3 ], [ 3 ], [ 4, -1 ], [ 5 ], [ 6 ], [ 7 ],
194
+ [ -4 ], [ -5 ], [ -6 ], [ -7 ]>,
195
+ <bipartition: [ 1, -2 ], [ 2 ], [ 3 ], [ 4, -1 ], [ 5 ], [ 6, -4 ], [ 7 ],
196
+ [ -3 ], [ -5 ], [ -6 ], [ -7 ]>,
197
+ <bipartition: [ 1 ], [ 2, -3 ], [ 3 ], [ 4, -1 ], [ 5 ], [ 6, -4 ], [ 7 ],
198
+ [ -2 ], [ -5 ], [ -6 ], [ -7 ]>,
199
+ <bipartition: [ 1, -2 ], [ 2, -3 ], [ 3 ], [ 4 ], [ 5 ], [ 6, -4 ], [ 7 ],
200
+ [ -1 ], [ -5 ], [ -6 ], [ -7 ]> ]
201
+ gap> z := PartialPerm([], []);
202
+ <empty partial perm>
203
+ gap> zz := z ^ iso;;
204
+ gap> z in S;
205
+ true
206
+ gap> z in I;
207
+ true
208
+ gap> zz in A;
209
+ true
210
+ gap> Minorants(S, z);
211
+ [ ]
212
+ gap> Minorants(I, z);
213
+ [ ]
214
+ gap> Minorants(A, zz);
215
+ [ ]
216
+ gap> P := Bipartition([[1, 3, 5, 6, 7, -3, -4, -5, -6, -7], [2, -2],
217
+ > [4, -1]]);;
218
+ gap> Q := Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7],
219
+ > [3, -3]]);;
220
+ gap> R := Bipartition([[1, -4],
221
+ > [2, 3, 4, 5, 6, 7, -1, -2, -3, -5, -6, -7]]);;
222
+ gap> m := Minorants(B, Q);
223
+ [ <block bijection: [ 1, 2, 3, 4, 5, 6, 7, -1, -2, -3, -4, -5, -6, -7 ]> ]
224
+ gap> Minorants(B, R) = m;
225
+ true
226
+ gap> Minorants(J, Q) = m;
227
+ true
228
+ gap> Minorants(J, R) = m;
229
+ true
230
+ gap> m[1] = MultiplicativeZero(B);
231
+ true
232
+ gap> m := Minorants(B, Bipartition(
233
+ > [[1, -6], [2, -4], [3, 4, 7, -3, -5, -7], [5, -2], [6, -1]]));;
234
+ gap> Size(m);
235
+ 15
236
+ gap> m1 := Minorants(J, Bipartition(
237
+ > [[1, -6], [2, -5], [3, 5, 6, 7, -1, -3, -4, -7], [4, -2]]));;
238
+ gap> Size(m1);
239
+ 7
240
+
241
+ # AttributesInverseTest4: Minorants 2
242
+ gap> U := InverseSemigroup(
243
+ > PartialPerm([1, 3, 4, 5, 7], [1, 5, 3, 8, 4]),
244
+ > PartialPerm([1, 2, 3, 4, 5, 6], [6, 7, 1, 4, 3, 2]),
245
+ > PartialPerm([1, 2, 3, 4, 5, 8], [5, 6, 3, 8, 4, 7]),
246
+ > PartialPerm([1, 3, 4, 5, 6, 8], [8, 7, 5, 1, 3, 4]),
247
+ > PartialPerm([1, 3, 4, 5, 7, 8], [6, 5, 7, 1, 4, 2]));;
248
+ gap> t := PartialPerm([4, 5, 7, 8], [5, 4, 1, 6]);;
249
+ gap> t in U;
250
+ true
251
+ gap> Minorants(U, t);
252
+ [ <empty partial perm>, [7,1], [4,5], [8,6], [5,4], [5,4][7,1], [7,1][8,6],
253
+ [5,4][8,6], [4,5][7,1], [4,5][8,6], (4,5), [8,6](4,5), [5,4][7,1][8,6],
254
+ [4,5][7,1][8,6], [7,1](4,5) ]
255
+
256
+ # AttributesInverseTest5: MajorantClosure and IsMajorantlyClosed
257
+ gap> S := InverseSemigroup([
258
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
259
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
260
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
261
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
262
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
263
+ gap> iso := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
264
+ gap> A := Range(iso);;
265
+ gap> I := SemigroupIdeal(S,
266
+ > PartialPerm([1, 3, 4, 5, 7], [1, 3, 4, 5, 7]));;
267
+ gap> B := InverseSemigroup([
268
+ > Bipartition([[1, -6], [2, -4], [3, -3], [4, 5, 6, 7, -1, -2, -5, -7]]),
269
+ > Bipartition([[1, -4], [2, -5], [3, 6, 7, -2, -3, -7], [4, -1], [5, -6]]),
270
+ > Bipartition([[1, -6], [2, -5], [3, 5, 7, -3, -4, -7], [4, -2], [6, -1]])]);;
271
+ gap> J := SemigroupIdeal(B,
272
+ > Bipartition([[1, -1], [2, 3, 5, 7, -2, -3, -5, -7], [4, -4],
273
+ > [6, -6]]),
274
+ > Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7], [3, -3]]));;
275
+ gap> x := PartialPerm([1, 2, 4, 6], [2, 3, 1, 4]);; xx := x ^ iso;;
276
+ gap> y := PartialPerm([5], [3]);; yy := y ^ iso;;
277
+ gap> P := Bipartition([[1, 3, 5, 6, 7, -3, -4, -5, -6, -7], [2, -2],
278
+ > [4, -1]]);;
279
+ gap> Q := Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7],
280
+ > [3, -3]]);;
281
+ gap> R := Bipartition([[1, -4],
282
+ > [2, 3, 4, 5, 6, 7, -1, -2, -3, -5, -6, -7]]);;
283
+ gap> IsMajorantlyClosed(S, [x]);
284
+ true
285
+ gap> MajorantClosure(S, [x]) = [x];
286
+ true
287
+ gap> IsMajorantlyClosed(I, [x]);
288
+ true
289
+ gap> MajorantClosure(I, [x]) = [x];
290
+ true
291
+ gap> IsMajorantlyClosed(A, [xx]);
292
+ true
293
+ gap> MajorantClosure(A, [xx]) = [xx];
294
+ true
295
+ gap> IsMajorantlyClosed(S, [y]);
296
+ false
297
+ gap> IsMajorantlyClosed(I, [y]);
298
+ false
299
+ gap> IsMajorantlyClosed(A, [yy]);
300
+ false
301
+ gap> m := MajorantClosure(S, [y]);;
302
+ gap> Size(m);
303
+ 486
304
+ gap> m1 := MajorantClosure(I, [y]);;
305
+ gap> Size(m1);
306
+ 485
307
+ gap> m2 := MajorantClosure(A, [yy]);;
308
+ gap> Size(m2);
309
+ 486
310
+ gap> ForAll(m1, x -> x in m);
311
+ true
312
+ gap> IsMajorantlyClosed(B, [P]);
313
+ true
314
+ gap> IsMajorantlyClosed(B, [Q]);
315
+ false
316
+ gap> IsMajorantlyClosed(B, [R]);
317
+ false
318
+ gap> IsMajorantlyClosed(J, [P]);
319
+ true
320
+ gap> IsMajorantlyClosed(J, [Q]);
321
+ true
322
+ gap> IsMajorantlyClosed(J, [R]);
323
+ false
324
+ gap> MajorantClosure(B, [Q]);
325
+ [ <block bijection: [ 1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7 ], [ 3, -3 ]>,
326
+ <block bijection: [ 1, 2, 5, 7, -1, -2, -5, -7 ], [ 3, -3 ], [ 4, -4 ],
327
+ [ 6, -6 ]>, <block bijection: [ 1, 2, 5, 7, -4, -5, -6, -7 ], [ 3, -3 ],
328
+ [ 4, -2 ], [ 6, -1 ]>,
329
+ <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ],
330
+ [ 4, 5, 6, 7, -4, -5, -6, -7 ]>,
331
+ <block bijection: [ 1, -6 ], [ 2, -4 ], [ 3, -3 ],
332
+ [ 4, 5, 6, 7, -1, -2, -5, -7 ]> ]
333
+ gap> m := MajorantClosure(B, [R]);;
334
+ gap> IsMajorantlyClosed(B, m);
335
+ true
336
+ gap> Size(MajorantClosure(B, [Q, R]));
337
+ 33
338
+ gap> m := MajorantClosure(J, [R]);;
339
+ gap> IsMajorantlyClosed(J, m);
340
+ true
341
+ gap> Size(m);
342
+ 25
343
+
344
+ # AttributesInverseTest6: RightCosetsOfInverseSemigroup
345
+ gap> S := InverseSemigroup([
346
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
347
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
348
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
349
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
350
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
351
+ gap> iso := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
352
+ gap> A := Range(iso);;
353
+ gap> B := InverseSemigroup([
354
+ > Bipartition([[1, -6], [2, -4], [3, -3], [4, 5, 6, 7, -1, -2, -5, -7]]),
355
+ > Bipartition([[1, -4], [2, -5], [3, 6, 7, -2, -3, -7], [4, -1], [5, -6]]),
356
+ > Bipartition([[1, -6], [2, -5], [3, 5, 7, -3, -4, -7], [4, -2], [6, -1]])]);;
357
+ gap> w := PartialPerm([1, 2, 3, 4], [1, 2, 3, 4]);;
358
+ gap> m := MajorantClosure(S, [w]);;
359
+ gap> W := InverseSemigroup(m);
360
+ <inverse partial perm semigroup of rank 7 with 5 generators>
361
+ gap> IsMajorantlyClosed(S, W);
362
+ true
363
+ gap> cosets := RightCosetsOfInverseSemigroup(S, W);;
364
+ gap> Sort(cosets);
365
+ gap> cosets;
366
+ [ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
367
+ <identity partial perm on [ 1, 2, 3, 4, 5 ]>,
368
+ <identity partial perm on [ 1, 2, 3, 4, 6 ]>,
369
+ <identity partial perm on [ 1, 2, 3, 4, 5, 6 ]>,
370
+ <identity partial perm on [ 1, 2, 3, 4, 5, 7 ]> ], [ [2,5](1)(3)(4) ],
371
+ [ [4,3,2,7](1) ], [ [2,1,3,4,6] ],
372
+ [ [1,3,4,6](2), [5,1,3,4,6](2), [7,5,1,3,4,6](2) ], [ [1,3,5][4,7](2) ],
373
+ [ [1,3,2,5](4) ], [ [3,2,1,4,6] ], [ [3,1,4,5](2) ],
374
+ [ [4,3,1,5](2), [4,3,1,5,7](2), [6,4,3,1,5](2), [6,4,3,1,5,7](2) ],
375
+ [ [1,5][2,4,3,6] ], [ [2,7][4,3,1,5] ], [ [2,7][3,1,5][4,6] ],
376
+ [ [4,1,6](2)(3) ], [ [3,5][4,1,7](2), [4,1,7][6,3,5](2) ], [ [2,3,4,1,7] ],
377
+ [ [3,1,7][4,2,6] ] ]
378
+ gap> ww := w ^ iso;;
379
+ gap> m := MajorantClosure(A, [ww]);;
380
+ gap> WW := InverseSemigroup(m);
381
+ <inverse bipartition semigroup of degree 7 with 5 generators>
382
+ gap> IsMajorantlyClosed(A, WW);
383
+ true
384
+ gap> cosets := RightCosetsOfInverseSemigroup(A, WW);;
385
+ gap> Sort(cosets);
386
+ gap> cosets;
387
+ [ [ <bipartition: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ 5 ], [ 6 ],
388
+ [ 7 ], [ -5 ], [ -6 ], [ -7 ]>,
389
+ <bipartition: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ 5, -5 ],
390
+ [ 6, -6 ], [ 7 ], [ -7 ]>,
391
+ <bipartition: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ 5, -5 ],
392
+ [ 6 ], [ 7, -7 ], [ -6 ]>,
393
+ <bipartition: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ 5, -5 ],
394
+ [ 6 ], [ 7 ], [ -6 ], [ -7 ]>,
395
+ <bipartition: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ], [ 4, -4 ], [ 5 ],
396
+ [ 6, -6 ], [ 7 ], [ -5 ], [ -7 ]> ],
397
+ [ <bipartition: [ 1, -1 ], [ 2, -7 ], [ 3, -2 ], [ 4, -3 ], [ 5 ], [ 6 ],
398
+ [ 7 ], [ -4 ], [ -5 ], [ -6 ]> ],
399
+ [ <bipartition: [ 1, -1 ], [ 2, -5 ], [ 3, -3 ], [ 4, -4 ], [ 5 ], [ 6 ],
400
+ [ 7 ], [ -2 ], [ -6 ], [ -7 ]> ],
401
+ [ <bipartition: [ 1, -4 ], [ 2, -1 ], [ 3, -2 ], [ 4, -6 ], [ 5 ], [ 6 ],
402
+ [ 7 ], [ -3 ], [ -5 ], [ -7 ]> ],
403
+ [ <bipartition: [ 1, -3 ], [ 2, -1 ], [ 3, -4 ], [ 4, -6 ], [ 5 ], [ 6 ],
404
+ [ 7 ], [ -2 ], [ -5 ], [ -7 ]> ],
405
+ [ <bipartition: [ 1, -5 ], [ 2, -2 ], [ 3, -1 ], [ 4, -3 ], [ 5 ], [ 6 ],
406
+ [ 7 ], [ -4 ], [ -6 ], [ -7 ]>,
407
+ <bipartition: [ 1, -5 ], [ 2, -2 ], [ 3, -1 ], [ 4, -3 ], [ 5, -7 ],
408
+ [ 6, -4 ], [ 7 ], [ -6 ]>,
409
+ <bipartition: [ 1, -5 ], [ 2, -2 ], [ 3, -1 ], [ 4, -3 ], [ 5 ],
410
+ [ 6, -4 ], [ 7 ], [ -6 ], [ -7 ]>,
411
+ <bipartition: [ 1, -5 ], [ 2, -2 ], [ 3, -1 ], [ 4, -3 ], [ 5, -7 ],
412
+ [ 6 ], [ 7 ], [ -4 ], [ -6 ]> ],
413
+ [ <bipartition: [ 1, -4 ], [ 2, -2 ], [ 3, -1 ], [ 4, -5 ], [ 5 ], [ 6 ],
414
+ [ 7 ], [ -3 ], [ -6 ], [ -7 ]> ],
415
+ [ <bipartition: [ 1, -7 ], [ 2, -6 ], [ 3, -1 ], [ 4, -2 ], [ 5 ], [ 6 ],
416
+ [ 7 ], [ -3 ], [ -4 ], [ -5 ]> ],
417
+ [ <bipartition: [ 1, -5 ], [ 2, -7 ], [ 3, -1 ], [ 4, -3 ], [ 5 ], [ 6 ],
418
+ [ 7 ], [ -2 ], [ -4 ], [ -6 ]> ],
419
+ [ <bipartition: [ 1, -5 ], [ 2, -7 ], [ 3, -1 ], [ 4, -6 ], [ 5 ], [ 6 ],
420
+ [ 7 ], [ -2 ], [ -3 ], [ -4 ]> ],
421
+ [ <bipartition: [ 1, -6 ], [ 2, -2 ], [ 3, -3 ], [ 4, -1 ], [ 5 ], [ 6 ],
422
+ [ 7 ], [ -4 ], [ -5 ], [ -7 ]> ],
423
+ [ <bipartition: [ 1, -7 ], [ 2, -2 ], [ 3, -5 ], [ 4, -1 ], [ 5 ], [ 6 ],
424
+ [ 7 ], [ -3 ], [ -4 ], [ -6 ]>,
425
+ <bipartition: [ 1, -7 ], [ 2, -2 ], [ 3, -5 ], [ 4, -1 ], [ 5 ],
426
+ [ 6, -3 ], [ 7 ], [ -4 ], [ -6 ]> ],
427
+ [ <bipartition: [ 1, -7 ], [ 2, -3 ], [ 3, -4 ], [ 4, -1 ], [ 5 ], [ 6 ],
428
+ [ 7 ], [ -2 ], [ -5 ], [ -6 ]> ],
429
+ [ <bipartition: [ 1, -3 ], [ 2, -2 ], [ 3, -4 ], [ 4, -6 ], [ 5 ], [ 6 ],
430
+ [ 7 ], [ -1 ], [ -5 ], [ -7 ]>,
431
+ <bipartition: [ 1, -3 ], [ 2, -2 ], [ 3, -4 ], [ 4, -6 ], [ 5, -1 ],
432
+ [ 6 ], [ 7, -5 ], [ -7 ]>,
433
+ <bipartition: [ 1, -3 ], [ 2, -2 ], [ 3, -4 ], [ 4, -6 ], [ 5, -1 ],
434
+ [ 6 ], [ 7 ], [ -5 ], [ -7 ]> ],
435
+ [ <bipartition: [ 1, -3 ], [ 2, -2 ], [ 3, -5 ], [ 4, -7 ], [ 5 ], [ 6 ],
436
+ [ 7 ], [ -1 ], [ -4 ], [ -6 ]> ],
437
+ [ <bipartition: [ 1, -3 ], [ 2, -5 ], [ 3, -2 ], [ 4, -4 ], [ 5 ], [ 6 ],
438
+ [ 7 ], [ -1 ], [ -6 ], [ -7 ]> ],
439
+ [ <bipartition: [ 1, -5 ], [ 2, -4 ], [ 3, -6 ], [ 4, -3 ], [ 5 ], [ 6 ],
440
+ [ 7 ], [ -1 ], [ -2 ], [ -7 ]> ] ]
441
+ gap> I2 := SemigroupIdeal(S, PartialPerm([1, 2, 3, 4, 5, 6]));
442
+ <inverse partial perm semigroup ideal of rank 7 with 1 generator>
443
+ gap> cosets := RightCosetsOfInverseSemigroup(I2, W);;
444
+ gap> Sort(cosets);
445
+ gap> cosets;
446
+ [ [ <identity partial perm on [ 1, 2, 3, 4 ]>,
447
+ <identity partial perm on [ 1, 2, 3, 4, 5 ]>,
448
+ <identity partial perm on [ 1, 2, 3, 4, 6 ]>,
449
+ <identity partial perm on [ 1, 2, 3, 4, 5, 6 ]>,
450
+ <identity partial perm on [ 1, 2, 3, 4, 5, 7 ]> ], [ [2,5](1)(3)(4) ],
451
+ [ [4,3,2,7](1) ], [ [2,1,3,4,6] ],
452
+ [ [1,3,4,6](2), [5,1,3,4,6](2), [7,5,1,3,4,6](2) ], [ [1,3,5][4,7](2) ],
453
+ [ [1,3,2,5](4) ], [ [3,2,1,4,6] ], [ [3,1,4,5](2) ],
454
+ [ [4,3,1,5](2), [4,3,1,5,7](2), [6,4,3,1,5](2), [6,4,3,1,5,7](2) ],
455
+ [ [1,5][2,4,3,6] ], [ [2,7][4,3,1,5] ], [ [2,7][3,1,5][4,6] ],
456
+ [ [4,1,6](2)(3) ], [ [3,5][4,1,7](2), [4,1,7][6,3,5](2) ], [ [2,3,4,1,7] ],
457
+ [ [3,1,7][4,2,6] ] ]
458
+ gap> C := Bipartition(
459
+ > [[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7], [3, -3]]);;
460
+ gap> m := MajorantClosure(B, [C]);;
461
+ gap> V := InverseSemigroup(m);
462
+ <inverse block bijection semigroup of degree 7 with 5 generators>
463
+ gap> IsMajorantlyClosed(B, V);
464
+ true
465
+ gap> RightCosetsOfInverseSemigroup(B, V);
466
+ [ [ <block bijection: [ 1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7 ], [ 3, -3 ]>
467
+ , <block bijection: [ 1, 2, 5, 7, -1, -2, -5, -7 ], [ 3, -3 ],
468
+ [ 4, -4 ], [ 6, -6 ]>,
469
+ <block bijection: [ 1, 2, 5, 7, -4, -5, -6, -7 ], [ 3, -3 ], [ 4, -2 ],
470
+ [ 6, -1 ]>, <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ],
471
+ [ 4, 5, 6, 7, -4, -5, -6, -7 ]>,
472
+ <block bijection: [ 1, -6 ], [ 2, -4 ], [ 3, -3 ],
473
+ [ 4, 5, 6, 7, -1, -2, -5, -7 ]> ] ]
474
+ gap> gens := [
475
+ > Bipartition(
476
+ > [[1, 2, 5, 7, -1, -2, -5, -7], [3, -3], [4, -4], [6, -6]]),
477
+ > Bipartition(
478
+ > [[1, -1], [2, 3, 7, -2, -3, -7], [4, -4], [5, -5], [6, -6]]),
479
+ > Bipartition(
480
+ > [[1, -1], [2, -2], [3, 4, 7, -3, -4, -7], [5, -5], [6, -6]])];;
481
+ gap> J2 := SemigroupIdeal(B, gens);
482
+ <inverse bipartition semigroup ideal of degree 7 with 3 generators>
483
+ gap> RightCosetsOfInverseSemigroup(J2, V);
484
+ [ [ <block bijection: [ 1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7 ], [ 3, -3 ]>
485
+ , <block bijection: [ 1, 2, 5, 7, -1, -2, -5, -7 ], [ 3, -3 ],
486
+ [ 4, -4 ], [ 6, -6 ]>,
487
+ <block bijection: [ 1, 2, 5, 7, -4, -5, -6, -7 ], [ 3, -3 ], [ 4, -2 ],
488
+ [ 6, -1 ]>, <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ],
489
+ [ 4, 5, 6, 7, -4, -5, -6, -7 ]>,
490
+ <block bijection: [ 1, -6 ], [ 2, -4 ], [ 3, -3 ],
491
+ [ 4, 5, 6, 7, -1, -2, -5, -7 ]> ] ]
492
+
493
+ # AttributesInverseTest7: SameMinorantsSubgroup
494
+ # (trivial examples)
495
+ gap> S := InverseSemigroup([
496
+ > PartialPerm([1, 2, 3, 4], [4, 1, 2, 6]),
497
+ > PartialPerm([1, 2, 3, 4], [5, 7, 1, 6]),
498
+ > PartialPerm([1, 2, 3, 5], [5, 2, 7, 3]),
499
+ > PartialPerm([1, 2, 3, 6, 7], [1, 3, 4, 7, 5]),
500
+ > PartialPerm([1, 2, 3, 4, 5, 7], [3, 2, 4, 6, 1, 5])]);;
501
+ gap> iso := IsomorphismSemigroup(IsBipartitionSemigroup, S);;
502
+ gap> A := Range(iso);;
503
+ gap> B := InverseSemigroup([
504
+ > Bipartition([[1, -6], [2, -4], [3, -3], [4, 5, 6, 7, -1, -2, -5, -7]]),
505
+ > Bipartition([[1, -4], [2, -5], [3, 6, 7, -2, -3, -7], [4, -1], [5, -6]]),
506
+ > Bipartition([[1, -6], [2, -5], [3, 5, 7, -3, -4, -7], [4, -2], [6, -1]])]);;
507
+ gap> J := SemigroupIdeal(B,
508
+ > Bipartition([[1, -1], [2, 3, 5, 7, -2, -3, -5, -7], [4, -4],
509
+ > [6, -6]]),
510
+ > Bipartition([[1, 2, 4, 5, 6, 7, -1, -2, -4, -5, -6, -7],
511
+ > [3, -3]]));;
512
+ gap> h := GreensHClassOfElement(S, PartialPerm([1, 4, 6], [1, 4, 6]));
513
+ <Green's H-class: <identity partial perm on [ 1, 4, 6 ]>>
514
+ gap> SameMinorantsSubgroup(h);
515
+ [ <identity partial perm on [ 1, 4, 6 ]> ]
516
+ gap> x := Bipartition([[1, -1], [2], [3], [4, -4], [5], [6, -6], [7], [-2],
517
+ > [-3], [-5], [-7]]);;
518
+ gap> h := GreensHClassOfElement(A, x);
519
+ <Green's H-class: <bipartition: [ 1, -1 ], [ 2 ], [ 3 ], [ 4, -4 ], [ 5 ],
520
+ [ 6, -6 ], [ 7 ], [ -2 ], [ -3 ], [ -5 ], [ -7 ]>>
521
+ gap> SameMinorantsSubgroup(h);
522
+ [ <bipartition: [ 1, -1 ], [ 2 ], [ 3 ], [ 4, -4 ], [ 5 ], [ 6, -6 ], [ 7 ],
523
+ [ -2 ], [ -3 ], [ -5 ], [ -7 ]> ]
524
+ gap> x := Bipartition([[1, -1], [2, -2], [3, 4, 5, 6, 7, -3, -4, -5, -6, -7]]);;
525
+ gap> h := GreensHClassOfElement(B, x);
526
+ <Green's H-class: <block bijection: [ 1, -1 ], [ 2, -2 ],
527
+ [ 3, 4, 5, 6, 7, -3, -4, -5, -6, -7 ]>>
528
+ gap> SameMinorantsSubgroup(h);
529
+ [ <block bijection: [ 1, -1 ], [ 2, -2 ],
530
+ [ 3, 4, 5, 6, 7, -3, -4, -5, -6, -7 ]> ]
531
+ gap> x := Bipartition([[1, -1], [2, 3, 5, 6, 7, -2, -3, -5, -6, -7], [4, -4]]);;
532
+ gap> h := GreensHClassOfElement(J, x);;
533
+ gap> SameMinorantsSubgroup(h);
534
+ [ <block bijection: [ 1, -1 ], [ 2, 3, 5, 6, 7, -2, -3, -5, -6, -7 ],
535
+ [ 4, -4 ]> ]
536
+
537
+ # AttributesInverseTest8: SameMinorantsSubgroup
538
+ # (non-trivial examples)
539
+ gap> f := PartialPermNC([2, 1, 4, 5, 3, 7, 6, 9, 10, 8]);;
540
+ gap> g := PartialPermNC([2, 1, 0, 0, 0, 7, 6]);;
541
+ gap> S := InverseSemigroup(f, g);;
542
+ gap> T := SemigroupIdeal(S, PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]));;
543
+ gap> d := DClass(S, PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]));;
544
+ gap> h1 := GroupHClass(d);
545
+ <Green's H-class: <identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
546
+ >>
547
+ gap> m1 := ShallowCopy(SameMinorantsSubgroup(h1));;
548
+ gap> Sort(m1);
549
+ gap> m1;
550
+ [ <identity partial perm on [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]>,
551
+ (1)(2)(3,4,5)(6)(7)(8,9,10), (1)(2)(3,5,4)(6)(7)(8,10,9) ]
552
+ gap> d := DClass(S, PartialPerm([1, 2, 6, 7], [1, 2, 6, 7]));;
553
+ gap> h2 := GroupHClass(d);
554
+ <Green's H-class: <identity partial perm on [ 1, 2, 6, 7 ]>>
555
+ gap> m2 := ShallowCopy(SameMinorantsSubgroup(h2));;
556
+ gap> Sort(m2);
557
+ gap> m2;
558
+ [ <identity partial perm on [ 1, 2, 6, 7 ]>, (1,2)(6,7) ]
559
+ gap> d := DClass(T, PartialPerm([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]));;
560
+ gap> h1 := GroupHClass(d);;
561
+ gap> tmp := ShallowCopy(SameMinorantsSubgroup(h1));;
562
+ gap> Sort(tmp);
563
+ gap> tmp = m1;
564
+ true
565
+ gap> d := DClass(T, PartialPerm([1, 2, 6, 7], [1, 2, 6, 7]));;
566
+ gap> h2 := GroupHClass(d);;
567
+ gap> tmp := ShallowCopy(SameMinorantsSubgroup(h2));;
568
+ gap> Sort(tmp);
569
+ gap> tmp = m2;
570
+ true
571
+
572
+ # AttributesInverseTest9: NaturalLeqInverseSemigroup
573
+ # for partial perms
574
+ gap> a := PartialPerm([1], [6]);;
575
+ gap> b := PartialPerm([1, 2, 5], [6, 3, 1]);;
576
+ gap> S := InverseSemigroup(a, b);;
577
+ gap> NaturalLeqInverseSemigroup(S)(a, b);
578
+ true
579
+ gap> NaturalLeqInverseSemigroup(S)(b, a);
580
+ false
581
+ gap> NaturalLeqInverseSemigroup(S)(a, a);
582
+ true
583
+
584
+ # AttributesInverseTest10: NaturalLeqInverseSemigroup
585
+ # for block bijections
586
+ gap> A := Bipartition([[1, 2, 3, 4, 6, 7, 8, -1, -2, -4, -5, -6, -7, -8],
587
+ > [5, -3]]);;
588
+ gap> B := Bipartition([[1, 2, 3, 4, 8, -4, -5, -6, -7, -8], [5, -3],
589
+ > [6, -2], [7, -1]]);;
590
+ gap> S := InverseSemigroup(A, B);;
591
+ gap> NaturalLeqInverseSemigroup(S)(A, B);
592
+ true
593
+ gap> NaturalLeqInverseSemigroup(S)(B, A);
594
+ false
595
+ gap> NaturalLeqInverseSemigroup(S)(B, B);
596
+ true
597
+
598
+ # AttributesInverseTest11: NaturalLeqInverseSemigroup
599
+ # for partial perm bipartitions
600
+ gap> f := Bipartition([[1, -2], [2], [-1]]);;
601
+ gap> f2 := Bipartition([[1, -2], [2], [3], [4], [5], [6], [-1],
602
+ > [-3], [-4], [-5], [-6]]);;
603
+ gap> g := Bipartition([[1, -2], [2], [3, -5], [4], [5], [-1],
604
+ > [-3], [-4]]);;
605
+ gap> S := InverseSemigroup(f);
606
+ <inverse bipartition semigroup of degree 2 with 1 generator>
607
+ gap> NaturalLeqInverseSemigroup(S)(f, f);
608
+ true
609
+ gap> NaturalLeqInverseSemigroup(S)(f, g);
610
+ Error, no method found! For debugging hints type ?Recovery from NoMethodFound
611
+ Error, no 1st choice method found for `NaturalLeqPartialPermBipartition' on 2 \
612
+ arguments
613
+ gap> NaturalLeqInverseSemigroup(S)(f2, g);
614
+ Error, no method found! For debugging hints type ?Recovery from NoMethodFound
615
+ Error, no 1st choice method found for `NaturalLeqPartialPermBipartition' on 2 \
616
+ arguments
617
+ gap> NaturalLeqInverseSemigroup(S)(f, f2);
618
+ Error, no method found! For debugging hints type ?Recovery from NoMethodFound
619
+ Error, no 1st choice method found for `NaturalLeqPartialPermBipartition' on 2 \
620
+ arguments
621
+ gap> NaturalLeqInverseSemigroup(AsSemigroup(IsPartialPermSemigroup, S))
622
+ > (AsPartialPerm(f), AsPartialPerm(f2));
623
+ true
624
+ gap> AsPartialPerm(f) = AsPartialPerm(f2);
625
+ true
626
+ gap> f = f2;
627
+ false
628
+ gap> f2 := Bipartition([[1, -2], [2], [3], [4], [5], [-1],
629
+ > [-3], [-4], [-5]]);;
630
+ gap> g := Bipartition([[1, -2], [2], [3, -5], [4], [5], [-1],
631
+ > [-3], [-4]]);;
632
+ gap> S := InverseSemigroup(f2, g);;
633
+ gap> NaturalLeqInverseSemigroup(S)(f, f);
634
+ true
635
+ gap> NaturalLeqInverseSemigroup(S)(f2, f2);
636
+ true
637
+ gap> NaturalLeqInverseSemigroup(S)(g, g);
638
+ true
639
+ gap> NaturalLeqInverseSemigroup(S)(g, f2);
640
+ false
641
+ gap> NaturalLeqInverseSemigroup(S)(f2, g);
642
+ true
643
+
644
+ # SmallerDegreeTest1: VagnerPresetonRepresentation: a basic example
645
+ gap> f1 := PartialPerm([1, 2, 4, 3]);;
646
+ gap> f2 := PartialPerm([1]);;
647
+ gap> f3 := PartialPerm([0, 2]);;
648
+ gap> f := InverseSemigroup(f1, f2, f3);
649
+ <inverse partial perm semigroup of rank 4 with 3 generators>
650
+ gap> NrMovedPoints(f);
651
+ 2
652
+ gap> Size(f);
653
+ 5
654
+ gap> VPR := VagnerPrestonRepresentation(f);
655
+ <inverse partial perm semigroup of size 5, rank 4 with 3 generators> ->
656
+ <inverse partial perm semigroup of rank 5 with 3 generators>
657
+ gap> inv := InverseGeneralMapping(VPR);
658
+ <inverse partial perm semigroup of rank 5 with 3 generators> ->
659
+ <inverse partial perm semigroup of size 5, rank 4 with 3 generators>
660
+ gap> ForAll(f, x -> (x ^ VPR) ^ inv = x);
661
+ true
662
+
663
+ # SmallerDegreeTest2: VagnerPrestonRepresentation
664
+ # for SymmetricInverseSemigroup(5)
665
+ gap> I5 := SymmetricInverseSemigroup(5);;
666
+ gap> NrMovedPoints(I5);
667
+ 5
668
+ gap> Size(I5);
669
+ 1546
670
+ gap> I5 := Range(VagnerPrestonRepresentation(I5));;
671
+ gap> NrMovedPoints(I5);
672
+ 1545
673
+ gap> Size(I5);
674
+ 1546
675
+ gap> I5 := SmallerDegreePartialPermRepresentation(I5);;
676
+ gap> NrMovedPoints(Image(I5));
677
+ 5
678
+ gap> Size(Image(I5));
679
+ 1546
680
+
681
+ # SmallerDegreeTest3: VagnerPrestonRepresentation
682
+ # for a bipartition semigroup
683
+ gap> B := Semigroup([
684
+ > Bipartition([[1, -4], [2, -2], [3], [4], [5, -5], [6],
685
+ > [7], [-1], [-3], [-6], [-7]]),
686
+ > Bipartition([[1, -5], [2, -6], [3, -7], [4, -3], [5],
687
+ > [6, -2], [7], [-1], [-4]]),
688
+ > Bipartition([[1, -4], [2, -7], [3], [4, -5], [5, -2],
689
+ > [6], [7, -1], [-3], [-6]]),
690
+ > Bipartition([[1], [2, -2], [3], [4, -1], [5, -5], [6],
691
+ > [7], [-3], [-4], [-6], [-7]]),
692
+ > Bipartition([[1], [2, -6], [3, -4], [4], [5, -1],
693
+ > [6, -2], [7, -3], [-5], [-7]]),
694
+ > Bipartition([[1, -7], [2, -5], [3], [4, -1], [5, -4],
695
+ > [6], [7, -2], [-3], [-6]])]);;
696
+ gap> IsInverseSemigroup(B);
697
+ true
698
+ gap> V := Range(VagnerPrestonRepresentation(B));
699
+ <inverse partial perm semigroup of rank 664 with 6 generators>
700
+
701
+ #
702
+ gap> SEMIGROUPS.StopTest();
703
+ gap> STOP_TEST("Semigroups package: extreme/attrinv.tst");