passagemath-gap-pkg-semigroups 10.6.29__cp312-abi3-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-semigroups might be problematic. Click here for more details.
- gap/pkg/semigroups/CHANGELOG.md +1699 -0
- gap/pkg/semigroups/CONTRIBUTING.md +91 -0
- gap/pkg/semigroups/GNUmakefile +110 -0
- gap/pkg/semigroups/GNUmakefile.in +110 -0
- gap/pkg/semigroups/GPL +674 -0
- gap/pkg/semigroups/LICENSE +16 -0
- gap/pkg/semigroups/Makefile +26 -0
- gap/pkg/semigroups/Makefile.gappkg +225 -0
- gap/pkg/semigroups/PackageInfo.g +529 -0
- gap/pkg/semigroups/README.md +102 -0
- gap/pkg/semigroups/VERSIONS +112 -0
- gap/pkg/semigroups/aclocal.m4 +375 -0
- gap/pkg/semigroups/autogen.sh +25 -0
- gap/pkg/semigroups/bin/aarch64-unknown-linux-gnu-default64-kv10/semigroups.so +0 -0
- gap/pkg/semigroups/config.guess +1807 -0
- gap/pkg/semigroups/config.log +1016 -0
- gap/pkg/semigroups/config.status +1132 -0
- gap/pkg/semigroups/config.sub +1960 -0
- gap/pkg/semigroups/configure +9742 -0
- gap/pkg/semigroups/configure.ac +71 -0
- gap/pkg/semigroups/data/doc/greens.pickle +1 -0
- gap/pkg/semigroups/data/gens/fullbool-8.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/fullbool.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/hall.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex-6.pickle.gz +0 -0
- gap/pkg/semigroups/data/gens/reflex.pickle.gz +0 -0
- gap/pkg/semigroups/data/tst/bipart4 +10 -0
- gap/pkg/semigroups/data/tst/pperm10 +1 -0
- gap/pkg/semigroups/data/tst/tables.gz +0 -0
- gap/pkg/semigroups/data/tst/testdata +1 -0
- gap/pkg/semigroups/data/tst/testinstall.pickle +1 -0
- gap/pkg/semigroups/data/tst/trans3 +7 -0
- gap/pkg/semigroups/data/tst/trans3-old +7 -0
- gap/pkg/semigroups/environment.yml +7 -0
- gap/pkg/semigroups/gap/attributes/acting.gd +15 -0
- gap/pkg/semigroups/gap/attributes/acting.gi +297 -0
- gap/pkg/semigroups/gap/attributes/attr.gd +91 -0
- gap/pkg/semigroups/gap/attributes/attr.gi +1214 -0
- gap/pkg/semigroups/gap/attributes/dual.gd +25 -0
- gap/pkg/semigroups/gap/attributes/dual.gi +209 -0
- gap/pkg/semigroups/gap/attributes/factor.gd +17 -0
- gap/pkg/semigroups/gap/attributes/factor.gi +453 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gd +84 -0
- gap/pkg/semigroups/gap/attributes/homomorph.gi +591 -0
- gap/pkg/semigroups/gap/attributes/inverse.gd +38 -0
- gap/pkg/semigroups/gap/attributes/inverse.gi +708 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gd +16 -0
- gap/pkg/semigroups/gap/attributes/isomorph.gi +377 -0
- gap/pkg/semigroups/gap/attributes/isorms.gd +49 -0
- gap/pkg/semigroups/gap/attributes/isorms.gi +1383 -0
- gap/pkg/semigroups/gap/attributes/maximal.gd +16 -0
- gap/pkg/semigroups/gap/attributes/maximal.gi +1876 -0
- gap/pkg/semigroups/gap/attributes/properties.gd +109 -0
- gap/pkg/semigroups/gap/attributes/properties.gi +1658 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gd +39 -0
- gap/pkg/semigroups/gap/attributes/rms-translat.gi +1078 -0
- gap/pkg/semigroups/gap/attributes/semifp.gd +12 -0
- gap/pkg/semigroups/gap/attributes/semifp.gi +84 -0
- gap/pkg/semigroups/gap/attributes/translat.gd +474 -0
- gap/pkg/semigroups/gap/attributes/translat.gi +1779 -0
- gap/pkg/semigroups/gap/congruences/cong.gd +154 -0
- gap/pkg/semigroups/gap/congruences/cong.gi +351 -0
- gap/pkg/semigroups/gap/congruences/conginv.gd +38 -0
- gap/pkg/semigroups/gap/congruences/conginv.gi +589 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gd +101 -0
- gap/pkg/semigroups/gap/congruences/conglatt.gi +886 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congpairs.gi +272 -0
- gap/pkg/semigroups/gap/congruences/congpart.gd +90 -0
- gap/pkg/semigroups/gap/congruences/congpart.gi +449 -0
- gap/pkg/semigroups/gap/congruences/congrees.gd +20 -0
- gap/pkg/semigroups/gap/congruences/congrees.gi +313 -0
- gap/pkg/semigroups/gap/congruences/congrms.gd +54 -0
- gap/pkg/semigroups/gap/congruences/congrms.gi +1467 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gd +28 -0
- gap/pkg/semigroups/gap/congruences/congsemigraph.gi +289 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gd +27 -0
- gap/pkg/semigroups/gap/congruences/congsimple.gi +236 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gd +20 -0
- gap/pkg/semigroups/gap/congruences/conguniv.gi +271 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gd +21 -0
- gap/pkg/semigroups/gap/congruences/congwordgraph.gi +250 -0
- gap/pkg/semigroups/gap/elements/bipart.gd +71 -0
- gap/pkg/semigroups/gap/elements/bipart.gi +995 -0
- gap/pkg/semigroups/gap/elements/blocks.gd +31 -0
- gap/pkg/semigroups/gap/elements/blocks.gi +134 -0
- gap/pkg/semigroups/gap/elements/boolmat.gd +74 -0
- gap/pkg/semigroups/gap/elements/boolmat.gi +726 -0
- gap/pkg/semigroups/gap/elements/elements.gd +11 -0
- gap/pkg/semigroups/gap/elements/elements.gi +121 -0
- gap/pkg/semigroups/gap/elements/ffmat.gd +71 -0
- gap/pkg/semigroups/gap/elements/ffmat.gi +311 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gd +131 -0
- gap/pkg/semigroups/gap/elements/maxplusmat.gi +782 -0
- gap/pkg/semigroups/gap/elements/pbr.gd +51 -0
- gap/pkg/semigroups/gap/elements/pbr.gi +740 -0
- gap/pkg/semigroups/gap/elements/pperm.gd +11 -0
- gap/pkg/semigroups/gap/elements/pperm.gi +14 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gd +136 -0
- gap/pkg/semigroups/gap/elements/semiringmat.gi +717 -0
- gap/pkg/semigroups/gap/elements/star.gd +21 -0
- gap/pkg/semigroups/gap/elements/star.gi +21 -0
- gap/pkg/semigroups/gap/elements/trans.gd +13 -0
- gap/pkg/semigroups/gap/elements/trans.gi +50 -0
- gap/pkg/semigroups/gap/fp/freeband.gd +22 -0
- gap/pkg/semigroups/gap/fp/freeband.gi +502 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gd +30 -0
- gap/pkg/semigroups/gap/fp/freeinverse.gi +465 -0
- gap/pkg/semigroups/gap/fp/tietze.gd +89 -0
- gap/pkg/semigroups/gap/fp/tietze.gi +1578 -0
- gap/pkg/semigroups/gap/fp/word.gd +15 -0
- gap/pkg/semigroups/gap/fp/word.gi +67 -0
- gap/pkg/semigroups/gap/greens/acting-inverse.gi +774 -0
- gap/pkg/semigroups/gap/greens/acting-regular.gi +553 -0
- gap/pkg/semigroups/gap/greens/acting.gd +81 -0
- gap/pkg/semigroups/gap/greens/acting.gi +2433 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gd +25 -0
- gap/pkg/semigroups/gap/greens/froidure-pin.gi +741 -0
- gap/pkg/semigroups/gap/greens/generic.gd +117 -0
- gap/pkg/semigroups/gap/greens/generic.gi +630 -0
- gap/pkg/semigroups/gap/ideals/acting.gd +17 -0
- gap/pkg/semigroups/gap/ideals/acting.gi +1155 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gd +11 -0
- gap/pkg/semigroups/gap/ideals/froidure-pin.gi +105 -0
- gap/pkg/semigroups/gap/ideals/ideals.gd +45 -0
- gap/pkg/semigroups/gap/ideals/ideals.gi +442 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gd +16 -0
- gap/pkg/semigroups/gap/ideals/lambda-rho.gi +614 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gd +24 -0
- gap/pkg/semigroups/gap/libsemigroups/cong.gi +431 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gd +16 -0
- gap/pkg/semigroups/gap/libsemigroups/fpsemi.gi +53 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gd +17 -0
- gap/pkg/semigroups/gap/libsemigroups/froidure-pin.gi +945 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gd +38 -0
- gap/pkg/semigroups/gap/libsemigroups/sims1.gi +308 -0
- gap/pkg/semigroups/gap/main/acting.gd +36 -0
- gap/pkg/semigroups/gap/main/acting.gi +779 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gd +72 -0
- gap/pkg/semigroups/gap/main/froidure-pin.gi +655 -0
- gap/pkg/semigroups/gap/main/graded.gd +26 -0
- gap/pkg/semigroups/gap/main/graded.gi +355 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gd +29 -0
- gap/pkg/semigroups/gap/main/lambda-rho.gi +514 -0
- gap/pkg/semigroups/gap/main/orbits.gd +24 -0
- gap/pkg/semigroups/gap/main/orbits.gi +512 -0
- gap/pkg/semigroups/gap/main/semiact.gd +20 -0
- gap/pkg/semigroups/gap/main/semiact.gi +821 -0
- gap/pkg/semigroups/gap/main/setup.gd +61 -0
- gap/pkg/semigroups/gap/main/setup.gi +1094 -0
- gap/pkg/semigroups/gap/obsolete.gd +9 -0
- gap/pkg/semigroups/gap/obsolete.gi +14 -0
- gap/pkg/semigroups/gap/options.g +55 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gd +12 -0
- gap/pkg/semigroups/gap/semigroups/grpperm.gi +177 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semibipart.gi +570 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gd +20 -0
- gap/pkg/semigroups/gap/semigroups/semiboolmat.gi +104 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gd +52 -0
- gap/pkg/semigroups/gap/semigroups/semicons.gi +1194 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semidp.gi +509 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gd +126 -0
- gap/pkg/semigroups/gap/semigroups/semieunit.gi +889 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gd +104 -0
- gap/pkg/semigroups/gap/semigroups/semiex.gi +1590 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gd +37 -0
- gap/pkg/semigroups/gap/semigroups/semiffmat.gi +565 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gd +28 -0
- gap/pkg/semigroups/gap/semigroups/semifp.gi +1364 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gd +40 -0
- gap/pkg/semigroups/gap/semigroups/semigraph.gi +292 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gd +165 -0
- gap/pkg/semigroups/gap/semigroups/semigrp.gi +1225 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gd +72 -0
- gap/pkg/semigroups/gap/semigroups/semimaxplus.gi +710 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gd +13 -0
- gap/pkg/semigroups/gap/semigroups/semintmat.gi +74 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semipbr.gi +139 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gd +27 -0
- gap/pkg/semigroups/gap/semigroups/semipperm.gi +711 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gd +14 -0
- gap/pkg/semigroups/gap/semigroups/semiquo.gi +97 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gd +16 -0
- gap/pkg/semigroups/gap/semigroups/semiringmat.gi +21 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gd +19 -0
- gap/pkg/semigroups/gap/semigroups/semirms.gi +977 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gd +49 -0
- gap/pkg/semigroups/gap/semigroups/semitrans.gi +909 -0
- gap/pkg/semigroups/gap/tools/display.gd +24 -0
- gap/pkg/semigroups/gap/tools/display.gi +749 -0
- gap/pkg/semigroups/gap/tools/io.gd +17 -0
- gap/pkg/semigroups/gap/tools/io.gi +543 -0
- gap/pkg/semigroups/gap/tools/iterators.gd +16 -0
- gap/pkg/semigroups/gap/tools/iterators.gi +253 -0
- gap/pkg/semigroups/gap/tools/utils.gd +19 -0
- gap/pkg/semigroups/gap/tools/utils.gi +756 -0
- gap/pkg/semigroups/gapbind14/.ccls +18 -0
- gap/pkg/semigroups/gapbind14/.clang-format +104 -0
- gap/pkg/semigroups/gapbind14/CPPLINT.cfg +5 -0
- gap/pkg/semigroups/gapbind14/LICENSE +674 -0
- gap/pkg/semigroups/gapbind14/README.md +76 -0
- gap/pkg/semigroups/gapbind14/demo/.gitignore +4 -0
- gap/pkg/semigroups/gapbind14/demo/LICENSE +293 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.gappkg +220 -0
- gap/pkg/semigroups/gapbind14/demo/Makefile.in +19 -0
- gap/pkg/semigroups/gapbind14/demo/PackageInfo.g +87 -0
- gap/pkg/semigroups/gapbind14/demo/README.md +17 -0
- gap/pkg/semigroups/gapbind14/demo/configure +34 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gd +19 -0
- gap/pkg/semigroups/gapbind14/demo/gap/gapbind_demo.gi +10 -0
- gap/pkg/semigroups/gapbind14/demo/init.g +16 -0
- gap/pkg/semigroups/gapbind14/demo/makedoc.g +10 -0
- gap/pkg/semigroups/gapbind14/demo/read.g +6 -0
- gap/pkg/semigroups/gapbind14/demo/src/gapbind_demo.cc +142 -0
- gap/pkg/semigroups/gapbind14/demo/tst/testall.g +12 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/cpp_fn.hpp +223 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gap_include.hpp +26 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/gapbind14.hpp +445 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_free_fn.hpp +420 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/tame_mem_fn.hpp +556 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_cpp.hpp +162 -0
- gap/pkg/semigroups/gapbind14/include/gapbind14/to_gap.hpp +158 -0
- gap/pkg/semigroups/gapbind14/src/.clang-format +108 -0
- gap/pkg/semigroups/gapbind14/src/gapbind14.cpp +334 -0
- gap/pkg/semigroups/init.g +150 -0
- gap/pkg/semigroups/m4/ax_append_flag.m4 +50 -0
- gap/pkg/semigroups/m4/ax_check_compile_flag.m4 +53 -0
- gap/pkg/semigroups/m4/ax_check_hpcombi.m4 +121 -0
- gap/pkg/semigroups/m4/ax_check_libsemigroup.m4 +68 -0
- gap/pkg/semigroups/m4/ax_compare_version.m4 +177 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx.m4 +1009 -0
- gap/pkg/semigroups/m4/ax_cxx_compile_stdcxx_14.m4 +34 -0
- gap/pkg/semigroups/m4/ax_prefix_config_h.m4 +203 -0
- gap/pkg/semigroups/m4/ax_pthread.m4 +522 -0
- gap/pkg/semigroups/m4/find_gap.m4 +94 -0
- gap/pkg/semigroups/makedoc.g +153 -0
- gap/pkg/semigroups/prerequisites.sh +62 -0
- gap/pkg/semigroups/read.g +105 -0
- gap/pkg/semigroups/release.toml +6 -0
- gap/pkg/semigroups/tst/extreme/README +2 -0
- gap/pkg/semigroups/tst/extreme/attrinv.tst +703 -0
- gap/pkg/semigroups/tst/extreme/bipart.tst +2803 -0
- gap/pkg/semigroups/tst/extreme/closure.tst +652 -0
- gap/pkg/semigroups/tst/extreme/cong.tst +286 -0
- gap/pkg/semigroups/tst/extreme/conginv.tst +43 -0
- gap/pkg/semigroups/tst/extreme/examples.tst +2449 -0
- gap/pkg/semigroups/tst/extreme/freeband.tst +37 -0
- gap/pkg/semigroups/tst/extreme/greens-acting-regular.tst +27 -0
- gap/pkg/semigroups/tst/extreme/greens-acting.tst +1999 -0
- gap/pkg/semigroups/tst/extreme/ideals.tst +858 -0
- gap/pkg/semigroups/tst/extreme/inverse.tst +1025 -0
- gap/pkg/semigroups/tst/extreme/maximal.tst +856 -0
- gap/pkg/semigroups/tst/extreme/misc.tst +4236 -0
- gap/pkg/semigroups/tst/extreme/monoid_pkg.tst +1488 -0
- gap/pkg/semigroups/tst/extreme/properties.tst +914 -0
- gap/pkg/semigroups/tst/extreme/semibipart.tst +2837 -0
- gap/pkg/semigroups/tst/extreme/semieunit.tst +49 -0
- gap/pkg/semigroups/tst/extreme/semiffmat.tst +353 -0
- gap/pkg/semigroups/tst/extreme/semigroups.tst +245 -0
- gap/pkg/semigroups/tst/extreme/semiiter.tst +58 -0
- gap/pkg/semigroups/tst/extreme/semirms.tst +1091 -0
- gap/pkg/semigroups/tst/extreme/transform.tst +305 -0
- gap/pkg/semigroups/tst/extreme/translat.tst +44 -0
- gap/pkg/semigroups/tst/standard/README +2 -0
- gap/pkg/semigroups/tst/standard/attributes/acting.tst +388 -0
- gap/pkg/semigroups/tst/standard/attributes/attr.tst +2404 -0
- gap/pkg/semigroups/tst/standard/attributes/dual.tst +308 -0
- gap/pkg/semigroups/tst/standard/attributes/factor.tst +629 -0
- gap/pkg/semigroups/tst/standard/attributes/homomorph.tst +1134 -0
- gap/pkg/semigroups/tst/standard/attributes/inverse.tst +1521 -0
- gap/pkg/semigroups/tst/standard/attributes/isomorph.tst +435 -0
- gap/pkg/semigroups/tst/standard/attributes/isorms.tst +1147 -0
- gap/pkg/semigroups/tst/standard/attributes/maximal.tst +853 -0
- gap/pkg/semigroups/tst/standard/attributes/properties.tst +2028 -0
- gap/pkg/semigroups/tst/standard/attributes/semifp.tst +53 -0
- gap/pkg/semigroups/tst/standard/attributes/translat.tst +796 -0
- gap/pkg/semigroups/tst/standard/congruences/cong.tst +1044 -0
- gap/pkg/semigroups/tst/standard/congruences/conginv.tst +292 -0
- gap/pkg/semigroups/tst/standard/congruences/conglatt.tst +421 -0
- gap/pkg/semigroups/tst/standard/congruences/congpairs.tst +1011 -0
- gap/pkg/semigroups/tst/standard/congruences/congrees.tst +288 -0
- gap/pkg/semigroups/tst/standard/congruences/congrms.tst +701 -0
- gap/pkg/semigroups/tst/standard/congruences/congsemigraph.tst +422 -0
- gap/pkg/semigroups/tst/standard/congruences/congsimple.tst +311 -0
- gap/pkg/semigroups/tst/standard/congruences/conguniv.tst +259 -0
- gap/pkg/semigroups/tst/standard/congruences/congwordgraph.tst +330 -0
- gap/pkg/semigroups/tst/standard/elements/bipart.tst +783 -0
- gap/pkg/semigroups/tst/standard/elements/blocks.tst +166 -0
- gap/pkg/semigroups/tst/standard/elements/boolmat.tst +608 -0
- gap/pkg/semigroups/tst/standard/elements/elements.tst +117 -0
- gap/pkg/semigroups/tst/standard/elements/ffmat.tst +349 -0
- gap/pkg/semigroups/tst/standard/elements/maxplusmat.tst +613 -0
- gap/pkg/semigroups/tst/standard/elements/pbr.tst +506 -0
- gap/pkg/semigroups/tst/standard/elements/pperm.tst +32 -0
- gap/pkg/semigroups/tst/standard/elements/semiringmat.tst +601 -0
- gap/pkg/semigroups/tst/standard/elements/trans.tst +58 -0
- gap/pkg/semigroups/tst/standard/fp/freeband.tst +311 -0
- gap/pkg/semigroups/tst/standard/fp/freeinverse.tst +147 -0
- gap/pkg/semigroups/tst/standard/fp/tietze.tst +780 -0
- gap/pkg/semigroups/tst/standard/fp/word.tst +106 -0
- gap/pkg/semigroups/tst/standard/greens/acting-inverse.tst +545 -0
- gap/pkg/semigroups/tst/standard/greens/acting-regular.tst +396 -0
- gap/pkg/semigroups/tst/standard/greens/acting.tst +2033 -0
- gap/pkg/semigroups/tst/standard/greens/froidure-pin.tst +1831 -0
- gap/pkg/semigroups/tst/standard/greens/generic.tst +1436 -0
- gap/pkg/semigroups/tst/standard/ideals/acting.tst +279 -0
- gap/pkg/semigroups/tst/standard/ideals/froidure-pin.tst +178 -0
- gap/pkg/semigroups/tst/standard/ideals/ideals.tst +380 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/cong.tst +310 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/froidure-pin.tst +778 -0
- gap/pkg/semigroups/tst/standard/libsemigroups/sims1.tst +379 -0
- gap/pkg/semigroups/tst/standard/main/acting.tst +411 -0
- gap/pkg/semigroups/tst/standard/main/froidure-pin.tst +392 -0
- gap/pkg/semigroups/tst/standard/main/semiact.tst +203 -0
- gap/pkg/semigroups/tst/standard/main/setup.tst +1144 -0
- gap/pkg/semigroups/tst/standard/obsolete.tst +19 -0
- gap/pkg/semigroups/tst/standard/options.tst +54 -0
- gap/pkg/semigroups/tst/standard/semigroups/grpperm.tst +581 -0
- gap/pkg/semigroups/tst/standard/semigroups/semibipart.tst +2635 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiboolmat.tst +1871 -0
- gap/pkg/semigroups/tst/standard/semigroups/semicons.tst +1173 -0
- gap/pkg/semigroups/tst/standard/semigroups/semidp.tst +739 -0
- gap/pkg/semigroups/tst/standard/semigroups/semieunit.tst +339 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiex.tst +2055 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiffmat.tst +746 -0
- gap/pkg/semigroups/tst/standard/semigroups/semifp.tst +2702 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigraph.tst +133 -0
- gap/pkg/semigroups/tst/standard/semigroups/semigrp.tst +1112 -0
- gap/pkg/semigroups/tst/standard/semigroups/semimaxplus.tst +654 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipbr.tst +2142 -0
- gap/pkg/semigroups/tst/standard/semigroups/semipperm.tst +2169 -0
- gap/pkg/semigroups/tst/standard/semigroups/semiquo.tst +278 -0
- gap/pkg/semigroups/tst/standard/semigroups/semirms.tst +3010 -0
- gap/pkg/semigroups/tst/standard/semigroups/semitrans.tst +2758 -0
- gap/pkg/semigroups/tst/standard/tools/display.tst +1040 -0
- gap/pkg/semigroups/tst/standard/tools/io.tst +363 -0
- gap/pkg/semigroups/tst/testinstall.tst +1815 -0
- gap/pkg/semigroups/tst/teststandard.g +22 -0
- gap/pkg/semigroups/tst/workspaces/load-workspace.tst +142 -0
- gap/pkg/semigroups/tst/workspaces/load.g +11 -0
- gap/pkg/semigroups/tst/workspaces/save-workspace.tst +166 -0
- gap/pkg/semigroups/tst/workspaces/save.g +14 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA +93 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/RECORD +354 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_semigroups-10.6.29.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_semigroups.libs/libsemigroups-8ea3c4e7.so.2.0.0 +0 -0
- sage/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/all__sagemath_gap_pkg_semigroups.py +1 -0
- sage/libs/gap_pkg_semigroups.abi3.so +0 -0
|
@@ -0,0 +1,388 @@
|
|
|
1
|
+
#############################################################################
|
|
2
|
+
##
|
|
3
|
+
#W standard/attributes/acting.tst
|
|
4
|
+
#Y Copyright (C) 2015-2022 James D. Mitchell
|
|
5
|
+
##
|
|
6
|
+
## Licensing information can be found in the README file of this package.
|
|
7
|
+
##
|
|
8
|
+
#############################################################################
|
|
9
|
+
##
|
|
10
|
+
|
|
11
|
+
#@local D, I, L, R, S, Y, acting, an, foo, inj, inv, map, x, y, z
|
|
12
|
+
gap> START_TEST("Semigroups package: standard/attributes/acting.tst");
|
|
13
|
+
gap> LoadPackage("semigroups", false);;
|
|
14
|
+
|
|
15
|
+
#
|
|
16
|
+
gap> SEMIGROUPS.StartTest();
|
|
17
|
+
gap> SEMIGROUPS.DefaultOptionsRec.acting := true;;
|
|
18
|
+
|
|
19
|
+
# IsMultiplicativeZero
|
|
20
|
+
gap> S := InverseSemigroup([PartialPerm([1, 2, 5], [2, 1, 5]),
|
|
21
|
+
> PartialPerm([1, 2, 4, 5], [4, 2, 1, 3])]);;
|
|
22
|
+
gap> IsMultiplicativeZero(S, PartialPerm([]));
|
|
23
|
+
true
|
|
24
|
+
|
|
25
|
+
# IsGreensDGreaterThanFunc
|
|
26
|
+
gap> S := Semigroup([PartialPerm([1, 2, 3], [4, 5, 1]),
|
|
27
|
+
> PartialPerm([1, 2, 4], [1, 5, 4])]);;
|
|
28
|
+
gap> x := PartialPerm([1, 3], [4, 1]);;
|
|
29
|
+
gap> y := PartialPerm([1, 4], [1, 4]);;
|
|
30
|
+
gap> foo := IsGreensDGreaterThanFunc(S);;
|
|
31
|
+
gap> foo(x, x);
|
|
32
|
+
false
|
|
33
|
+
gap> foo(x, y);
|
|
34
|
+
false
|
|
35
|
+
gap> foo(y, x);
|
|
36
|
+
true
|
|
37
|
+
gap> S := InverseSemigroup(S);;
|
|
38
|
+
gap> foo := IsGreensDGreaterThanFunc(S);
|
|
39
|
+
function( x, y ) ... end
|
|
40
|
+
gap> foo(y, x);
|
|
41
|
+
false
|
|
42
|
+
gap> foo(x, y);
|
|
43
|
+
false
|
|
44
|
+
gap> z := RepresentativeOfMinimalIdeal(S);
|
|
45
|
+
<empty partial perm>
|
|
46
|
+
gap> foo(x, x);
|
|
47
|
+
false
|
|
48
|
+
gap> foo(x, z);
|
|
49
|
+
true
|
|
50
|
+
gap> foo(z, x);
|
|
51
|
+
false
|
|
52
|
+
gap> foo(z, y);
|
|
53
|
+
false
|
|
54
|
+
gap> foo(y, z);
|
|
55
|
+
true
|
|
56
|
+
|
|
57
|
+
# MaximalDClasses for non-regular semigroup
|
|
58
|
+
gap> S := Monoid([Bipartition([[1, -2], [2, -1], [3, -3]]),
|
|
59
|
+
> Bipartition([[1], [2], [3], [-1], [-2, -3]])]);;
|
|
60
|
+
gap> MaximalDClasses(S);
|
|
61
|
+
[ <Green's D-class: <block bijection: [ 1, -1 ], [ 2, -2 ], [ 3, -3 ]>> ]
|
|
62
|
+
|
|
63
|
+
# MaximalDClasses for regular semigroup
|
|
64
|
+
gap> S := FullTransformationMonoid(3);
|
|
65
|
+
<full transformation monoid of degree 3>
|
|
66
|
+
gap> MaximalDClasses(S);
|
|
67
|
+
[ <Green's D-class: IdentityTransformation> ]
|
|
68
|
+
|
|
69
|
+
# StructureDescriptionMaximalSubgroups
|
|
70
|
+
gap> S := Semigroup([Transformation([1, 3, 4, 1, 3]),
|
|
71
|
+
> Transformation([5, 5, 1, 1, 3])]);;
|
|
72
|
+
gap> StructureDescriptionSchutzenbergerGroups(S);
|
|
73
|
+
[ "1", "C2", "C3" ]
|
|
74
|
+
|
|
75
|
+
# IdempotentGeneratedSubsemigroup, for a semigroup
|
|
76
|
+
gap> S := Semigroup([PartialPerm([1, 2, 3], [2, 5, 3]),
|
|
77
|
+
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5])]);;
|
|
78
|
+
gap> IdempotentGeneratedSubsemigroup(S);
|
|
79
|
+
<inverse partial perm monoid of rank 1 with 2 generators>
|
|
80
|
+
|
|
81
|
+
# IdempotentGeneratedSubsemigroup, for an inverse semigroup
|
|
82
|
+
gap> S := InverseSemigroup([PartialPerm([1, 2], [4, 3]),
|
|
83
|
+
> PartialPerm([1, 2, 5], [1, 2, 4])]);;
|
|
84
|
+
gap> IdempotentGeneratedSubsemigroup(S);
|
|
85
|
+
<inverse partial perm semigroup of rank 5 with 5 generators>
|
|
86
|
+
|
|
87
|
+
# InjectionPrincipalFactor 1/6
|
|
88
|
+
gap> D := GreensDClassOfElement(
|
|
89
|
+
> Monoid([Bipartition([[1, 2, -2], [3, -3], [-1]]),
|
|
90
|
+
> Bipartition([[1, 2], [3], [-1, -3], [-2]]),
|
|
91
|
+
> Bipartition([[1, -1, -2], [2, 3], [-3]])]),
|
|
92
|
+
> Bipartition([[1, 2], [3], [-1, -3], [-2]]));;
|
|
93
|
+
gap> map := InjectionPrincipalFactor(D);
|
|
94
|
+
MappingByFunction( <Green's D-class: <bipartition: [ 1, 2 ], [ 3 ],
|
|
95
|
+
[ -1, -3 ], [ -2 ]>>, <Rees matrix semigroup 3x4 over Group(())>
|
|
96
|
+
, function( x ) ... end, function( x ) ... end )
|
|
97
|
+
gap> inv := InverseGeneralMapping(map);;
|
|
98
|
+
gap> ForAll(D, x -> (x ^ map) ^ inv = x);
|
|
99
|
+
true
|
|
100
|
+
gap> Bipartition([[1, 2, -2], [3, -3], [-1]]) ^ map;
|
|
101
|
+
fail
|
|
102
|
+
gap> Star(Bipartition([[1, 2, -2], [3, -3], [-1]])) ^ map;
|
|
103
|
+
fail
|
|
104
|
+
|
|
105
|
+
# InjectionPrincipalFactor 2/6
|
|
106
|
+
gap> R := PrincipalFactor(DClasses(FullTransformationMonoid(5))[2]);
|
|
107
|
+
<Rees 0-matrix semigroup 10x5 over Group([ (1,2,3,4), (1,2) ])>
|
|
108
|
+
gap> x := RMSElement(R, 9, (1, 3, 2, 4), 2);;
|
|
109
|
+
gap> y := RMSElement(R, 6, (1, 3, 4, 2), 5);;
|
|
110
|
+
gap> S := Semigroup(x, y);
|
|
111
|
+
<subsemigroup of 10x5 Rees 0-matrix semigroup with 2 generators>
|
|
112
|
+
gap> D := DClass(S, RMSElement(R, 6, (1, 3, 4, 2), 5));;
|
|
113
|
+
gap> InjectionPrincipalFactor(D);
|
|
114
|
+
Error, the argument (a Green's D-class) is not regular
|
|
115
|
+
|
|
116
|
+
# InjectionPrincipalFactor 3/6
|
|
117
|
+
gap> R := PrincipalFactor(DClasses(FullTransformationMonoid(5))[2]);
|
|
118
|
+
<Rees 0-matrix semigroup 10x5 over Group([ (1,2,3,4), (1,2) ])>
|
|
119
|
+
gap> x := RMSElement(R, 1, (1, 2, 3, 4), 1);;
|
|
120
|
+
gap> y := RMSElement(R, 6, (1, 3, 4, 2), 5);;
|
|
121
|
+
gap> S := Semigroup(x, y);;
|
|
122
|
+
gap> D := DClass(S, x);;
|
|
123
|
+
gap> inj := InjectionPrincipalFactor(D);;
|
|
124
|
+
gap> Source(inj) = D;
|
|
125
|
+
true
|
|
126
|
+
gap> Range(inj);
|
|
127
|
+
<Rees matrix semigroup 1x1 over Group([ (1,2,3,4) ])>
|
|
128
|
+
|
|
129
|
+
# InjectionPrincipalFactor 4/6
|
|
130
|
+
gap> D := GreensDClassOfElement(
|
|
131
|
+
> Semigroup([
|
|
132
|
+
> Transformation([1, 3, 4, 1, 3]),
|
|
133
|
+
> Transformation([5, 5, 1, 1, 3])]),
|
|
134
|
+
> Transformation([5, 5, 1, 1, 3]));;
|
|
135
|
+
gap> inj := InjectionPrincipalFactor(D);;
|
|
136
|
+
gap> Source(inj) = D;
|
|
137
|
+
true
|
|
138
|
+
gap> Range(inj);
|
|
139
|
+
<Rees matrix semigroup 1x1 over Group([ (1,5,3) ])>
|
|
140
|
+
gap> Transformation([5, 1, 1, 1, 3]) ^ inj;
|
|
141
|
+
fail
|
|
142
|
+
|
|
143
|
+
# InjectionPrincipalFactor 5/6
|
|
144
|
+
gap> D := GreensDClassOfElement(
|
|
145
|
+
> Semigroup([
|
|
146
|
+
> Transformation([1, 3, 4, 1, 3]),
|
|
147
|
+
> Transformation([5, 5, 1, 1, 3])]),
|
|
148
|
+
> Transformation([1, 4, 1, 1, 4]));;
|
|
149
|
+
gap> map := InverseGeneralMapping(InjectionPrincipalFactor(D));;
|
|
150
|
+
gap> MultiplicativeZero(Source(map)) ^ map;
|
|
151
|
+
fail
|
|
152
|
+
|
|
153
|
+
# InjectionPrincipalFactor 6/6
|
|
154
|
+
gap> S := ReesZeroMatrixSemigroup(Group(()), [[(), 0], [0, ()]]);;
|
|
155
|
+
gap> S := Semigroup(RMSElement(S, 2, (), 2),
|
|
156
|
+
> RMSElement(S, 1, (), 2));;
|
|
157
|
+
gap> MaximalSubsemigroups(S);;
|
|
158
|
+
|
|
159
|
+
# InversesOfSemigroupElement, none, 1/2
|
|
160
|
+
# This test gives the wrong result in Semigroups 2.7.1!!!
|
|
161
|
+
gap> S := Semigroup([Bipartition([[1, 2, -2], [3, -3], [-1]]),
|
|
162
|
+
> Bipartition([[1, -1, -2], [2, 3], [-3]])]);;
|
|
163
|
+
gap> x := Bipartition([[1, 2, 3], [-1, -2], [-3]]);;
|
|
164
|
+
gap> Y := InversesOfSemigroupElement(S, x);
|
|
165
|
+
[ <bipartition: [ 1, 2, 3 ], [ -1, -2 ], [ -3 ]>,
|
|
166
|
+
<bipartition: [ 1 ], [ 2, 3 ], [ -1, -2 ], [ -3 ]>,
|
|
167
|
+
<bipartition: [ 1, 2, 3 ], [ -1 ], [ -2 ], [ -3 ]>,
|
|
168
|
+
<bipartition: [ 1 ], [ 2, 3 ], [ -1 ], [ -2 ], [ -3 ]> ]
|
|
169
|
+
gap> ForAll(Y, y -> y in S);
|
|
170
|
+
true
|
|
171
|
+
gap> ForAll(Y, y -> x * y * x = x and y * x * y = y);
|
|
172
|
+
true
|
|
173
|
+
gap> Set(Y) = Set(Filtered(AsList(S), y -> x * y * x = x and y * x * y = y));
|
|
174
|
+
true
|
|
175
|
+
|
|
176
|
+
# InversesOfSemigroupElement, fail, 2/2
|
|
177
|
+
gap> S := Semigroup([PartialPerm([1, 2, 3, 4], [1, 2, 5, 3]),
|
|
178
|
+
> PartialPerm([1, 2, 3, 4], [2, 4, 1, 5]),
|
|
179
|
+
> PartialPerm([1, 2, 4, 5], [2, 3, 1, 5]),
|
|
180
|
+
> PartialPerm([1, 2, 3, 5], [4, 1, 3, 5]),
|
|
181
|
+
> PartialPerm([1, 2, 3, 5], [4, 3, 5, 1])]);;
|
|
182
|
+
gap> x := PartialPerm([1, 2, 3, 5], [5, 2, 6, 4]);;
|
|
183
|
+
gap> InversesOfSemigroupElement(S, x);
|
|
184
|
+
Error, the 2nd argument (a mult. element) must belong to the 1st argument (a s\
|
|
185
|
+
emigroup)
|
|
186
|
+
|
|
187
|
+
# InversesOfSemigroupElementNC, closed rho orb
|
|
188
|
+
gap> S := Semigroup([
|
|
189
|
+
> Transformation([2, 2, 13, 14, 3, 4, 15, 19, 22, 17, 22, 22, 11, 12, 18, 22,
|
|
190
|
+
> 16, 16, 21, 22, 20, 22, 10]),
|
|
191
|
+
> Transformation([2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
192
|
+
> 22, 22, 22, 22, 22, 22, 2]),
|
|
193
|
+
> Transformation([1, 1, 5, 6, 9, 9, 9, 9, 9, 5, 5, 6, 9, 9, 7, 7, 8, 9, 8, 8,
|
|
194
|
+
> 9, 9, 6])]);;
|
|
195
|
+
gap> Size(S);;
|
|
196
|
+
gap> x := Transformation([1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
197
|
+
> 9, 9, 9, 9, 9, 9]);;
|
|
198
|
+
gap> InversesOfSemigroupElementNC(S, x);
|
|
199
|
+
[ Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
200
|
+
22, 22, 22, 22, 22, 22, 22, 2 ] ),
|
|
201
|
+
Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
202
|
+
22, 22, 22, 22, 22, 22, 22, 22 ] ),
|
|
203
|
+
Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
204
|
+
9, 9, 9, 1 ] ), Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
205
|
+
9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ] ) ]
|
|
206
|
+
|
|
207
|
+
# InversesOfSemigroupElementNC, non-closed rho orb
|
|
208
|
+
gap> S := Semigroup([
|
|
209
|
+
> Transformation([2, 2, 13, 14, 3, 4, 15, 19, 22, 17, 22, 22, 11, 12, 18, 22,
|
|
210
|
+
> 16, 16, 21, 22, 20, 22, 10]),
|
|
211
|
+
> Transformation([2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
212
|
+
> 22, 22, 22, 22, 22, 22, 2]),
|
|
213
|
+
> Transformation([1, 1, 5, 6, 9, 9, 9, 9, 9, 5, 5, 6, 9, 9, 7, 7, 8, 9, 8, 8,
|
|
214
|
+
> 9, 9, 6])]);;
|
|
215
|
+
gap> x := Transformation([1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
216
|
+
> 9, 9, 9, 9, 9, 9]);;
|
|
217
|
+
gap> InversesOfSemigroupElementNC(S, x);
|
|
218
|
+
[ Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
219
|
+
22, 22, 22, 22, 22, 22, 22, 2 ] ),
|
|
220
|
+
Transformation( [ 2, 2, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
|
|
221
|
+
22, 22, 22, 22, 22, 22, 22, 22 ] ),
|
|
222
|
+
Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
223
|
+
9, 9, 9, 1 ] ), Transformation( [ 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
224
|
+
9, 9, 9, 9, 9, 9, 9, 9, 9, 9 ] ) ]
|
|
225
|
+
|
|
226
|
+
# InversesOfSemigroupElementNC non-regular element
|
|
227
|
+
gap> S := Semigroup(Transformation([2, 4, 3, 4]),
|
|
228
|
+
> Transformation([3, 3, 2, 3, 3]),
|
|
229
|
+
> Transformation([5, 5, 5, 4, 4]),
|
|
230
|
+
> Transformation([5, 1, 4, 1, 1]),
|
|
231
|
+
> Transformation([5, 3, 3, 4, 5]));;
|
|
232
|
+
gap> IsRegularSemigroup(S);
|
|
233
|
+
false
|
|
234
|
+
gap> x := Transformation([5, 1, 4, 1, 1]);
|
|
235
|
+
Transformation( [ 5, 1, 4, 1, 1 ] )
|
|
236
|
+
gap> IsRegularSemigroupElement(S, x);
|
|
237
|
+
false
|
|
238
|
+
gap> InversesOfSemigroupElementNC(S, x);
|
|
239
|
+
[ ]
|
|
240
|
+
|
|
241
|
+
# MultiplicativeNeutralElement, 1/4
|
|
242
|
+
gap> S := Semigroup(Transformation([2, 3, 1]));
|
|
243
|
+
<commutative transformation semigroup of degree 3 with 1 generator>
|
|
244
|
+
gap> MultiplicativeNeutralElement(S);
|
|
245
|
+
IdentityTransformation
|
|
246
|
+
|
|
247
|
+
# MultiplicativeNeutralElement, 2/4
|
|
248
|
+
gap> S := Semigroup(Transformation([1, 2, 1]), Transformation([2, 2, 3]));;
|
|
249
|
+
gap> MultiplicativeNeutralElement(S);
|
|
250
|
+
fail
|
|
251
|
+
|
|
252
|
+
# MultiplicativeNeutralElement, 3/4
|
|
253
|
+
gap> S := Semigroup(Transformation([1, 4, 6, 2, 5, 3, 7, 8, 9, 9]),
|
|
254
|
+
> Transformation([6, 3, 2, 7, 5, 1, 8, 8, 9, 9]));;
|
|
255
|
+
gap> MultiplicativeNeutralElement(S);
|
|
256
|
+
Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 9 ] )
|
|
257
|
+
|
|
258
|
+
# MultiplicativeNeutralElement, 4/4
|
|
259
|
+
gap> S := Semigroup(Transformation([1, 1, 3]), Transformation([2, 2, 3]));
|
|
260
|
+
<transformation semigroup of degree 2 with 2 generators>
|
|
261
|
+
gap> MultiplicativeNeutralElement(S);
|
|
262
|
+
fail
|
|
263
|
+
|
|
264
|
+
# MultiplicativeNeutralElement, 5
|
|
265
|
+
gap> S := SingularFactorisableDualSymmetricInverseMonoid(3);
|
|
266
|
+
<inverse bipartition semigroup ideal of degree 3 with 1 generator>
|
|
267
|
+
gap> IsMonoidAsSemigroup(S);
|
|
268
|
+
false
|
|
269
|
+
|
|
270
|
+
# MultiplicativeNeutralElement, 6
|
|
271
|
+
gap> S := Semigroup([Transformation([3, 2, 3]),
|
|
272
|
+
> Transformation([3, 4, 2, 5, 5])]);
|
|
273
|
+
<transformation semigroup of degree 5 with 2 generators>
|
|
274
|
+
gap> MultiplicativeNeutralElement(S);
|
|
275
|
+
fail
|
|
276
|
+
gap> S := SemigroupIdeal(S, S.1);
|
|
277
|
+
<non-regular transformation semigroup ideal of degree 5 with 1 generator>
|
|
278
|
+
gap> MultiplicativeNeutralElement(S);
|
|
279
|
+
fail
|
|
280
|
+
|
|
281
|
+
# MultiplicativeNeutralElement, 7
|
|
282
|
+
gap> S := FullTransformationMonoid(3);
|
|
283
|
+
<full transformation monoid of degree 3>
|
|
284
|
+
gap> S := SemigroupIdeal(S, IdentityTransformation);
|
|
285
|
+
<regular transformation semigroup ideal of degree 3 with 1 generator>
|
|
286
|
+
gap> MultiplicativeNeutralElement(S);
|
|
287
|
+
IdentityTransformation
|
|
288
|
+
|
|
289
|
+
# MultiplicativeNeutralElement, 8
|
|
290
|
+
gap> S := Semigroup(
|
|
291
|
+
> Transformation([2, 3, 1, 4, 4]),
|
|
292
|
+
> Transformation([2, 1, 3, 4, 4]),
|
|
293
|
+
> Transformation([1, 2, 1, 4, 4]));
|
|
294
|
+
<transformation semigroup of degree 5 with 3 generators>
|
|
295
|
+
gap> MultiplicativeNeutralElement(S);
|
|
296
|
+
Transformation( [ 1, 2, 3, 4, 4 ] )
|
|
297
|
+
gap> S := SemigroupIdeal(S, S.1);
|
|
298
|
+
<regular transformation semigroup ideal of degree 5 with 1 generator>
|
|
299
|
+
gap> MultiplicativeNeutralElement(S);
|
|
300
|
+
Transformation( [ 1, 2, 3, 4, 4 ] )
|
|
301
|
+
|
|
302
|
+
# RepresentativeOfMinimalIdeal, 1/3
|
|
303
|
+
gap> S := Semigroup(Transformation([1, 2, 1]), Transformation([2, 2, 3]));;
|
|
304
|
+
gap> RepresentativeOfMinimalIdeal(S);
|
|
305
|
+
Transformation( [ 2, 2, 2 ] )
|
|
306
|
+
|
|
307
|
+
# RepresentativeOfMinimalIdeal, 2/3
|
|
308
|
+
gap> S := Semigroup(
|
|
309
|
+
> Bipartition([[1, -2], [2, -1], [3, -3], [4, -4], [5, -5]]),
|
|
310
|
+
> Bipartition([[1, -1], [2, -2], [3, -3], [4, -5], [5, -4]]),
|
|
311
|
+
> Bipartition([[1, 2, -1], [3, -3], [4, -4], [5, -2], [-5]]),
|
|
312
|
+
> Bipartition([[1, -1], [2, 4, -2], [3, -3], [5, -4], [-5]]),
|
|
313
|
+
> Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -2], [-5]]),
|
|
314
|
+
> Bipartition([[1, -1], [2, -2], [3, -3], [4, 5, -4], [-5]]),
|
|
315
|
+
> Bipartition([[1, -1], [2, -2], [3, 5, -3], [4, -4], [-5]]),
|
|
316
|
+
> Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -5], [-2]]));;
|
|
317
|
+
gap> RepresentativeOfMinimalIdeal(S);
|
|
318
|
+
<bipartition: [ 1, 2, 4, 5, -1 ], [ 3, -3 ], [ -2 ], [ -4 ], [ -5 ]>
|
|
319
|
+
|
|
320
|
+
# RepresentativeOfMinimalIdeal, 3/3
|
|
321
|
+
gap> S := Semigroup(
|
|
322
|
+
> Bipartition([[1, -2], [2, -1], [3, -3], [4, -4], [5, -5]]),
|
|
323
|
+
> Bipartition([[1, -1], [2, -2], [3, -3], [4, -5], [5, -4]]),
|
|
324
|
+
> Bipartition([[1, 2, -1], [3, -3], [4, -4], [5, -2], [-5]]),
|
|
325
|
+
> Bipartition([[1, -1], [2, 4, -2], [3, -3], [5, -4], [-5]]),
|
|
326
|
+
> Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -2], [-5]]),
|
|
327
|
+
> Bipartition([[1, -1], [2, -2], [3, -3], [4, 5, -4], [-5]]),
|
|
328
|
+
> Bipartition([[1, -1], [2, -2], [3, 5, -3], [4, -4], [-5]]),
|
|
329
|
+
> Bipartition([[1, 2, -3], [3, -1], [4, -4], [5, -5], [-2]]));;
|
|
330
|
+
gap> I := SemigroupIdeal(S, RepresentativeOfMinimalIdeal(S));;
|
|
331
|
+
gap> RepresentativeOfMinimalIdeal(I);
|
|
332
|
+
<bipartition: [ 1, 2, 4, 5, -1 ], [ 3, -3 ], [ -2 ], [ -4 ], [ -5 ]>
|
|
333
|
+
|
|
334
|
+
# Left/RightIdentity
|
|
335
|
+
gap> S := Semigroup(Transformation([2, 4, 3, 4]),
|
|
336
|
+
> Transformation([3, 3, 2, 3, 3]),
|
|
337
|
+
> Transformation([5, 5, 5, 4, 4]),
|
|
338
|
+
> Transformation([5, 1, 4, 1, 1]),
|
|
339
|
+
> Transformation([5, 3, 3, 4, 5]));;
|
|
340
|
+
gap> ForAll(S, x -> RightIdentity(S, x) = fail or x * RightIdentity(S, x) = x);
|
|
341
|
+
true
|
|
342
|
+
gap> ForAll(S, x -> RightIdentity(S, x) = fail or RightIdentity(S, x) in S);
|
|
343
|
+
true
|
|
344
|
+
gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) * x = x);
|
|
345
|
+
true
|
|
346
|
+
gap> ForAll(S, x -> LeftIdentity(S, x) = fail or LeftIdentity(S, x) in S);
|
|
347
|
+
true
|
|
348
|
+
gap> L := Filtered(S, x -> LeftIdentity(S, x) = fail);
|
|
349
|
+
[ Transformation( [ 2, 4, 3, 4 ] ), Transformation( [ 5, 5, 5, 4, 4 ] ),
|
|
350
|
+
Transformation( [ 5, 1, 4, 1, 1 ] ), Transformation( [ 5, 2, 4, 2, 2 ] ),
|
|
351
|
+
Transformation( [ 5, 4, 4, 4, 4 ] ), Transformation( [ 5, 3, 4, 3, 3 ] ) ]
|
|
352
|
+
gap> Length(L) = 6;
|
|
353
|
+
true
|
|
354
|
+
gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
|
|
355
|
+
true
|
|
356
|
+
gap> ForAll(L, y -> ForAll(S, x -> x * y <> y));
|
|
357
|
+
true
|
|
358
|
+
gap> R := Filtered(S, x -> RightIdentity(S, x) = fail);
|
|
359
|
+
[ Transformation( [ 2, 4, 3, 4 ] ), Transformation( [ 5, 1, 4, 1, 1 ] ),
|
|
360
|
+
Transformation( [ 5, 2, 4, 2, 2 ] ) ]
|
|
361
|
+
gap> Length(R) = 3;
|
|
362
|
+
true
|
|
363
|
+
gap> ForAll(R, y -> ForAll(S, x -> y * x <> y));
|
|
364
|
+
true
|
|
365
|
+
gap> RightIdentity(S, Transformation([7, 6, 8, 10, 5, 5, 9, 2, 7, 8]));
|
|
366
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
|
|
367
|
+
semigroup)
|
|
368
|
+
gap> LeftIdentity(S, Transformation([7, 6, 8, 10, 5, 5, 9, 2, 7, 8]));
|
|
369
|
+
Error, the 2nd argument (a mult. elt.) does not belong to the 1st argument (a \
|
|
370
|
+
semigroup)
|
|
371
|
+
gap> S := Semigroup(Transformation([1, 2, 3, 3]), Transformation([2, 3, 1, 1]));
|
|
372
|
+
<transformation semigroup of degree 4 with 2 generators>
|
|
373
|
+
gap> IsMonoidAsSemigroup(S);
|
|
374
|
+
true
|
|
375
|
+
gap> RightIdentity(S, Transformation([3, 1, 2, 2])) = MultiplicativeNeutralElement(S);
|
|
376
|
+
true
|
|
377
|
+
gap> LeftIdentity(S, Transformation([3, 1, 2, 2])) = MultiplicativeNeutralElement(S);
|
|
378
|
+
true
|
|
379
|
+
gap> S := Monoid(Transformation([1, 2, 3, 3]), Transformation([2, 3, 1, 1]));
|
|
380
|
+
<transformation monoid of degree 4 with 2 generators>
|
|
381
|
+
gap> RightIdentity(S, Transformation([3, 1, 2, 2])) = One(S);
|
|
382
|
+
true
|
|
383
|
+
gap> LeftIdentity(S, Transformation([3, 1, 2, 2])) = One(S);
|
|
384
|
+
true
|
|
385
|
+
|
|
386
|
+
#
|
|
387
|
+
gap> SEMIGROUPS.StopTest();
|
|
388
|
+
gap> STOP_TEST("Semigroups package: standard/attributes/acting.tst");
|