passagemath-gap-pkg-normalizinterface 10.6.42__cp312-abi3-macosx_13_0_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- gap/pkg/normalizinterface/CHANGES +113 -0
- gap/pkg/normalizinterface/LICENSE +351 -0
- gap/pkg/normalizinterface/PackageInfo.g +121 -0
- gap/pkg/normalizinterface/README.md +96 -0
- gap/pkg/normalizinterface/bin/x86_64-apple-darwin24-default64-kv10/NormalizInterface.so +0 -0
- gap/pkg/normalizinterface/etc/download.sh +85 -0
- gap/pkg/normalizinterface/etc/generate_cone_property_wrappers.g +380 -0
- gap/pkg/normalizinterface/examples/5x5.g +22 -0
- gap/pkg/normalizinterface/examples/demo.g +53 -0
- gap/pkg/normalizinterface/examples/docs.g +43 -0
- gap/pkg/normalizinterface/examples/dual_mode.g +26 -0
- gap/pkg/normalizinterface/examples/magic_square.g +36 -0
- gap/pkg/normalizinterface/init.g +7 -0
- gap/pkg/normalizinterface/lib/cone_property_wrappers.gd +682 -0
- gap/pkg/normalizinterface/lib/cone_property_wrappers.gi +132 -0
- gap/pkg/normalizinterface/lib/normaliz.gd +130 -0
- gap/pkg/normalizinterface/lib/normaliz.gi +153 -0
- gap/pkg/normalizinterface/makedoc.g +13 -0
- gap/pkg/normalizinterface/read.g +3 -0
- gap/pkg/normalizinterface/tst/InhomIneq.tst +20 -0
- gap/pkg/normalizinterface/tst/bugfix.tst +37 -0
- gap/pkg/normalizinterface/tst/conversion.tst +87 -0
- gap/pkg/normalizinterface/tst/cube-incidence.tst +62 -0
- gap/pkg/normalizinterface/tst/descent.tst +173 -0
- gap/pkg/normalizinterface/tst/dual.tst +533 -0
- gap/pkg/normalizinterface/tst/fractions.tst +29 -0
- gap/pkg/normalizinterface/tst/gorenstein.tst +22 -0
- gap/pkg/normalizinterface/tst/normalizinterface01.tst +46 -0
- gap/pkg/normalizinterface/tst/normalizinterface02.tst +107 -0
- gap/pkg/normalizinterface/tst/project.tst +136 -0
- gap/pkg/normalizinterface/tst/rational.tst +151 -0
- gap/pkg/normalizinterface/tst/rees.tst +544 -0
- gap/pkg/normalizinterface/tst/rp2poly.tst +351 -0
- gap/pkg/normalizinterface/tst/rproj2.tst +548 -0
- gap/pkg/normalizinterface/tst/testall.g +3 -0
- gap/pkg/normalizinterface/tst/verticesfloat.tst +11 -0
- passagemath_gap_pkg_normalizinterface/.dylibs/libeantic.3.dylib +0 -0
- passagemath_gap_pkg_normalizinterface/.dylibs/libeanticxx.3.dylib +0 -0
- passagemath_gap_pkg_normalizinterface/.dylibs/libflint.22.0.dylib +0 -0
- passagemath_gap_pkg_normalizinterface/.dylibs/libgmp.10.dylib +0 -0
- passagemath_gap_pkg_normalizinterface/.dylibs/libgmpxx.4.dylib +0 -0
- passagemath_gap_pkg_normalizinterface/.dylibs/libmpfr.6.dylib +0 -0
- passagemath_gap_pkg_normalizinterface/.dylibs/libnormaliz.3.dylib +0 -0
- passagemath_gap_pkg_normalizinterface/__init__.py +3 -0
- passagemath_gap_pkg_normalizinterface-10.6.42.dist-info/METADATA +93 -0
- passagemath_gap_pkg_normalizinterface-10.6.42.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_normalizinterface-10.6.42.dist-info/RECORD +52 -0
- passagemath_gap_pkg_normalizinterface-10.6.42.dist-info/WHEEL +6 -0
- passagemath_gap_pkg_normalizinterface-10.6.42.dist-info/top_level.txt +2 -0
- sage/all__sagemath_gap_pkg_normalizinterface.py +1 -0
- sage/libs/all__sagemath_gap_pkg_normalizinterface.py +1 -0
- sage/libs/gap_pkg_normalizinterface.abi3.so +0 -0
|
@@ -0,0 +1,29 @@
|
|
|
1
|
+
gap> START_TEST("fractions.tst");
|
|
2
|
+
|
|
3
|
+
#
|
|
4
|
+
gap> M:=[[0, 0], [7/2, 0], [0, 9/4]];
|
|
5
|
+
[ [ 0, 0 ], [ 7/2, 0 ], [ 0, 9/4 ] ]
|
|
6
|
+
gap> cone := NmzCone(["polytope", M]);
|
|
7
|
+
<a Normaliz cone>
|
|
8
|
+
gap> NmzCompute(cone);
|
|
9
|
+
true
|
|
10
|
+
gap> NmzDeg1Elements(cone);
|
|
11
|
+
[ [ 0, 0, 1 ], [ 0, 1, 1 ], [ 0, 2, 1 ], [ 1, 0, 1 ], [ 1, 1, 1 ],
|
|
12
|
+
[ 2, 0, 1 ], [ 3, 0, 1 ] ]
|
|
13
|
+
|
|
14
|
+
#
|
|
15
|
+
gap> NmzVolume(cone);
|
|
16
|
+
63/8
|
|
17
|
+
gap> NmzEuclideanVolume(cone);
|
|
18
|
+
3.9375
|
|
19
|
+
gap> Display(NmzSupportHyperplanes(cone));
|
|
20
|
+
[ [ -18, -28, 63 ],
|
|
21
|
+
[ 0, 1, 0 ],
|
|
22
|
+
[ 1, 0, 0 ] ]
|
|
23
|
+
gap> Display(NmzSuppHypsFloat(cone));
|
|
24
|
+
[ [ -0.2857142857142857, -0.44444444444444442, 1. ],
|
|
25
|
+
[ 0., 1., 0. ],
|
|
26
|
+
[ 1., 0., 0. ] ]
|
|
27
|
+
|
|
28
|
+
#
|
|
29
|
+
gap> STOP_TEST("fractions.tst", 0);
|
|
@@ -0,0 +1,22 @@
|
|
|
1
|
+
gap> START_TEST("gorenstein.tst");
|
|
2
|
+
gap> 5x5eq := [
|
|
3
|
+
> [1, 1, 1, 1, 1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
4
|
+
> [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
|
5
|
+
> [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0],
|
|
6
|
+
> [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1],
|
|
7
|
+
> [0, 1, 1, 1, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0],
|
|
8
|
+
> [1, 0, 1, 1, 1, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0],
|
|
9
|
+
> [1, 1, 0, 1, 1, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0],
|
|
10
|
+
> [1, 1, 1, 0, 1, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0],
|
|
11
|
+
> [1, 1, 1, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1],
|
|
12
|
+
> [0, 1, 1, 1, 1, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1],
|
|
13
|
+
> [1, 1, 1, 1, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0, 0]
|
|
14
|
+
> ];;
|
|
15
|
+
gap> 5x5grading := [[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]];;
|
|
16
|
+
gap> 5x5cone := NmzCone(["equations", 5x5eq,"grading",5x5grading]);
|
|
17
|
+
<a Normaliz cone>
|
|
18
|
+
gap> NmzIsGorenstein(5x5cone);
|
|
19
|
+
true
|
|
20
|
+
gap> NmzGeneratorOfInterior(5x5cone);
|
|
21
|
+
[ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]
|
|
22
|
+
gap> STOP_TEST("gorenstein.tst", 0);
|
|
@@ -0,0 +1,46 @@
|
|
|
1
|
+
# NormalizInterface, chapter 2
|
|
2
|
+
#
|
|
3
|
+
# DO NOT EDIT THIS FILE - EDIT EXAMPLES IN THE SOURCE INSTEAD!
|
|
4
|
+
#
|
|
5
|
+
# This file has been generated by AutoDoc. It contains examples extracted from
|
|
6
|
+
# the package documentation. Each example is preceded by a comment which gives
|
|
7
|
+
# the name of a GAPDoc XML file and a line range from which the example were
|
|
8
|
+
# taken. Note that the XML file in turn may have been generated by AutoDoc
|
|
9
|
+
# from some other input.
|
|
10
|
+
#
|
|
11
|
+
gap> START_TEST("normalizinterface01.tst");
|
|
12
|
+
|
|
13
|
+
# doc/_Chunks.xml:163-166
|
|
14
|
+
gap> cone := NmzCone(["integral_closure",[[2,1],[1,3]]]);
|
|
15
|
+
<a Normaliz cone>
|
|
16
|
+
|
|
17
|
+
# doc/_Chunks.xml:120-123
|
|
18
|
+
gap> NmzHasConeProperty(cone, "ExtremeRays");
|
|
19
|
+
false
|
|
20
|
+
|
|
21
|
+
# doc/_Chunks.xml:129-133
|
|
22
|
+
gap> NmzKnownConeProperties(cone);
|
|
23
|
+
[ "EmbeddingDim", "Generators", "InternalIndex", "IsInhomogeneous",
|
|
24
|
+
"OriginalMonoidGenerators", "Sublattice" ]
|
|
25
|
+
|
|
26
|
+
# doc/_Chunks.xml:139-157
|
|
27
|
+
gap> NmzKnownConeProperties(cone);
|
|
28
|
+
[ "EmbeddingDim", "Generators", "InternalIndex", "IsInhomogeneous",
|
|
29
|
+
"OriginalMonoidGenerators", "Sublattice" ]
|
|
30
|
+
gap> NmzCompute(cone, ["SupportHyperplanes", "IsPointed"]);
|
|
31
|
+
true
|
|
32
|
+
gap> NmzKnownConeProperties(cone);
|
|
33
|
+
[ "EmbeddingDim", "ExtremeRays", "Generators", "InternalIndex",
|
|
34
|
+
"IsDeg1ExtremeRays", "IsInhomogeneous", "IsPointed", "MaximalSubspace",
|
|
35
|
+
"OriginalMonoidGenerators", "Rank", "Sublattice", "SupportHyperplanes" ]
|
|
36
|
+
gap> NmzCompute(cone);;
|
|
37
|
+
gap> NmzKnownConeProperties(cone);
|
|
38
|
+
[ "ClassGroup", "EmbeddingDim", "ExtremeRays", "Generators", "HilbertBasis",
|
|
39
|
+
"InternalIndex", "IsDeg1ExtremeRays", "IsInhomogeneous",
|
|
40
|
+
"IsIntegrallyClosed", "IsPointed", "IsTriangulationNested",
|
|
41
|
+
"IsTriangulationPartial", "MaximalSubspace", "OriginalMonoidGenerators",
|
|
42
|
+
"Rank", "Sublattice", "SupportHyperplanes", "TriangulationDetSum",
|
|
43
|
+
"TriangulationSize", "UnitGroupIndex" ]
|
|
44
|
+
|
|
45
|
+
#
|
|
46
|
+
gap> STOP_TEST("normalizinterface01.tst", 1);
|
|
@@ -0,0 +1,107 @@
|
|
|
1
|
+
# NormalizInterface, chapter 3
|
|
2
|
+
#
|
|
3
|
+
# DO NOT EDIT THIS FILE - EDIT EXAMPLES IN THE SOURCE INSTEAD!
|
|
4
|
+
#
|
|
5
|
+
# This file has been generated by AutoDoc. It contains examples extracted from
|
|
6
|
+
# the package documentation. Each example is preceded by a comment which gives
|
|
7
|
+
# the name of a GAPDoc XML file and a line range from which the example were
|
|
8
|
+
# taken. Note that the XML file in turn may have been generated by AutoDoc
|
|
9
|
+
# from some other input.
|
|
10
|
+
#
|
|
11
|
+
gap> START_TEST("normalizinterface02.tst");
|
|
12
|
+
|
|
13
|
+
# doc/_Chunks.xml:2-15
|
|
14
|
+
gap> C := NmzCone(["integral_closure",[[2,1],[1,3]]]);
|
|
15
|
+
<a Normaliz cone>
|
|
16
|
+
gap> NmzHasConeProperty(C,"HilbertBasis");
|
|
17
|
+
false
|
|
18
|
+
gap> NmzHasConeProperty(C,"SupportHyperplanes");
|
|
19
|
+
false
|
|
20
|
+
gap> NmzConeProperty(C,"HilbertBasis");
|
|
21
|
+
[ [ 1, 1 ], [ 1, 2 ], [ 1, 3 ], [ 2, 1 ] ]
|
|
22
|
+
gap> NmzHasConeProperty(C,"SupportHyperplanes");
|
|
23
|
+
true
|
|
24
|
+
gap> NmzConeProperty(C,"SupportHyperplanes");
|
|
25
|
+
[ [ -1, 2 ], [ 3, -1 ] ]
|
|
26
|
+
|
|
27
|
+
# doc/_Chunks.xml:21-36
|
|
28
|
+
gap> D := NmzCone(["equations",[[1,2,-3]], "grading",[[0,-1,3]]]);
|
|
29
|
+
<a Normaliz cone>
|
|
30
|
+
gap> NmzCompute(D,["DualMode","HilbertSeries"]);
|
|
31
|
+
true
|
|
32
|
+
gap> NmzHilbertBasis(D);
|
|
33
|
+
[ [ 1, 1, 1 ], [ 0, 3, 2 ], [ 3, 0, 1 ] ]
|
|
34
|
+
gap> NmzHilbertSeries(D);
|
|
35
|
+
[ t^2-t+1, [ [ 1, 1 ], [ 3, 1 ] ] ]
|
|
36
|
+
gap> NmzHasConeProperty(D,"SupportHyperplanes");
|
|
37
|
+
true
|
|
38
|
+
gap> NmzSupportHyperplanes(D);
|
|
39
|
+
[ [ 0, 1, 0 ], [ 1, 0, 0 ] ]
|
|
40
|
+
gap> NmzEquations(D);
|
|
41
|
+
[ [ 1, 2, -3 ] ]
|
|
42
|
+
|
|
43
|
+
# doc/_Chunks.xml:42-53
|
|
44
|
+
gap> P := NmzCone(["inhom_equations",[[1,2,-3,1]], "grading", [[1,1,1]]]);
|
|
45
|
+
<a Normaliz cone>
|
|
46
|
+
gap> NmzIsInhomogeneous(C);
|
|
47
|
+
false
|
|
48
|
+
gap> NmzIsInhomogeneous(P);
|
|
49
|
+
true
|
|
50
|
+
gap> NmzHilbertBasis(P);
|
|
51
|
+
[ [ 1, 1, 1, 0 ], [ 3, 0, 1, 0 ], [ 0, 3, 2, 0 ] ]
|
|
52
|
+
gap> NmzModuleGenerators(P);
|
|
53
|
+
[ [ 0, 1, 1, 1 ], [ 2, 0, 1, 1 ] ]
|
|
54
|
+
|
|
55
|
+
# doc/_Chunks.xml:59-86
|
|
56
|
+
gap> Magic3x3even := NmzCone(["equations",
|
|
57
|
+
> [ [1, 1, 1, -1, -1, -1, 0, 0, 0],
|
|
58
|
+
> [1, 1, 1, 0, 0, 0, -1, -1, -1],
|
|
59
|
+
> [0, 1, 1, -1, 0, 0, -1, 0, 0],
|
|
60
|
+
> [1, 0, 1, 0, -1, 0, 0, -1, 0],
|
|
61
|
+
> [1, 1, 0, 0, 0, -1, 0, 0, -1],
|
|
62
|
+
> [0, 1, 1, 0, -1, 0, 0, 0, -1],
|
|
63
|
+
> [1, 1, 0, 0, -1, 0, -1, 0, 0] ],
|
|
64
|
+
> "congruences",
|
|
65
|
+
> [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 2],
|
|
66
|
+
> [0, 0, 1, 0, 0, 0, 0, 0, 0, 2],
|
|
67
|
+
> [0, 0, 0, 0, 0, 0, 1, 0, 0, 2],
|
|
68
|
+
> [0, 0, 0, 0, 0, 0, 0, 0, 1, 2] ],
|
|
69
|
+
> "grading",
|
|
70
|
+
> [ [1, 1, 1, 0, 0, 0, 0, 0, 0] ] ] );
|
|
71
|
+
<a Normaliz cone>
|
|
72
|
+
gap> NmzHilbertBasis(Magic3x3even);
|
|
73
|
+
[ [ 0, 4, 2, 4, 2, 0, 2, 0, 4 ], [ 2, 0, 4, 4, 2, 0, 0, 4, 2 ],
|
|
74
|
+
[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ], [ 2, 4, 0, 0, 2, 4, 4, 0, 2 ],
|
|
75
|
+
[ 4, 0, 2, 0, 2, 4, 2, 4, 0 ], [ 2, 3, 4, 5, 3, 1, 2, 3, 4 ],
|
|
76
|
+
[ 2, 5, 2, 3, 3, 3, 4, 1, 4 ], [ 4, 1, 4, 3, 3, 3, 2, 5, 2 ],
|
|
77
|
+
[ 4, 3, 2, 1, 3, 5, 4, 3, 2 ] ]
|
|
78
|
+
gap> NmzHilbertSeries(Magic3x3even);
|
|
79
|
+
[ t^3+3*t^2-t+1, [ [ 1, 1 ], [ 2, 2 ] ] ]
|
|
80
|
+
gap> NmzHilbertQuasiPolynomial(Magic3x3even);
|
|
81
|
+
[ 1/2*t^2+t+1, 1/2*t^2-1/2 ]
|
|
82
|
+
|
|
83
|
+
# doc/_Chunks.xml:92-114
|
|
84
|
+
gap> M := [
|
|
85
|
+
> [ 8, 8, 8, 7 ],
|
|
86
|
+
> [ 0, 4, 0, 1 ],
|
|
87
|
+
> [ 0, 1, 0, 7 ],
|
|
88
|
+
> [ 0, -2, 0, 7 ],
|
|
89
|
+
> [ 0, -2, 0, 1 ],
|
|
90
|
+
> [ 8, 48, 8, 17 ],
|
|
91
|
+
> [ 1, 6, 1, 34 ],
|
|
92
|
+
> [ 2,-12, -2, 37 ],
|
|
93
|
+
> [ 4,-24, -4, 14 ]
|
|
94
|
+
> ];;
|
|
95
|
+
gap> D := NmzCone(["inhom_inequalities", M,
|
|
96
|
+
> "signs", [[1,1,1]],
|
|
97
|
+
> "grading", [[1,1,1]]]);
|
|
98
|
+
<a Normaliz cone>
|
|
99
|
+
gap> NmzCompute(D,["DualMode","HilbertBasis","ModuleGenerators"]);
|
|
100
|
+
true
|
|
101
|
+
gap> NmzHilbertBasis(D);
|
|
102
|
+
[ [ 1, 0, 0, 0 ], [ 1, 0, 1, 0 ] ]
|
|
103
|
+
gap> NmzModuleGenerators(D);
|
|
104
|
+
[ [ 0, 0, 0, 1 ], [ 0, 0, 1, 1 ], [ 0, 0, 2, 1 ], [ 0, 0, 3, 1 ] ]
|
|
105
|
+
|
|
106
|
+
#
|
|
107
|
+
gap> STOP_TEST("normalizinterface02.tst", 1);
|
|
@@ -0,0 +1,136 @@
|
|
|
1
|
+
gap> START_TEST("project.tst");
|
|
2
|
+
|
|
3
|
+
#
|
|
4
|
+
gap> # Based on nonpointed.in
|
|
5
|
+
gap> cone := NmzCone([
|
|
6
|
+
> "equations", [[0, 0, 1, 0], [0, 0, 0, 1]],
|
|
7
|
+
> "inequalities", [[0, 1, 0, 0]],
|
|
8
|
+
> "projection_coordinates", [[1, 1, 1, 0]]]);;
|
|
9
|
+
gap> proj:=NmzProjectCone(cone);
|
|
10
|
+
<a Normaliz cone>
|
|
11
|
+
|
|
12
|
+
# check what was computed for the input cone
|
|
13
|
+
gap> tmp := NmzKnownConeProperties(cone);;
|
|
14
|
+
gap> RemoveSet(tmp, "NumberLatticePoints");
|
|
15
|
+
gap> Perform(tmp, Display);
|
|
16
|
+
EmbeddingDim
|
|
17
|
+
ExtremeRays
|
|
18
|
+
Generators
|
|
19
|
+
IsInhomogeneous
|
|
20
|
+
IsPointed
|
|
21
|
+
MaximalSubspace
|
|
22
|
+
ProjectCone
|
|
23
|
+
Rank
|
|
24
|
+
Sublattice
|
|
25
|
+
SupportHyperplanes
|
|
26
|
+
gap> Display(NmzTriangulation(cone));
|
|
27
|
+
[ [ rec(
|
|
28
|
+
Excluded := [ ],
|
|
29
|
+
height := 0,
|
|
30
|
+
key := [ 0 ],
|
|
31
|
+
mult := 0,
|
|
32
|
+
vol := 1 ) ], [ [ 0, 1, 0, 0 ] ] ]
|
|
33
|
+
gap> Display(NmzExtremeRays(cone));
|
|
34
|
+
[ [ 0, 1, 0, 0 ] ]
|
|
35
|
+
gap> Display(NmzSupportHyperplanes(cone));
|
|
36
|
+
[ [ 0, 1, 0, 0 ] ]
|
|
37
|
+
gap> Display(NmzHilbertBasis(cone));
|
|
38
|
+
[ [ 0, 1, 0, 0 ] ]
|
|
39
|
+
gap> Display(NmzDeg1Elements(cone));
|
|
40
|
+
[ [ 0, 1, 0, 0 ] ]
|
|
41
|
+
gap> Display(NmzSublattice(cone));
|
|
42
|
+
[ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ] ],
|
|
43
|
+
[ [ 1, 0 ], [ 0, 1 ], [ 0, 0 ], [ 0, 0 ] ], 1 ]
|
|
44
|
+
gap> _NmzPrintSomeConeProperties(cone, [
|
|
45
|
+
> "Generators",
|
|
46
|
+
> "ExtremeRays",
|
|
47
|
+
> "SupportHyperplanes",
|
|
48
|
+
> "HilbertBasis",
|
|
49
|
+
> "Deg1Elements",
|
|
50
|
+
> "Sublattice",
|
|
51
|
+
> "NumberLatticePoints",
|
|
52
|
+
> "OriginalMonoidGenerators",
|
|
53
|
+
> ]);
|
|
54
|
+
BasicTriangulation = fail
|
|
55
|
+
EmbeddingDim = 4
|
|
56
|
+
Grading = [ 0, 1, 0, 0 ]
|
|
57
|
+
GradingDenom = 1
|
|
58
|
+
IsDeg1ExtremeRays = true
|
|
59
|
+
IsDeg1HilbertBasis = true
|
|
60
|
+
IsInhomogeneous = false
|
|
61
|
+
IsPointed = false
|
|
62
|
+
IsTriangulationNested = false
|
|
63
|
+
IsTriangulationPartial = true
|
|
64
|
+
MaximalSubspace =
|
|
65
|
+
[ [ 1, 0, 0, 0 ] ]
|
|
66
|
+
Multiplicity = 1
|
|
67
|
+
ProjectCone = <object>
|
|
68
|
+
Rank = 2
|
|
69
|
+
TriangulationDetSum = 0
|
|
70
|
+
TriangulationSize = 0
|
|
71
|
+
|
|
72
|
+
# check what was computed for the projected cone
|
|
73
|
+
gap> Perform(NmzKnownConeProperties(proj), Display);
|
|
74
|
+
EmbeddingDim
|
|
75
|
+
ExtremeRays
|
|
76
|
+
Generators
|
|
77
|
+
Grading
|
|
78
|
+
GradingDenom
|
|
79
|
+
InternalIndex
|
|
80
|
+
IsDeg1ExtremeRays
|
|
81
|
+
IsInhomogeneous
|
|
82
|
+
IsPointed
|
|
83
|
+
MaximalSubspace
|
|
84
|
+
OriginalMonoidGenerators
|
|
85
|
+
Rank
|
|
86
|
+
Sublattice
|
|
87
|
+
SupportHyperplanes
|
|
88
|
+
gap> Display(NmzTriangulation(proj));
|
|
89
|
+
[ [ rec(
|
|
90
|
+
Excluded := [ ],
|
|
91
|
+
height := 0,
|
|
92
|
+
key := [ 0 ],
|
|
93
|
+
mult := 0,
|
|
94
|
+
vol := 1 ) ], [ [ 0, 1, 0 ] ] ]
|
|
95
|
+
gap> Display(NmzExtremeRays(proj));
|
|
96
|
+
[ [ 0, 1, 0 ] ]
|
|
97
|
+
gap> Display(NmzSupportHyperplanes(proj));
|
|
98
|
+
[ [ 0, 1, 0 ] ]
|
|
99
|
+
gap> Display(NmzHilbertBasis(proj));
|
|
100
|
+
[ [ 0, 1, 0 ] ]
|
|
101
|
+
gap> Display(NmzDeg1Elements(proj));
|
|
102
|
+
[ [ 0, 1, 0 ] ]
|
|
103
|
+
gap> Display(NmzSublattice(proj));
|
|
104
|
+
[ [ [ 1, 0, 0 ], [ 0, 1, 0 ] ], [ [ 1, 0 ], [ 0, 1 ], [ 0, 0 ] ], 1 ]
|
|
105
|
+
gap> _NmzPrintSomeConeProperties(proj, [
|
|
106
|
+
> "Generators",
|
|
107
|
+
> "ExtremeRays",
|
|
108
|
+
> "SupportHyperplanes",
|
|
109
|
+
> "HilbertBasis",
|
|
110
|
+
> "Deg1Elements",
|
|
111
|
+
> "Sublattice",
|
|
112
|
+
> "NumberLatticePoints",
|
|
113
|
+
> "OriginalMonoidGenerators",
|
|
114
|
+
> ]);
|
|
115
|
+
BasicTriangulation = fail
|
|
116
|
+
EmbeddingDim = 3
|
|
117
|
+
Grading = [ 0, 1, 0 ]
|
|
118
|
+
GradingDenom = 1
|
|
119
|
+
InternalIndex = 1
|
|
120
|
+
IsDeg1ExtremeRays = true
|
|
121
|
+
IsDeg1HilbertBasis = true
|
|
122
|
+
IsInhomogeneous = false
|
|
123
|
+
IsIntegrallyClosed = true
|
|
124
|
+
IsPointed = false
|
|
125
|
+
IsTriangulationNested = false
|
|
126
|
+
IsTriangulationPartial = true
|
|
127
|
+
MaximalSubspace =
|
|
128
|
+
[ [ 1, 0, 0 ] ]
|
|
129
|
+
Multiplicity = 1
|
|
130
|
+
Rank = 2
|
|
131
|
+
TriangulationDetSum = 0
|
|
132
|
+
TriangulationSize = 0
|
|
133
|
+
UnitGroupIndex = 1
|
|
134
|
+
|
|
135
|
+
#
|
|
136
|
+
gap> STOP_TEST("project.tst", 0);
|
|
@@ -0,0 +1,151 @@
|
|
|
1
|
+
gap> START_TEST("rational.tst");
|
|
2
|
+
|
|
3
|
+
#
|
|
4
|
+
gap> M := [
|
|
5
|
+
> [ 1, 1, 2 ],
|
|
6
|
+
> [ -1, -1, 3 ],
|
|
7
|
+
> [ 1, -2, 4 ],
|
|
8
|
+
> ];;
|
|
9
|
+
gap> gr := [ [ 0, 0, 1 ] ];;
|
|
10
|
+
gap> cone := NmzCone(["integral_closure", M, "grading", gr]);;
|
|
11
|
+
gap> NmzCompute(cone);
|
|
12
|
+
true
|
|
13
|
+
gap> tmp := NmzKnownConeProperties(cone);;
|
|
14
|
+
gap> RemoveSet(tmp, "NumberLatticePoints");
|
|
15
|
+
gap> Perform(tmp, Display);
|
|
16
|
+
ClassGroup
|
|
17
|
+
Deg1Elements
|
|
18
|
+
EmbeddingDim
|
|
19
|
+
ExtremeRays
|
|
20
|
+
Generators
|
|
21
|
+
Grading
|
|
22
|
+
GradingDenom
|
|
23
|
+
HilbertBasis
|
|
24
|
+
HilbertQuasiPolynomial
|
|
25
|
+
HilbertSeries
|
|
26
|
+
InternalIndex
|
|
27
|
+
IsDeg1ExtremeRays
|
|
28
|
+
IsDeg1HilbertBasis
|
|
29
|
+
IsInhomogeneous
|
|
30
|
+
IsIntegrallyClosed
|
|
31
|
+
IsPointed
|
|
32
|
+
IsTriangulationNested
|
|
33
|
+
IsTriangulationPartial
|
|
34
|
+
MaximalSubspace
|
|
35
|
+
Multiplicity
|
|
36
|
+
OriginalMonoidGenerators
|
|
37
|
+
Rank
|
|
38
|
+
Sublattice
|
|
39
|
+
SupportHyperplanes
|
|
40
|
+
TriangulationDetSum
|
|
41
|
+
TriangulationSize
|
|
42
|
+
UnitGroupIndex
|
|
43
|
+
gap> Display(NmzTriangulation(cone));
|
|
44
|
+
[ [ rec(
|
|
45
|
+
Excluded := [ ],
|
|
46
|
+
height := 0,
|
|
47
|
+
key := [ 0, 1, 2 ],
|
|
48
|
+
mult := 0,
|
|
49
|
+
vol := 15 ) ], [ [ 1, 1, 2 ], [ -1, -1, 3 ], [ 1, -2, 4 ] ] ]
|
|
50
|
+
gap> Display(NmzExtremeRays(cone));
|
|
51
|
+
[ [ 1, 1, 2 ],
|
|
52
|
+
[ -1, -1, 3 ],
|
|
53
|
+
[ 1, -2, 4 ] ]
|
|
54
|
+
gap> Display(NmzSupportHyperplanes(cone));
|
|
55
|
+
[ [ -8, 2, 3 ],
|
|
56
|
+
[ 1, -1, 0 ],
|
|
57
|
+
[ 2, 7, 3 ] ]
|
|
58
|
+
gap> Display(NmzHilbertBasis(cone));
|
|
59
|
+
[ [ 0, 0, 1 ],
|
|
60
|
+
[ 1, 1, 2 ],
|
|
61
|
+
[ -1, -1, 3 ],
|
|
62
|
+
[ 0, -1, 3 ],
|
|
63
|
+
[ 1, 0, 3 ],
|
|
64
|
+
[ 1, -2, 4 ],
|
|
65
|
+
[ 1, -1, 4 ],
|
|
66
|
+
[ 0, -2, 5 ] ]
|
|
67
|
+
gap> Display(NmzDeg1Elements(cone));
|
|
68
|
+
[ [ 0, 0, 1 ] ]
|
|
69
|
+
gap> Display(NmzSublattice(cone));
|
|
70
|
+
[ [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ],
|
|
71
|
+
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1 ] ], 1 ]
|
|
72
|
+
gap> Display(NmzOriginalMonoidGenerators(cone));
|
|
73
|
+
[ [ 1, 1, 2 ],
|
|
74
|
+
[ -1, -1, 3 ],
|
|
75
|
+
[ 1, -2, 4 ] ]
|
|
76
|
+
gap> _NmzPrintSomeConeProperties(cone, [
|
|
77
|
+
> "Generators",
|
|
78
|
+
> "ExtremeRays",
|
|
79
|
+
> "SupportHyperplanes",
|
|
80
|
+
> "HilbertBasis",
|
|
81
|
+
> "Deg1Elements",
|
|
82
|
+
> "Sublattice",
|
|
83
|
+
> "NumberLatticePoints",
|
|
84
|
+
> "OriginalMonoidGenerators",
|
|
85
|
+
> ]);
|
|
86
|
+
BasicTriangulation = fail
|
|
87
|
+
ClassGroup = [ 0, 3, 15 ]
|
|
88
|
+
EhrhartQuasiPolynomial = [ [ 48, 28, 15 ], [ 11, 22, 15 ], [ -20, 28, 15 ],
|
|
89
|
+
[ 39, 22, 15 ], [ 32, 28, 15 ], [ -5, 22, 15 ], [ 12, 28, 15 ],
|
|
90
|
+
[ 23, 22, 15 ], [ 16, 28, 15 ], [ 27, 22, 15 ], [ -4, 28, 15 ],
|
|
91
|
+
[ 7, 22, 15 ], 48 ]
|
|
92
|
+
EmbeddingDim = 3
|
|
93
|
+
Grading = [ 0, 0, 1 ]
|
|
94
|
+
GradingDenom = 1
|
|
95
|
+
HilbertQuasiPolynomial = [ 5/16*t^2+7/12*t+1, 5/16*t^2+11/24*t+11/48,
|
|
96
|
+
5/16*t^2+7/12*t-5/12, 5/16*t^2+11/24*t+13/16, 5/16*t^2+7/12*t+2/3,
|
|
97
|
+
5/16*t^2+11/24*t-5/48, 5/16*t^2+7/12*t+1/4, 5/16*t^2+11/24*t+23/48,
|
|
98
|
+
5/16*t^2+7/12*t+1/3, 5/16*t^2+11/24*t+9/16, 5/16*t^2+7/12*t-1/12,
|
|
99
|
+
5/16*t^2+11/24*t+7/48 ]
|
|
100
|
+
HilbertQuasiPolynomial = [ 5/16*t^2+7/12*t+1, 5/16*t^2+11/24*t+11/48,
|
|
101
|
+
5/16*t^2+7/12*t-5/12, 5/16*t^2+11/24*t+13/16, 5/16*t^2+7/12*t+2/3,
|
|
102
|
+
5/16*t^2+11/24*t-5/48, 5/16*t^2+7/12*t+1/4, 5/16*t^2+11/24*t+23/48,
|
|
103
|
+
5/16*t^2+7/12*t+1/3, 5/16*t^2+11/24*t+9/16, 5/16*t^2+7/12*t-1/12,
|
|
104
|
+
5/16*t^2+11/24*t+7/48 ]
|
|
105
|
+
HilbertSeries = [ 2*t^12+t^11+t^10+t^9+t^8+2*t^7+2*t^6-t^5+2*t^4+3*t^3+1,
|
|
106
|
+
[ [ 1, 1 ], [ 2, 1 ], [ 12, 1 ] ] ]
|
|
107
|
+
InternalIndex = 15
|
|
108
|
+
IsDeg1ExtremeRays = false
|
|
109
|
+
IsDeg1HilbertBasis = false
|
|
110
|
+
IsInhomogeneous = false
|
|
111
|
+
IsIntegrallyClosed = false
|
|
112
|
+
IsPointed = true
|
|
113
|
+
IsTriangulationNested = false
|
|
114
|
+
IsTriangulationPartial = false
|
|
115
|
+
MaximalSubspace = [ ]
|
|
116
|
+
Multiplicity = 5/8
|
|
117
|
+
Rank = 3
|
|
118
|
+
TriangulationDetSum = 15
|
|
119
|
+
TriangulationSize = 1
|
|
120
|
+
UnitGroupIndex = 1
|
|
121
|
+
gap> Display(NmzConeDecomposition(cone));
|
|
122
|
+
[ [ rec(
|
|
123
|
+
Excluded := [ false, false, false ],
|
|
124
|
+
height := 0,
|
|
125
|
+
key := [ 0, 1, 2 ],
|
|
126
|
+
mult := 0,
|
|
127
|
+
vol := 15 ) ], [ [ 1, 1, 2 ], [ -1, -1, 3 ], [ 1, -2, 4 ] ] ]
|
|
128
|
+
gap> ForAll(NmzConeDecomposition(cone), IsBlistRep);
|
|
129
|
+
false
|
|
130
|
+
|
|
131
|
+
#
|
|
132
|
+
gap> NmzStanleyDec(cone);
|
|
133
|
+
[ [ [ [ 0, 1, 2 ],
|
|
134
|
+
[ [ 0, 0, 0 ], [ 1, 11, 10 ], [ 2, 7, 5 ], [ 3, 3, 0 ],
|
|
135
|
+
[ 4, 14, 10 ], [ 5, 10, 5 ], [ 6, 6, 0 ], [ 7, 2, 10 ],
|
|
136
|
+
[ 8, 13, 5 ], [ 9, 9, 0 ], [ 10, 5, 10 ], [ 11, 1, 5 ],
|
|
137
|
+
[ 12, 12, 0 ], [ 13, 8, 10 ], [ 14, 4, 5 ] ] ] ],
|
|
138
|
+
[ [ 1, 1, 2 ], [ -1, -1, 3 ], [ 1, -2, 4 ] ] ]
|
|
139
|
+
|
|
140
|
+
#
|
|
141
|
+
gap> (_NmzVersion() < [3, 7, 0]) or (NmzFVector(cone) = [ 1, 3, 3, 1 ]);
|
|
142
|
+
true
|
|
143
|
+
gap> (_NmzVersion() < [3, 7, 0]) or (NmzFaceLattice(cone) =
|
|
144
|
+
> [ [ [ false, false, false ], 0 ], [ [ true, false, false ], 1 ],
|
|
145
|
+
> [ [ false, true, false ], 1 ], [ [ true, true, false ], 2 ],
|
|
146
|
+
> [ [ false, false, true ], 1 ], [ [ true, false, true ], 2 ],
|
|
147
|
+
> [ [ false, true, true ], 2 ], [ [ true, true, true ], 3 ] ]);
|
|
148
|
+
true
|
|
149
|
+
|
|
150
|
+
#
|
|
151
|
+
gap> STOP_TEST("rational.tst", 0);
|