passagemath-gap-pkg-normalizinterface 10.6.32__cp314-cp314t-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-gap-pkg-normalizinterface might be problematic. Click here for more details.
- gap/pkg/normalizinterface/CHANGES +113 -0
- gap/pkg/normalizinterface/LICENSE +351 -0
- gap/pkg/normalizinterface/PackageInfo.g +121 -0
- gap/pkg/normalizinterface/README.md +96 -0
- gap/pkg/normalizinterface/bin/aarch64-unknown-linux-musl-default64-kv10/NormalizInterface.so +0 -0
- gap/pkg/normalizinterface/etc/download.sh +85 -0
- gap/pkg/normalizinterface/etc/generate_cone_property_wrappers.g +380 -0
- gap/pkg/normalizinterface/examples/5x5.g +22 -0
- gap/pkg/normalizinterface/examples/demo.g +53 -0
- gap/pkg/normalizinterface/examples/docs.g +43 -0
- gap/pkg/normalizinterface/examples/dual_mode.g +26 -0
- gap/pkg/normalizinterface/examples/magic_square.g +36 -0
- gap/pkg/normalizinterface/init.g +7 -0
- gap/pkg/normalizinterface/lib/cone_property_wrappers.gd +682 -0
- gap/pkg/normalizinterface/lib/cone_property_wrappers.gi +132 -0
- gap/pkg/normalizinterface/lib/normaliz.gd +130 -0
- gap/pkg/normalizinterface/lib/normaliz.gi +153 -0
- gap/pkg/normalizinterface/makedoc.g +13 -0
- gap/pkg/normalizinterface/read.g +3 -0
- gap/pkg/normalizinterface/tst/InhomIneq.tst +20 -0
- gap/pkg/normalizinterface/tst/bugfix.tst +37 -0
- gap/pkg/normalizinterface/tst/conversion.tst +87 -0
- gap/pkg/normalizinterface/tst/cube-incidence.tst +62 -0
- gap/pkg/normalizinterface/tst/descent.tst +173 -0
- gap/pkg/normalizinterface/tst/dual.tst +533 -0
- gap/pkg/normalizinterface/tst/fractions.tst +29 -0
- gap/pkg/normalizinterface/tst/gorenstein.tst +22 -0
- gap/pkg/normalizinterface/tst/normalizinterface01.tst +46 -0
- gap/pkg/normalizinterface/tst/normalizinterface02.tst +107 -0
- gap/pkg/normalizinterface/tst/project.tst +136 -0
- gap/pkg/normalizinterface/tst/rational.tst +151 -0
- gap/pkg/normalizinterface/tst/rees.tst +544 -0
- gap/pkg/normalizinterface/tst/rp2poly.tst +351 -0
- gap/pkg/normalizinterface/tst/rproj2.tst +548 -0
- gap/pkg/normalizinterface/tst/testall.g +3 -0
- gap/pkg/normalizinterface/tst/verticesfloat.tst +11 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/METADATA +93 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/METADATA.bak +94 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/RECORD +54 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/WHEEL +5 -0
- passagemath_gap_pkg_normalizinterface-10.6.32.dist-info/top_level.txt +1 -0
- passagemath_gap_pkg_normalizinterface.libs/libeantic-da90a096.so.3.1.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libeanticxx-bd9d5c67.so.3.1.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libflint-8c82a98a.so.21.0.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgmpxx-fecb01a9.so.4.7.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libgomp-1ede7ee7.so.1.0.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libmpfr-e34bb864.so.6.2.1 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libnormaliz-40532fe8.so.3.11.0 +0 -0
- passagemath_gap_pkg_normalizinterface.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_gap_pkg_normalizinterface.py +1 -0
- sage/libs/all__sagemath_gap_pkg_normalizinterface.py +1 -0
- sage/libs/gap_pkg_normalizinterface.cpython-314t-aarch64-linux-musl.so +0 -0
|
@@ -0,0 +1,351 @@
|
|
|
1
|
+
gap> START_TEST("rp2poly.tst");
|
|
2
|
+
|
|
3
|
+
#
|
|
4
|
+
gap> M := [
|
|
5
|
+
> [ 1, 1, 1, 0, 0, 0 ],
|
|
6
|
+
> [ 1, 1, 0, 1, 0, 0 ],
|
|
7
|
+
> [ 1, 0, 1, 0, 1, 0 ],
|
|
8
|
+
> [ 1, 0, 0, 1, 0, 1 ],
|
|
9
|
+
> [ 1, 0, 0, 0, 1, 1 ],
|
|
10
|
+
> [ 0, 1, 1, 0, 0, 1 ],
|
|
11
|
+
> [ 0, 1, 0, 1, 1, 0 ],
|
|
12
|
+
> [ 0, 1, 0, 0, 1, 1 ],
|
|
13
|
+
> [ 0, 0, 1, 1, 1, 0 ],
|
|
14
|
+
> [ 0, 0, 1, 1, 0, 1 ],
|
|
15
|
+
> ];;
|
|
16
|
+
gap> cone := NmzCone(["normalization", M]);;
|
|
17
|
+
gap> NmzCompute(cone);
|
|
18
|
+
true
|
|
19
|
+
gap> tmp := NmzKnownConeProperties(cone);;
|
|
20
|
+
gap> RemoveSet(tmp, "NumberLatticePoints");
|
|
21
|
+
gap> Perform(tmp, Display);
|
|
22
|
+
ClassGroup
|
|
23
|
+
Deg1Elements
|
|
24
|
+
EmbeddingDim
|
|
25
|
+
ExtremeRays
|
|
26
|
+
Generators
|
|
27
|
+
Grading
|
|
28
|
+
GradingDenom
|
|
29
|
+
HilbertBasis
|
|
30
|
+
HilbertQuasiPolynomial
|
|
31
|
+
HilbertSeries
|
|
32
|
+
InternalIndex
|
|
33
|
+
IsDeg1ExtremeRays
|
|
34
|
+
IsDeg1HilbertBasis
|
|
35
|
+
IsInhomogeneous
|
|
36
|
+
IsIntegrallyClosed
|
|
37
|
+
IsPointed
|
|
38
|
+
IsTriangulationNested
|
|
39
|
+
IsTriangulationPartial
|
|
40
|
+
MaximalSubspace
|
|
41
|
+
Multiplicity
|
|
42
|
+
OriginalMonoidGenerators
|
|
43
|
+
Rank
|
|
44
|
+
Sublattice
|
|
45
|
+
SupportHyperplanes
|
|
46
|
+
TriangulationDetSum
|
|
47
|
+
TriangulationSize
|
|
48
|
+
UnitGroupIndex
|
|
49
|
+
gap> Display(NmzTriangulation(cone));
|
|
50
|
+
[ [ rec(
|
|
51
|
+
Excluded := [ ],
|
|
52
|
+
height := 0,
|
|
53
|
+
key := [ 0, 1, 2, 3, 4, 5 ],
|
|
54
|
+
mult := 0,
|
|
55
|
+
vol := 1 ), rec(
|
|
56
|
+
Excluded := [ ],
|
|
57
|
+
height := 0,
|
|
58
|
+
key := [ 0, 1, 3, 4, 5, 6 ],
|
|
59
|
+
mult := 0,
|
|
60
|
+
vol := 1 ), rec(
|
|
61
|
+
Excluded := [ ],
|
|
62
|
+
height := 0,
|
|
63
|
+
key := [ 0, 1, 3, 4, 6, 8 ],
|
|
64
|
+
mult := 0,
|
|
65
|
+
vol := 1 ), rec(
|
|
66
|
+
Excluded := [ ],
|
|
67
|
+
height := 0,
|
|
68
|
+
key := [ 0, 1, 4, 5, 6, 7 ],
|
|
69
|
+
mult := 0,
|
|
70
|
+
vol := 1 ), rec(
|
|
71
|
+
Excluded := [ ],
|
|
72
|
+
height := 0,
|
|
73
|
+
key := [ 0, 1, 4, 6, 7, 8 ],
|
|
74
|
+
mult := 0,
|
|
75
|
+
vol := 1 ), rec(
|
|
76
|
+
Excluded := [ ],
|
|
77
|
+
height := 0,
|
|
78
|
+
key := [ 0, 1, 4, 7, 8, 9 ],
|
|
79
|
+
mult := 0,
|
|
80
|
+
vol := 1 ), rec(
|
|
81
|
+
Excluded := [ ],
|
|
82
|
+
height := 0,
|
|
83
|
+
key := [ 0, 2, 3, 4, 5, 6 ],
|
|
84
|
+
mult := 0,
|
|
85
|
+
vol := 1 ), rec(
|
|
86
|
+
Excluded := [ ],
|
|
87
|
+
height := 0,
|
|
88
|
+
key := [ 0, 4, 6, 7, 8, 9 ],
|
|
89
|
+
mult := 0,
|
|
90
|
+
vol := 1 ), rec(
|
|
91
|
+
Excluded := [ ],
|
|
92
|
+
height := 0,
|
|
93
|
+
key := [ 1, 2, 3, 4, 5, 7 ],
|
|
94
|
+
mult := 0,
|
|
95
|
+
vol := 1 ), rec(
|
|
96
|
+
Excluded := [ ],
|
|
97
|
+
height := 0,
|
|
98
|
+
key := [ 1, 3, 4, 5, 6, 7 ],
|
|
99
|
+
mult := 0,
|
|
100
|
+
vol := 2 ), rec(
|
|
101
|
+
Excluded := [ ],
|
|
102
|
+
height := 0,
|
|
103
|
+
key := [ 1, 3, 4, 6, 7, 8 ],
|
|
104
|
+
mult := 0,
|
|
105
|
+
vol := 2 ), rec(
|
|
106
|
+
Excluded := [ ],
|
|
107
|
+
height := 0,
|
|
108
|
+
key := [ 1, 3, 4, 7, 8, 9 ],
|
|
109
|
+
mult := 0,
|
|
110
|
+
vol := 1 ), rec(
|
|
111
|
+
Excluded := [ ],
|
|
112
|
+
height := 0,
|
|
113
|
+
key := [ 2, 3, 4, 5, 6, 8 ],
|
|
114
|
+
mult := 0,
|
|
115
|
+
vol := 1 ), rec(
|
|
116
|
+
Excluded := [ ],
|
|
117
|
+
height := 0,
|
|
118
|
+
key := [ 2, 3, 4, 5, 7, 8 ],
|
|
119
|
+
mult := 0,
|
|
120
|
+
vol := 1 ), rec(
|
|
121
|
+
Excluded := [ ],
|
|
122
|
+
height := 0,
|
|
123
|
+
key := [ 2, 3, 4, 7, 8, 9 ],
|
|
124
|
+
mult := 0,
|
|
125
|
+
vol := 1 ), rec(
|
|
126
|
+
Excluded := [ ],
|
|
127
|
+
height := 0,
|
|
128
|
+
key := [ 2, 4, 5, 7, 8, 9 ],
|
|
129
|
+
mult := 0,
|
|
130
|
+
vol := 1 ), rec(
|
|
131
|
+
Excluded := [ ],
|
|
132
|
+
height := 0,
|
|
133
|
+
key := [ 3, 4, 5, 6, 7, 8 ],
|
|
134
|
+
mult := 0,
|
|
135
|
+
vol := 2 ), rec(
|
|
136
|
+
Excluded := [ ],
|
|
137
|
+
height := 0,
|
|
138
|
+
key := [ 4, 5, 6, 7, 8, 9 ],
|
|
139
|
+
mult := 0,
|
|
140
|
+
vol := 1 ) ],
|
|
141
|
+
[ [ 0, 0, 1, 1, 0, 1 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 1, 0, 0, 1, 1 ],
|
|
142
|
+
[ 0, 1, 0, 1, 1, 0 ], [ 0, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 0, 1, 1 ],
|
|
143
|
+
[ 1, 0, 0, 1, 0, 1 ], [ 1, 0, 1, 0, 1, 0 ], [ 1, 1, 0, 1, 0, 0 ],
|
|
144
|
+
[ 1, 1, 1, 0, 0, 0 ] ] ]
|
|
145
|
+
gap> Display(NmzExtremeRays(cone));
|
|
146
|
+
[ [ 0, 0, 1, 1, 0, 1 ],
|
|
147
|
+
[ 0, 0, 1, 1, 1, 0 ],
|
|
148
|
+
[ 0, 1, 0, 0, 1, 1 ],
|
|
149
|
+
[ 0, 1, 0, 1, 1, 0 ],
|
|
150
|
+
[ 0, 1, 1, 0, 0, 1 ],
|
|
151
|
+
[ 1, 0, 0, 0, 1, 1 ],
|
|
152
|
+
[ 1, 0, 0, 1, 0, 1 ],
|
|
153
|
+
[ 1, 0, 1, 0, 1, 0 ],
|
|
154
|
+
[ 1, 1, 0, 1, 0, 0 ],
|
|
155
|
+
[ 1, 1, 1, 0, 0, 0 ] ]
|
|
156
|
+
gap> Display(NmzSupportHyperplanes(cone));
|
|
157
|
+
[ [ -2, 1, 1, 1, 1, 1 ],
|
|
158
|
+
[ -1, -1, 2, 2, -1, 2 ],
|
|
159
|
+
[ -1, -1, 2, 2, 2, -1 ],
|
|
160
|
+
[ -1, 2, -1, -1, 2, 2 ],
|
|
161
|
+
[ -1, 2, -1, 2, 2, -1 ],
|
|
162
|
+
[ -1, 2, 2, -1, -1, 2 ],
|
|
163
|
+
[ 0, 0, 0, 0, 0, 1 ],
|
|
164
|
+
[ 0, 0, 0, 0, 1, 0 ],
|
|
165
|
+
[ 0, 0, 0, 1, 0, 0 ],
|
|
166
|
+
[ 0, 0, 1, 0, 0, 0 ],
|
|
167
|
+
[ 0, 1, 0, 0, 0, 0 ],
|
|
168
|
+
[ 1, -2, 1, 1, 1, 1 ],
|
|
169
|
+
[ 1, 0, 0, 0, 0, 0 ],
|
|
170
|
+
[ 1, 1, -2, 1, 1, 1 ],
|
|
171
|
+
[ 1, 1, 1, -2, 1, 1 ],
|
|
172
|
+
[ 1, 1, 1, 1, -2, 1 ],
|
|
173
|
+
[ 1, 1, 1, 1, 1, -2 ],
|
|
174
|
+
[ 2, -1, -1, -1, 2, 2 ],
|
|
175
|
+
[ 2, -1, -1, 2, -1, 2 ],
|
|
176
|
+
[ 2, -1, 2, -1, 2, -1 ],
|
|
177
|
+
[ 2, 2, -1, 2, -1, -1 ],
|
|
178
|
+
[ 2, 2, 2, -1, -1, -1 ] ]
|
|
179
|
+
gap> Display(NmzHilbertBasis(cone));
|
|
180
|
+
[ [ 0, 0, 1, 1, 0, 1 ],
|
|
181
|
+
[ 0, 0, 1, 1, 1, 0 ],
|
|
182
|
+
[ 0, 1, 0, 0, 1, 1 ],
|
|
183
|
+
[ 0, 1, 0, 1, 1, 0 ],
|
|
184
|
+
[ 0, 1, 1, 0, 0, 1 ],
|
|
185
|
+
[ 1, 0, 0, 0, 1, 1 ],
|
|
186
|
+
[ 1, 0, 0, 1, 0, 1 ],
|
|
187
|
+
[ 1, 0, 1, 0, 1, 0 ],
|
|
188
|
+
[ 1, 1, 0, 1, 0, 0 ],
|
|
189
|
+
[ 1, 1, 1, 0, 0, 0 ],
|
|
190
|
+
[ 1, 1, 1, 1, 1, 1 ] ]
|
|
191
|
+
gap> Display(NmzDeg1Elements(cone));
|
|
192
|
+
[ [ 0, 0, 1, 1, 0, 1 ],
|
|
193
|
+
[ 0, 0, 1, 1, 1, 0 ],
|
|
194
|
+
[ 0, 1, 0, 0, 1, 1 ],
|
|
195
|
+
[ 0, 1, 0, 1, 1, 0 ],
|
|
196
|
+
[ 0, 1, 1, 0, 0, 1 ],
|
|
197
|
+
[ 1, 0, 0, 0, 1, 1 ],
|
|
198
|
+
[ 1, 0, 0, 1, 0, 1 ],
|
|
199
|
+
[ 1, 0, 1, 0, 1, 0 ],
|
|
200
|
+
[ 1, 1, 0, 1, 0, 0 ],
|
|
201
|
+
[ 1, 1, 1, 0, 0, 0 ] ]
|
|
202
|
+
gap> Display(NmzSublattice(cone));
|
|
203
|
+
[ [ [ 0, 0, 0, 0, 0, 3 ], [ 1, 0, 0, 0, 0, -1 ], [ 0, 1, 0, 0, 0, -1 ],
|
|
204
|
+
[ 0, 0, 1, 0, 0, -1 ], [ 0, 0, 0, 1, 0, -1 ], [ 0, 0, 0, 0, 1, -1 ] ],
|
|
205
|
+
[ [ 1, 3, 0, 0, 0, 0 ], [ 1, 0, 3, 0, 0, 0 ], [ 1, 0, 0, 3, 0, 0 ],
|
|
206
|
+
[ 1, 0, 0, 0, 3, 0 ], [ 1, 0, 0, 0, 0, 3 ], [ 1, 0, 0, 0, 0, 0 ] ], 3 ]
|
|
207
|
+
gap> Display(NmzOriginalMonoidGenerators(cone));
|
|
208
|
+
[ [ 1, 1, 1, 0, 0, 0 ],
|
|
209
|
+
[ 1, 1, 0, 1, 0, 0 ],
|
|
210
|
+
[ 1, 0, 1, 0, 1, 0 ],
|
|
211
|
+
[ 1, 0, 0, 1, 0, 1 ],
|
|
212
|
+
[ 1, 0, 0, 0, 1, 1 ],
|
|
213
|
+
[ 0, 1, 1, 0, 0, 1 ],
|
|
214
|
+
[ 0, 1, 0, 1, 1, 0 ],
|
|
215
|
+
[ 0, 1, 0, 0, 1, 1 ],
|
|
216
|
+
[ 0, 0, 1, 1, 1, 0 ],
|
|
217
|
+
[ 0, 0, 1, 1, 0, 1 ] ]
|
|
218
|
+
gap> _NmzPrintSomeConeProperties(cone, [
|
|
219
|
+
> "Generators",
|
|
220
|
+
> "ExtremeRays",
|
|
221
|
+
> "SupportHyperplanes",
|
|
222
|
+
> "HilbertBasis",
|
|
223
|
+
> "Deg1Elements",
|
|
224
|
+
> "Sublattice",
|
|
225
|
+
> "NumberLatticePoints",
|
|
226
|
+
> "OriginalMonoidGenerators",
|
|
227
|
+
> ]);
|
|
228
|
+
BasicTriangulation = fail
|
|
229
|
+
ClassGroup = [ 16 ]
|
|
230
|
+
EhrhartQuasiPolynomial = [ [ 120, 314, 375, 265, 105, 21 ], 120 ]
|
|
231
|
+
EmbeddingDim = 6
|
|
232
|
+
Grading = [ 1/3, 1/3, 1/3, 1/3, 1/3, 1/3 ]
|
|
233
|
+
GradingDenom = 3
|
|
234
|
+
HilbertQuasiPolynomial = [ 7/40*t^5+7/8*t^4+53/24*t^3+25/8*t^2+157/60*t+1 ]
|
|
235
|
+
HilbertQuasiPolynomial = [ 7/40*t^5+7/8*t^4+53/24*t^3+25/8*t^2+157/60*t+1 ]
|
|
236
|
+
HilbertSeries = [ t^4+4*t^3+11*t^2+4*t+1, [ [ 1, 6 ] ] ]
|
|
237
|
+
InternalIndex = 1
|
|
238
|
+
IsDeg1ExtremeRays = true
|
|
239
|
+
IsDeg1HilbertBasis = false
|
|
240
|
+
IsInhomogeneous = false
|
|
241
|
+
IsIntegrallyClosed = false
|
|
242
|
+
IsPointed = true
|
|
243
|
+
IsTriangulationNested = false
|
|
244
|
+
IsTriangulationPartial = false
|
|
245
|
+
MaximalSubspace = [ ]
|
|
246
|
+
Multiplicity = 21
|
|
247
|
+
Rank = 6
|
|
248
|
+
TriangulationDetSum = 21
|
|
249
|
+
TriangulationSize = 18
|
|
250
|
+
UnitGroupIndex = 1
|
|
251
|
+
gap> Display(NmzConeDecomposition(cone));
|
|
252
|
+
[ [ rec(
|
|
253
|
+
Excluded := [ false, false, false, false, false, false ],
|
|
254
|
+
height := 0,
|
|
255
|
+
key := [ 0, 1, 2, 3, 4, 5 ],
|
|
256
|
+
mult := 0,
|
|
257
|
+
vol := 1 ), rec(
|
|
258
|
+
Excluded := [ false, true, false, false, false, true ],
|
|
259
|
+
height := 0,
|
|
260
|
+
key := [ 0, 1, 3, 4, 5, 6 ],
|
|
261
|
+
mult := 0,
|
|
262
|
+
vol := 1 ), rec(
|
|
263
|
+
Excluded := [ true, false, false, false, false, true ],
|
|
264
|
+
height := 0,
|
|
265
|
+
key := [ 0, 1, 3, 4, 6, 8 ],
|
|
266
|
+
mult := 0,
|
|
267
|
+
vol := 1 ), rec(
|
|
268
|
+
Excluded := [ true, false, false, false, false, true ],
|
|
269
|
+
height := 0,
|
|
270
|
+
key := [ 0, 1, 4, 5, 6, 7 ],
|
|
271
|
+
mult := 0,
|
|
272
|
+
vol := 1 ), rec(
|
|
273
|
+
Excluded := [ true, false, false, false, true, true ],
|
|
274
|
+
height := 0,
|
|
275
|
+
key := [ 0, 1, 4, 6, 7, 8 ],
|
|
276
|
+
mult := 0,
|
|
277
|
+
vol := 1 ), rec(
|
|
278
|
+
Excluded := [ true, true, false, false, false, true ],
|
|
279
|
+
height := 0,
|
|
280
|
+
key := [ 0, 1, 4, 7, 8, 9 ],
|
|
281
|
+
mult := 0,
|
|
282
|
+
vol := 1 ), rec(
|
|
283
|
+
Excluded := [ false, false, false, false, false, true ],
|
|
284
|
+
height := 0,
|
|
285
|
+
key := [ 0, 2, 3, 4, 5, 6 ],
|
|
286
|
+
mult := 0,
|
|
287
|
+
vol := 1 ), rec(
|
|
288
|
+
Excluded := [ true, false, false, false, false, true ],
|
|
289
|
+
height := 0,
|
|
290
|
+
key := [ 0, 4, 6, 7, 8, 9 ],
|
|
291
|
+
mult := 0,
|
|
292
|
+
vol := 1 ), rec(
|
|
293
|
+
Excluded := [ false, false, false, false, false, true ],
|
|
294
|
+
height := 0,
|
|
295
|
+
key := [ 1, 2, 3, 4, 5, 7 ],
|
|
296
|
+
mult := 0,
|
|
297
|
+
vol := 1 ), rec(
|
|
298
|
+
Excluded := [ false, false, false, false, true, true ],
|
|
299
|
+
height := 0,
|
|
300
|
+
key := [ 1, 3, 4, 5, 6, 7 ],
|
|
301
|
+
mult := 0,
|
|
302
|
+
vol := 2 ), rec(
|
|
303
|
+
Excluded := [ true, false, false, false, false, true ],
|
|
304
|
+
height := 0,
|
|
305
|
+
key := [ 1, 3, 4, 6, 7, 8 ],
|
|
306
|
+
mult := 0,
|
|
307
|
+
vol := 2 ), rec(
|
|
308
|
+
Excluded := [ true, false, false, false, false, true ],
|
|
309
|
+
height := 0,
|
|
310
|
+
key := [ 1, 3, 4, 7, 8, 9 ],
|
|
311
|
+
mult := 0,
|
|
312
|
+
vol := 1 ), rec(
|
|
313
|
+
Excluded := [ true, false, false, false, false, true ],
|
|
314
|
+
height := 0,
|
|
315
|
+
key := [ 2, 3, 4, 5, 6, 8 ],
|
|
316
|
+
mult := 0,
|
|
317
|
+
vol := 1 ), rec(
|
|
318
|
+
Excluded := [ true, false, false, false, true, true ],
|
|
319
|
+
height := 0,
|
|
320
|
+
key := [ 2, 3, 4, 5, 7, 8 ],
|
|
321
|
+
mult := 0,
|
|
322
|
+
vol := 1 ), rec(
|
|
323
|
+
Excluded := [ false, true, false, false, false, true ],
|
|
324
|
+
height := 0,
|
|
325
|
+
key := [ 2, 3, 4, 7, 8, 9 ],
|
|
326
|
+
mult := 0,
|
|
327
|
+
vol := 1 ), rec(
|
|
328
|
+
Excluded := [ false, false, false, false, false, true ],
|
|
329
|
+
height := 0,
|
|
330
|
+
key := [ 2, 4, 5, 7, 8, 9 ],
|
|
331
|
+
mult := 0,
|
|
332
|
+
vol := 1 ), rec(
|
|
333
|
+
Excluded := [ false, false, false, false, false, true ],
|
|
334
|
+
height := 0,
|
|
335
|
+
key := [ 3, 4, 5, 6, 7, 8 ],
|
|
336
|
+
mult := 0,
|
|
337
|
+
vol := 2 ), rec(
|
|
338
|
+
Excluded := [ false, false, true, false, false, true ],
|
|
339
|
+
height := 0,
|
|
340
|
+
key := [ 4, 5, 6, 7, 8, 9 ],
|
|
341
|
+
mult := 0,
|
|
342
|
+
vol := 1 ) ],
|
|
343
|
+
[ [ 0, 0, 1, 1, 0, 1 ], [ 0, 0, 1, 1, 1, 0 ], [ 0, 1, 0, 0, 1, 1 ],
|
|
344
|
+
[ 0, 1, 0, 1, 1, 0 ], [ 0, 1, 1, 0, 0, 1 ], [ 1, 0, 0, 0, 1, 1 ],
|
|
345
|
+
[ 1, 0, 0, 1, 0, 1 ], [ 1, 0, 1, 0, 1, 0 ], [ 1, 1, 0, 1, 0, 0 ],
|
|
346
|
+
[ 1, 1, 1, 0, 0, 0 ] ] ]
|
|
347
|
+
gap> ForAll(NmzConeDecomposition(cone), IsBlistRep);
|
|
348
|
+
false
|
|
349
|
+
|
|
350
|
+
#
|
|
351
|
+
gap> STOP_TEST("rp2poly.tst", 0);
|