passagemath-flint 10.5.22__cp39-cp39-macosx_13_0_x86_64.whl → 10.5.23__cp39-cp39-macosx_13_0_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of passagemath-flint might be problematic. Click here for more details.

Files changed (81) hide show
  1. {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.23.dist-info}/METADATA +4 -4
  2. {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.23.dist-info}/RECORD +81 -81
  3. {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.23.dist-info}/WHEEL +1 -1
  4. passagemath_flint.dylibs/libgf2x.3.dylib +0 -0
  5. passagemath_flint.dylibs/libmpfi.0.dylib +0 -0
  6. passagemath_flint.dylibs/libopenblas_sandybridgep-r0.3.28.dylib +0 -0
  7. sage/combinat/posets/hasse_cython_flint.cpython-39-darwin.so +0 -0
  8. sage/data_structures/bounded_integer_sequences.cpython-39-darwin.so +0 -0
  9. sage/data_structures/bounded_integer_sequences.pyx +2 -4
  10. sage/graphs/chrompoly.cpython-39-darwin.so +0 -0
  11. sage/graphs/matchpoly.cpython-39-darwin.so +0 -0
  12. sage/libs/arb/arith.cpython-39-darwin.so +0 -0
  13. sage/libs/flint/arith.cpython-39-darwin.so +0 -0
  14. sage/libs/flint/arith_sage.cpython-39-darwin.so +0 -0
  15. sage/libs/flint/flint_sage.cpython-39-darwin.so +0 -0
  16. sage/libs/flint/fmpq_poly_sage.cpython-39-darwin.so +0 -0
  17. sage/libs/flint/fmpz_factor_sage.cpython-39-darwin.so +0 -0
  18. sage/libs/flint/fmpz_poly.cpython-39-darwin.so +0 -0
  19. sage/libs/flint/fmpz_poly_sage.cpython-39-darwin.so +0 -0
  20. sage/libs/flint/nmod_poly_linkage.pxi +2 -4
  21. sage/libs/flint/qsieve.cpython-39-darwin.so +0 -0
  22. sage/libs/flint/qsieve_sage.cpython-39-darwin.so +0 -0
  23. sage/libs/flint/ulong_extras.cpython-39-darwin.so +0 -0
  24. sage/libs/flint/ulong_extras_sage.cpython-39-darwin.so +0 -0
  25. sage/matrix/change_ring.cpython-39-darwin.so +0 -0
  26. sage/matrix/matrix_complex_ball_dense.cpython-39-darwin.so +0 -0
  27. sage/matrix/matrix_cyclo_dense.cpython-39-darwin.so +0 -0
  28. sage/matrix/matrix_integer_dense.cpython-39-darwin.so +0 -0
  29. sage/matrix/matrix_integer_dense.pyx +4 -16
  30. sage/matrix/matrix_integer_sparse.cpython-39-darwin.so +0 -0
  31. sage/matrix/matrix_rational_dense.cpython-39-darwin.so +0 -0
  32. sage/matrix/matrix_rational_dense.pyx +1 -1
  33. sage/matrix/matrix_rational_sparse.cpython-39-darwin.so +0 -0
  34. sage/matrix/misc_flint.cpython-39-darwin.so +0 -0
  35. sage/modular/modform/eis_series_cython.cpython-39-darwin.so +0 -0
  36. sage/modular/modsym/apply.cpython-39-darwin.so +0 -0
  37. sage/modular/modsym/heilbronn.cpython-39-darwin.so +0 -0
  38. sage/modular/pollack_stevens/dist.cpython-39-darwin.so +0 -0
  39. sage/modular/pollack_stevens/dist.pyx +3 -3
  40. sage/quivers/algebra_elements.cpython-39-darwin.so +0 -0
  41. sage/quivers/algebra_elements.pyx +8 -6
  42. sage/quivers/paths.cpython-39-darwin.so +0 -0
  43. sage/rings/complex_arb.cpython-39-darwin.so +0 -0
  44. sage/rings/complex_arb.pyx +69 -7
  45. sage/rings/complex_interval.cpython-39-darwin.so +0 -0
  46. sage/rings/convert/mpfi.cpython-39-darwin.so +0 -0
  47. sage/rings/factorint_flint.cpython-39-darwin.so +0 -0
  48. sage/rings/fraction_field_FpT.cpython-39-darwin.so +0 -0
  49. sage/rings/number_field/bdd_height.py +2 -2
  50. sage/rings/number_field/galois_group.py +1 -1
  51. sage/rings/number_field/maps.py +2 -2
  52. sage/rings/number_field/number_field.py +9 -38
  53. sage/rings/number_field/number_field_element.cpython-39-darwin.so +0 -0
  54. sage/rings/number_field/number_field_element_quadratic.cpython-39-darwin.so +0 -0
  55. sage/rings/number_field/number_field_morphisms.cpython-39-darwin.so +0 -0
  56. sage/rings/number_field/number_field_rel.py +3 -3
  57. sage/rings/number_field/order.py +3 -3
  58. sage/rings/number_field/small_primes_of_degree_one.py +1 -1
  59. sage/rings/number_field/splitting_field.py +2 -1
  60. sage/rings/number_field/unit_group.py +1 -1
  61. sage/rings/polynomial/evaluation_flint.cpython-39-darwin.so +0 -0
  62. sage/rings/polynomial/hilbert.cpython-39-darwin.so +0 -0
  63. sage/rings/polynomial/polynomial_complex_arb.cpython-39-darwin.so +0 -0
  64. sage/rings/polynomial/polynomial_integer_dense_flint.cpython-39-darwin.so +0 -0
  65. sage/rings/polynomial/polynomial_integer_dense_flint.pyx +2 -1
  66. sage/rings/polynomial/polynomial_number_field.cpython-39-darwin.so +0 -0
  67. sage/rings/polynomial/polynomial_rational_flint.cpython-39-darwin.so +0 -0
  68. sage/rings/polynomial/polynomial_rational_flint.pyx +1 -1
  69. sage/rings/polynomial/polynomial_zmod_flint.cpython-39-darwin.so +0 -0
  70. sage/rings/polynomial/polynomial_zmod_flint.pyx +2 -4
  71. sage/rings/polynomial/real_roots.cpython-39-darwin.so +0 -0
  72. sage/rings/polynomial/refine_root.cpython-39-darwin.so +0 -0
  73. sage/rings/polynomial/weil/weil_polynomials.cpython-39-darwin.so +0 -0
  74. sage/rings/qqbar.py +9 -9
  75. sage/rings/real_arb.cpython-39-darwin.so +0 -0
  76. sage/rings/real_interval_absolute.cpython-39-darwin.so +0 -0
  77. sage/rings/real_mpfi.cpython-39-darwin.so +0 -0
  78. sage/rings/real_mpfi.pyx +1 -1
  79. sage/schemes/elliptic_curves/descent_two_isogeny.cpython-39-darwin.so +0 -0
  80. sage/schemes/elliptic_curves/descent_two_isogeny.pyx +3 -5
  81. {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.23.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.2
1
+ Metadata-Version: 2.4
2
2
  Name: passagemath-flint
3
- Version: 10.5.22
3
+ Version: 10.5.23
4
4
  Summary: passagemath: Fast computations with MPFI and FLINT
5
5
  Author-email: The Sage Developers <sage-support@googlegroups.com>
6
6
  Maintainer: Matthias Köppe, passagemath contributors
@@ -29,8 +29,8 @@ Classifier: Programming Language :: Python :: Implementation :: CPython
29
29
  Classifier: Topic :: Scientific/Engineering :: Mathematics
30
30
  Requires-Python: <3.14,>=3.9
31
31
  Description-Content-Type: text/x-rst
32
- Requires-Dist: passagemath-categories~=10.5.22.0
33
- Requires-Dist: passagemath-ntl~=10.5.22.0
32
+ Requires-Dist: passagemath-categories~=10.5.23.0
33
+ Requires-Dist: passagemath-ntl~=10.5.23.0
34
34
  Requires-Dist: numpy>=1.19
35
35
  Requires-Dist: numpy>=1.22.4
36
36
  Provides-Extra: test
@@ -1,32 +1,32 @@
1
+ passagemath_flint-10.5.23.dist-info/RECORD,,
2
+ passagemath_flint-10.5.23.dist-info/WHEEL,sha256=MmkbLt0Mt-JybYKhoiU0KZsIiFRLVESdNkQLU-oK-zA,108
3
+ passagemath_flint-10.5.23.dist-info/top_level.txt,sha256=Kmzulf9WsphADFQuqgvdy5mvTLDj_V2zkFHU2s3UXos,6
4
+ passagemath_flint-10.5.23.dist-info/METADATA,sha256=nFKaIO4KKsBA6J498I4q2Y2uYQ_kRx3goDMrLK8X5tk,3601
1
5
  passagemath_flint.dylibs/libgsl.28.dylib,sha256=tO8RVEOamKlzIruoxkX074a5PbzLUNKyNhpof1-7X18,3265072
2
- passagemath_flint.dylibs/libmpfi.0.dylib,sha256=cNgc3w0283E7vncrzRi5C2b6nXoq-3yoZ7oaov2cMYI,167968
3
- passagemath_flint.dylibs/libgf2x.3.dylib,sha256=jodgLtW8NDcUHUpAyjDIh2SYRJ2KLwDVaGCU2sbtkwg,203280
6
+ passagemath_flint.dylibs/libmpfi.0.dylib,sha256=bo8dsylbLywtvev-ERoC5OBcuL-Llf8nrCmhn7ECtKQ,167968
7
+ passagemath_flint.dylibs/libgf2x.3.dylib,sha256=DDswiQNBNctJSRPIPvW-uWJokMhhnJqfiHKRQdIsj_c,203280
4
8
  passagemath_flint.dylibs/libntl.44.dylib,sha256=UyLtXgu_-5ncDc1k5iB7upF0XD5RfjqJA5mUBygNjCc,2752320
5
- passagemath_flint.dylibs/libopenblas_sandybridgep-r0.3.28.dylib,sha256=LpNxbe5ZohzFwmVAYZx9mNlb7qqDcIm2NdtY5-063ws,15444912
9
+ passagemath_flint.dylibs/libopenblas_sandybridgep-r0.3.28.dylib,sha256=aNyDPDslYIKANGvqcsoNHPk0fBeSib9usCATmWiuADU,15444912
6
10
  passagemath_flint.dylibs/libgfortran.5.dylib,sha256=u_GNONfh83lujx7tRAYm29EGPRC1_Ol2hDwRqcFs2M8,3675456
7
11
  passagemath_flint.dylibs/libflint.19.0.dylib,sha256=srgmA8d4-HYgjVmZcUCA4BkDa-lB6S4fJAzmWYeEDF0,10092032
8
12
  passagemath_flint.dylibs/libquadmath.0.dylib,sha256=xiAjEgEvBzrkib9LbUYVPz8vbtxBT5d-MrVpUh2Wpeg,379152
9
13
  passagemath_flint.dylibs/libgcc_s.1.1.dylib,sha256=TY5Qd7oNUj9v45ov-ERe_Gdmw7tOLfaFEqvVgcztYlY,282640
10
14
  passagemath_flint.dylibs/libgmp.10.dylib,sha256=GETqB-caP-92lIL4zvcrhF5n5ReYf92kv1bjOYIQ4UQ,580928
11
15
  passagemath_flint.dylibs/libmpfr.6.dylib,sha256=hhGWP8ay8tZDp-RhUV67p7LIqgwyHavb-ipqHjEehw4,515744
12
- passagemath_flint-10.5.22.dist-info/RECORD,,
13
- passagemath_flint-10.5.22.dist-info/WHEEL,sha256=wjwK1yLd0er3cZ5dA3bBdCN3rjDJSMBsC9PR3uXt8Cg,108
14
- passagemath_flint-10.5.22.dist-info/top_level.txt,sha256=Kmzulf9WsphADFQuqgvdy5mvTLDj_V2zkFHU2s3UXos,6
15
- passagemath_flint-10.5.22.dist-info/METADATA,sha256=wdytC83F6n2uNabQUql8N-cjosTKTc0Soewxz86thQU,3601
16
16
  sage/all__sagemath_flint.py,sha256=EpfIEBXUSo5cMp6KaD15mzl8rOQ2T74yGMlgLUdmxRU,876
17
17
  sage/schemes/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
18
18
  sage/schemes/elliptic_curves/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
19
19
  sage/schemes/elliptic_curves/descent_two_isogeny_pari.pxd,sha256=uVI64a0PV_sEVlGOMCM9z9mIxmEaD8siAPN_ga0DTu8,165
20
- sage/schemes/elliptic_curves/descent_two_isogeny.pyx,sha256=YABw0VAQ_VSK8XVuQl1GYB3xaKLEP_DbJegb0UIuEtQ,45775
21
- sage/schemes/elliptic_curves/descent_two_isogeny.cpython-39-darwin.so,sha256=6TmGPOD3dMcy4ahCuCMyDvO1QhlC-XlYZ7-HVl4qhNw,229472
22
- sage/data_structures/bounded_integer_sequences.pyx,sha256=Ao448VzFIxAaNmNPvvZtaF7DfEyawfwiMDnN2RIvecw,46242
23
- sage/data_structures/bounded_integer_sequences.cpython-39-darwin.so,sha256=NNUE9nqn8_HVM4A5khANy9zQ-DOVeYEm_3DigAH5sVc,261856
20
+ sage/schemes/elliptic_curves/descent_two_isogeny.pyx,sha256=WqDEAM-fORj-xluLzeMRxp-AU8Z-W_yWOp40Wl7fi9Y,45790
21
+ sage/schemes/elliptic_curves/descent_two_isogeny.cpython-39-darwin.so,sha256=jABATbEotfVVk9U3XWDRkhWeTTMtK9D0wlNx_oVeyvQ,229456
22
+ sage/data_structures/bounded_integer_sequences.pyx,sha256=ud2KW0jdslwZkxHFAkcsLogl3Mec1cVUat0NcLw9Q5U,46261
23
+ sage/data_structures/bounded_integer_sequences.cpython-39-darwin.so,sha256=RHn2dZLNJaQMkJc4nl9twDJs6jRgtkqRk6uFTarFPQ4,261856
24
24
  sage/data_structures/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
25
25
  sage/data_structures/bounded_integer_sequences.pxd,sha256=vnbaCjLfE3YIYUBLoUBbV5k9j9AeKRfpEiv_20krzzc,3055
26
26
  sage/combinat/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
27
27
  sage/combinat/posets/hasse_cython_flint.pyx,sha256=SJW3TizRL0g-UAZjUompM4q6LAuW9jzCYBmto3M7QY8,6666
28
28
  sage/combinat/posets/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
29
- sage/combinat/posets/hasse_cython_flint.cpython-39-darwin.so,sha256=iEeGcCH5L7u5P8KcHa3t8Y4SzlCwbI3IwrWZBsNgom0,131760
29
+ sage/combinat/posets/hasse_cython_flint.cpython-39-darwin.so,sha256=F65l_okXfWfTgFWBH6HBznjBPAKFnBCWbt5ehSA17fs,131760
30
30
  sage/libs/all__sagemath_flint.py,sha256=1-6VHt1LGmqytv1a62Ol9YJiqrdx9pwtCvw9NHusZrs,325
31
31
  sage/libs/flint/nmod_vec.pxd,sha256=K-zUPBTYd5YkP7hLaHqvg6cbN972OYFxUgqylMQYITI,2617
32
32
  sage/libs/flint/types.pxd,sha256=lcQIOdiecpQT0qTy3wenqmApByRMQy-iFP5vIV6Rx1A,59611
@@ -34,7 +34,7 @@ sage/libs/flint/arb_mat_macros.pxd,sha256=mH4x6TqDI_knHorXSN9uIdIrpmMfOyz5ZXnhYn
34
34
  sage/libs/flint/fmpz_mod.pxd,sha256=wBDLQqJQxJdbqYCRdkH1TkRf_k3RUpflLEe1S8HCISs,3422
35
35
  sage/libs/flint/acb_poly.pxd,sha256=djf1V89O9tW_A8dMkupnpZEYtWjbGljTwHraE4nKEPY,24181
36
36
  sage/libs/flint/fexpr_builtin.pxd,sha256=BnTmxRMDNENBvk5siHWzAMfvrNYbd0KSoTYL3seJ-TI,824
37
- sage/libs/flint/fmpz_poly_sage.cpython-39-darwin.so,sha256=pp5KMLfEpAPZXEvgKhmoTijI0QCcsE6NUxxEsTfPKDU,176400
37
+ sage/libs/flint/fmpz_poly_sage.cpython-39-darwin.so,sha256=RSgSg_RD48wF1n0HF0ebSfOf8may-erFJbF0kIoJSvA,176400
38
38
  sage/libs/flint/fmpz_poly_factor.pxd,sha256=kfYqKE4KKMulqqteFa6lzdTI22uaS4kLahj0fui5Rjs,2190
39
39
  sage/libs/flint/qsieve_sage.pyx,sha256=LW8-Gsb_LTrUv-njgXXp0VntVoHI7H3x4rj-IjdE87Y,1775
40
40
  sage/libs/flint/fmpq_mpoly.pxd,sha256=eOs_loBwNji2quGsk01o7f0d-LoL8KAiUeK9X2BIsuM,17439
@@ -46,7 +46,7 @@ sage/libs/flint/acb_theta.pxd,sha256=DlehCISFPz5ignGvjTjf9gpKWis0gfgXiO5uVH5gGBI
46
46
  sage/libs/flint/arb.pxd,sha256=kKAQCy2RYzhOt4wj9fv3S9Wjxh4GlKsoxbfwo9G30GY,27663
47
47
  sage/libs/flint/acb_hypgeom.pxd,sha256=gVLOZa-kbz1o36-d-3yLWHUyqxKkhhQIYkB7duEy1HM,17837
48
48
  sage/libs/flint/fmpq.pxd,sha256=91bzF_SKVILYgQeXz2pfAh-GvpB8u_AVJc6-bVi-OVI,10104
49
- sage/libs/flint/nmod_poly_linkage.pxi,sha256=ruHeK9O_O4R62msew-kgyubQbq6ustazBqqljRTzXYQ,19833
49
+ sage/libs/flint/nmod_poly_linkage.pxi,sha256=E-qIZ5X2uYw4KbgdZ2tmeZQg4sZZGXsNVnSWiJwPOL8,19847
50
50
  sage/libs/flint/acb_poly_macros.pxd,sha256=rinr1AXMquqZzvV6R0ECakGqQiUNmA7fhP6jjoIs6IM,236
51
51
  sage/libs/flint/fmpq_vec.pxd,sha256=Yw9w5hG01GeNkQyZNr0H5gK-lbXYD-eoRnP4kFjumVk,1444
52
52
  sage/libs/flint/acb_mat.pxd,sha256=Gj2bp0QaCAq3vlEZn9k4p6CWPwTzi92ixIh2TY_Ga-U,11206
@@ -60,13 +60,13 @@ sage/libs/flint/profiler.pxd,sha256=ppfV1-JKsiDBrG7krPQ4xKe9kyjTYSXosPVtQTy1QJ8,
60
60
  sage/libs/flint/fmpz_mod_vec.pxd,sha256=aybq0fgMnuIita8my_K-KDzKl-gWtmd3Rrarmkvhvsw,1849
61
61
  sage/libs/flint/acb_dirichlet.pxd,sha256=fFoZEGwmg8c7GBP5tGkxqisQwfw5Bf1tK1KaTZDjpbo,12032
62
62
  sage/libs/flint/fmpz_mat_macros.pxd,sha256=rCs9jWnq6UT-dazAOY78lwft6idQRG5Xno6bWfuPuhE,312
63
- sage/libs/flint/ulong_extras_sage.cpython-39-darwin.so,sha256=fdhAbi0BwwlEE7dYNO4QFocd-iU5-FI1IObx70J6EH0,78064
63
+ sage/libs/flint/ulong_extras_sage.cpython-39-darwin.so,sha256=uCeEB4Q4eEP1d87P8FFwk-m3Fj1oZUtnWRQsk3l5hCg,78064
64
64
  sage/libs/flint/fmpz_mpoly.pxd,sha256=eQ3_wYOc8K0-2llnaRU4l03BbnECIe_hBA6dB8dpPqY,26196
65
65
  sage/libs/flint/fq_zech_poly_factor.pxd,sha256=ru4kqghBNN1LN-rKuImus7UKakWvFLDzZ4RJXKeFR2A,4419
66
66
  sage/libs/flint/nmod_mpoly.pxd,sha256=NRqPIDbdllHiXWRSqIzceu0fzOA7DCEJtvYtSu9XeLE,15291
67
67
  sage/libs/flint/arith_sage.pyx,sha256=Y-EcARwtVqh-cpeiuPXoizOWxbgA6GzGuHLJ2kku-QA,8044
68
- sage/libs/flint/fmpz_factor_sage.cpython-39-darwin.so,sha256=fWDtjMEfQ6Wh9l9EslMWqabgceMnnOOLsvkcONy77HQ,99920
69
- sage/libs/flint/ulong_extras.cpython-39-darwin.so,sha256=19C5YdqWKmSoQyfaQkt11NrPn18gP00B_9toRdXucNA,76464
68
+ sage/libs/flint/fmpz_factor_sage.cpython-39-darwin.so,sha256=nFd7V2Hd2_FUrCGITtoJ_E_iNhX0jFd_4fpsiobLxp4,99920
69
+ sage/libs/flint/ulong_extras.cpython-39-darwin.so,sha256=2y3WRBW4lsPE-Lzz11V4a-JabJavLEOSCvpWftK3Ca8,76464
70
70
  sage/libs/flint/fmpz_mod_mpoly.pxd,sha256=6inAhTP2aM3sgATG5I3shTgabVoVTaDeL52nezgGZCs,19370
71
71
  sage/libs/flint/gr_poly.pxd,sha256=Vt-MRzY4PwaqroeeZeItl49Q96btsDYlowiwlHuo57E,29026
72
72
  sage/libs/flint/dlog.pxd,sha256=L0YVwexm4VE6XqFpza5SM7_lnfa2IPwXvYfs2ZNT-us,3570
@@ -85,9 +85,9 @@ sage/libs/flint/fmpz_poly_sage.pyx,sha256=xTg8w6k9GvexE9J9oseaPHLh9gxI6NWOBbH31R
85
85
  sage/libs/flint/padic_poly.pxd,sha256=UoaXUuXeBOzfhmIZ4hZ7gAloUUgzLYfLnIX_L7a0jPA,7972
86
86
  sage/libs/flint/fmpz_mpoly_q.pxd,sha256=KydHPEHerR3bsYz3KWtkv96gpCW-cFZ3Zx__KZstf54,5169
87
87
  sage/libs/flint/fmpz_mod_mpoly_factor.pxd,sha256=WJo1pXK1Wvyw8dbq4betsa58-UpHelyAb2viLAjFc0A,2030
88
- sage/libs/flint/fmpq_poly_sage.cpython-39-darwin.so,sha256=Lyw7ag67nW2ZrHCjSX5MtvJ1qyEsdE91tPOMUvOBdvU,76880
88
+ sage/libs/flint/fmpq_poly_sage.cpython-39-darwin.so,sha256=VmsV27BiMMknksZmTFY1EEJFKZ_cshu9pvqq83_Tw7g,76880
89
89
  sage/libs/flint/fft.pxd,sha256=sM3hJfYAo5I3OFu1X9e_h06Z8RKVugVFnu7c7VJg25M,7600
90
- sage/libs/flint/arith_sage.cpython-39-darwin.so,sha256=AtJaUicBSqJOe-EjqcQet34eaeDxvykJn1kddWFyamQ,123776
90
+ sage/libs/flint/arith_sage.cpython-39-darwin.so,sha256=DPMtBZoMg9I_HdGq1tNruzX42A9hijsmqCsk9pioywQ,123776
91
91
  sage/libs/flint/fq_default_poly.pxd,sha256=SSkmFqxJFb9n4lnhiuCKzUYo1p37qIspvQ_lAL_ZaTo,11087
92
92
  sage/libs/flint/ca_ext.pxd,sha256=A0wbYcHWtQp3RT66ya0e_sIKGuPNCo4kjxLQUWlqViE,2070
93
93
  sage/libs/flint/flint_ntl_wrap.h,sha256=B44t1cizugg1OEON_jqmegN2SLgFP8YVFisXR5VnMBE,811
@@ -102,7 +102,7 @@ sage/libs/flint/fmpq_poly.pxd,sha256=6adVDMpX0Oxg1AU0zD5UAZ91v5GoGXifNN7_LbNWWTw
102
102
  sage/libs/flint/fmpq_mat_macros.pxd,sha256=uMmYG8aq_eVRH-7aH9xrsBEfuz0gSO9h5eZn35av39Y,312
103
103
  sage/libs/flint/mpf_vec.pxd,sha256=3x0IGpYm_OLgymYhs5RF-K-hXnXhuWOptAvNa3AX7oE,2074
104
104
  sage/libs/flint/fmpz_vec.pxd,sha256=rDOknTxI1MXo_a1q3gtW8G9_2CiT9D0vIU-DOf8ru04,6294
105
- sage/libs/flint/fmpz_poly.cpython-39-darwin.so,sha256=AcOGmVoEmy1Rw6bmtaPX_bICzwwmV1khmQcivN-Bxa4,76400
105
+ sage/libs/flint/fmpz_poly.cpython-39-darwin.so,sha256=4AX5a9puTHmBuZ1VrVJhwklvSUSlVTMwiUAkPcw_JLo,76400
106
106
  sage/libs/flint/fq_zech_vec.pxd,sha256=X-OtchvLIXM5HFu49zzfsKloO8c8GKOpldzcbXZ9ogw,2645
107
107
  sage/libs/flint/acb_macros.pxd,sha256=37nFIHOv7yJhvK4hrIaD_IT46_9O4P10ZqAOLCSuzZ0,239
108
108
  sage/libs/flint/aprcl.pxd,sha256=syUAwXlo-I0K9xVUae06icUFeo2H-w7ZFPj8XvxxFWY,5430
@@ -148,7 +148,7 @@ sage/libs/flint/fq_embed.pxd,sha256=ggRpGOZeokmJEUp8QQ7YMPrP9tFXlqW5FMDWpzD4XSk,
148
148
  sage/libs/flint/fmpz_poly_sage.pxd,sha256=hdryVwPiSHwPkGVVnQ1XuA8hBlEb9G-_MzHfq97O_vU,859
149
149
  sage/libs/flint/fq.pxd,sha256=PCiXuOQacNqoWIoNPOu1bDpSJxzTop4SXzu9DZRj_YE,6819
150
150
  sage/libs/flint/arb_poly.pxd,sha256=bI9FOe6ONuOVMaDw_lA1WhIbwx9Ru8DnPihgtHJ-xIQ,22836
151
- sage/libs/flint/arith.cpython-39-darwin.so,sha256=SRqyvmHu2Y_XT0EO6ccrzRjdQBjGLv5TSzUu9R6jbnU,95248
151
+ sage/libs/flint/arith.cpython-39-darwin.so,sha256=xYPFos_5-54OMCsMWRvRNV2_FBnTlcLqgoDyHl9SFpo,95248
152
152
  sage/libs/flint/fmpq_poly_macros.pxd,sha256=Z-REoMeDfwaUx8V79IE5txZtbQlrUPY2kDx6CVzGzT4,307
153
153
  sage/libs/flint/fmpz_mod_mat.pxd,sha256=YiGQynnSZ8ahB9mK1VtLQzCJdHGugE2eZUrn-oXYCGk,5616
154
154
  sage/libs/flint/fmpz_factor_sage.pyx,sha256=eBJhj9Jzv6Qujb331Az_XPyc8SmMWcHU0yMUBxAvmZE,999
@@ -157,14 +157,14 @@ sage/libs/flint/fmpz_mpoly_factor.pxd,sha256=QxCb2gtk23SRmYNBhj8ueqMCymRZLnOfbx6
157
157
  sage/libs/flint/fmpz_extras.pxd,sha256=bgFS5DKVsZxW7gS1RvLQS2j6gK5QV43S8Tejy9USJ2c,1762
158
158
  sage/libs/flint/arb_hypgeom.pxd,sha256=DNxNzNQwfvaKB9WBYtiDo-4dGPy6NaluKecRHc3DkPA,15029
159
159
  sage/libs/flint/fmpz_factor.pxd,sha256=MngYvJOC2brj_ty81-_A_Dpzh6jpt158CsKnyJKIxZ0,3096
160
- sage/libs/flint/qsieve.cpython-39-darwin.so,sha256=EmFUwdSmey5W1cMQTDtkSBO9LjBz_CwXON-GY5VjOyI,76288
160
+ sage/libs/flint/qsieve.cpython-39-darwin.so,sha256=OV_3kxfGgW4mjjvL5oKisHxutfoMM-EmknHZ78V8Ezg,76288
161
161
  sage/libs/flint/arith.pxd,sha256=Cg0ZW8UdL40vZFhtkGx_IZRe__gsOlzmP2Qy2KNfq6E,4905
162
162
  sage/libs/flint/fq_poly.pxd,sha256=fXwswtgSTVaxZzOVrSAlumJEKlRM_bf9YokO_hFkddg,23377
163
163
  sage/libs/flint/fq_nmod_embed.pxd,sha256=Vf5rHlbVZS7zhniu6H06Sa-4DQ3WL2XhJMaK9dLoZLQ,2111
164
164
  sage/libs/flint/fmpz.pxd,sha256=3w5JreohSoAU5Bjsyq_03XxZO3jJ5-c_hOVjqU_rKP4,17308
165
165
  sage/libs/flint/fmpq_poly_sage.pyx,sha256=dxu0RhuhH2Gvjg5D29Z8v7jqTWDPfxA1pWD3UAwlZVs,1683
166
166
  sage/libs/flint/qsieve.pyx,sha256=6Kl6V9o12lp0xM4j2n5qvneA2dHi1pBodvgyiEQU2XY,581
167
- sage/libs/flint/qsieve_sage.cpython-39-darwin.so,sha256=9HAwXXY7r8ng8akxIKTCEPw7oiOfoCPGNC3nZJzoydo,101152
167
+ sage/libs/flint/qsieve_sage.cpython-39-darwin.so,sha256=sAC3L_rfMkiqe3LGNzoGVxFd39r1YWfDVBQy04F3aoI,101152
168
168
  sage/libs/flint/arb_fmpz_poly.pxd,sha256=bXDTW5A7IBJ4pyGM6fAr5GtFAjFubvDOfb0Yv0snzhw,2505
169
169
  sage/libs/flint/double_interval.pxd,sha256=T1gP41ucAeW2rLXa5qagjRqQ6i2BUXNteo2OaAL2zqI,1558
170
170
  sage/libs/flint/thread_pool.pxd,sha256=aD1GwQqq_oiEJgKFRcRlUzzjpPBCDbnj5kD1yTx9Nbs,1286
@@ -198,7 +198,7 @@ sage/libs/flint/fmpz_mod_poly_factor.pxd,sha256=TYHdmIIKU_aE_V9G8Q_U3UiccSr6axeX
198
198
  sage/libs/flint/gr_mat.pxd,sha256=n-jELiSeruDiA_Kz0CDV_5ftsFCqX7_h7-YT-MlWEGU,14338
199
199
  sage/libs/flint/fmpz_poly_q.pxd,sha256=fY875U3L-o7xC4QokqZbOvFj6tMR6dKgG8D1HVzgOyA,3913
200
200
  sage/libs/flint/nmod_poly_mat.pxd,sha256=Zvdev9reIgaJfH6Fb1z5FlZTO3s8ISHfBFTzu4Ay42A,6086
201
- sage/libs/flint/flint_sage.cpython-39-darwin.so,sha256=b6CV6a9BgGDHbK6cSGFqr6nggYbb2C-tiYMeo-Sg0JY,102736
201
+ sage/libs/flint/flint_sage.cpython-39-darwin.so,sha256=V_OmHHTKMaByBpcybQnwDDNkMaYgSwMBM7ZM3n__zTU,102736
202
202
  sage/libs/arb/types.pxd,sha256=YqMZvzPqZ0aUJURL0-B5ZQvnz6GKUh39AxptoVmPHTc,739
203
203
  sage/libs/arb/acb_poly.pxd,sha256=By7SdGG9f-RRQPi59cge7RsxFel2WOwpMwkSbo-g1do,6124
204
204
  sage/libs/arb/arb.pxd,sha256=02M-3Sw2DGydgNBfM8KxbG5WblWoOPWp2e5yJi8V42s,4678
@@ -212,151 +212,151 @@ sage/libs/arb/acb_modular.pxd,sha256=4Cth5GtM7AUNCrUvBTmyuA9vRjuBaImQWudnSp48kPI
212
212
  sage/libs/arb/mag.pxd,sha256=wJ1buZ21isgoDtkbh3pdc0KON4II-Tpe_w4ji7MKYEs,1523
213
213
  sage/libs/arb/acb.pxd,sha256=DxWgW1OtKYzPeUZ9V6sN337R23HlahAMs_-8haoB8s0,2810
214
214
  sage/libs/arb/arb_wrap.h,sha256=vTLu2NXhIYMQLIEfT9BMiT4VihNE8v2wwde0bAwdKkQ,747
215
- sage/libs/arb/arith.cpython-39-darwin.so,sha256=dz-3J7YZHm_GjRVDMkTkoeWsmFelliRJqDawB1PJLh8,106432
215
+ sage/libs/arb/arith.cpython-39-darwin.so,sha256=9n8U1twfNd7t19dVO4dh3z74POSMYuc5H-ccPEiuPBo,106432
216
216
  sage/libs/arb/arb_hypgeom.pxd,sha256=frVtrP511unCxhE17kqZCLBTJQ6w1pFr-aHZJyQCpO8,2391
217
217
  sage/libs/arb/arb_fmpz_poly.pxd,sha256=hZSkpuSW0CAK7RiXYGUpELhZf-5we4sLzltsOwivt8w,807
218
218
  sage/libs/arb/acb_calc.pxd,sha256=NFYXS5aWinQYYHfoYhO1xYD5xq5kVcVrRf85FdijawM,337
219
219
  sage/libs/arb/bernoulli.pxd,sha256=-6_hHEKtKYdoId07wfl0wlChHBjRTew0pdW3bSpP0rU,227
220
220
  sage/quivers/paths.pyx,sha256=9LTXkSCzX90XqHdTXEgDgegmSYoKUPE7pruWg9Mnf5w,26592
221
- sage/quivers/algebra_elements.pyx,sha256=dfrAEF6M--yOrbppTQxcYYK9wYGgPdQs1y7UCoIAAT4,52133
221
+ sage/quivers/algebra_elements.pyx,sha256=s823R8Nc39dHipX6FY106YVxkL1rQ9ZAY2U3OSBExQ4,52256
222
222
  sage/quivers/algebra_elements.pxi,sha256=31sewC1VB685NcX0PwqSsos9Lvc5CDUGX1Rkc8kc9fc,44890
223
223
  sage/quivers/algebra.py,sha256=lApwrXpv8zx341pLbARCeq0lf5hyZWQNKA64sl4SDAg,25123
224
224
  sage/quivers/ar_quiver.py,sha256=Zdu2nWJQZByhzww3MBKuU84inLm5GRtO-Pz7lXnpgwY,33821
225
- sage/quivers/paths.cpython-39-darwin.so,sha256=iMZsl0-UmXlp3yHcH-innGEseA8rjamOLl206p19uCY,224384
225
+ sage/quivers/paths.cpython-39-darwin.so,sha256=lu6myEE9EEWrfnU7je10Rmyk6hIUyqgOdIzc0AMdps4,224384
226
226
  sage/quivers/all.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
227
227
  sage/quivers/path_semigroup.py,sha256=mMQSFhcLFoMXIF2_h367fQD5HS2yy-VtIUrf9PoOlvU,42259
228
228
  sage/quivers/morphism.py,sha256=5ZMNlntBhmru5XSutFaTS_PA55xibWhIYnXxHgsQBLY,50051
229
- sage/quivers/algebra_elements.cpython-39-darwin.so,sha256=XCzVrBv0YFWPdfdF2uCTbdEIANScnPCsXz5EdKhKHsI,323328
229
+ sage/quivers/algebra_elements.cpython-39-darwin.so,sha256=J6x_q8I7THgupbK34-KwmYhAh6dEoYeVyd7ofUeelFE,323328
230
230
  sage/quivers/algebra_elements.pxd,sha256=jZmiF9NWpynNAoCrzh_UBXZTmTKab9BM9r68DCOrB7g,4132
231
231
  sage/quivers/homspace.py,sha256=5olvtgHsGC1qNyCPku7pyBrMCsMde80qw4DRWfAEX8I,25005
232
232
  sage/quivers/paths.pxd,sha256=-DeHgEKG3x5xjRq7xqq_VOBu2SvZHSf9O5UHwvR8g70,547
233
233
  sage/quivers/representation.py,sha256=S5tJm5rasuX38ZlEJWIp5pGgfUqOUAV7edcSXmC0zR4,111401
234
234
  sage/modular/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
235
- sage/modular/pollack_stevens/dist.cpython-39-darwin.so,sha256=J3n6w2qMhOaKggMGRT3EGHIb5TfxfMBYY19eLqQEX9A,429312
236
- sage/modular/pollack_stevens/dist.pyx,sha256=fOExu_OCQ47-V2xwr8hPwYcEL67laAzB4-fR73jqtqs,49718
235
+ sage/modular/pollack_stevens/dist.cpython-39-darwin.so,sha256=aV3oBNXLQdWhqaVhSQsR4F6xYvw5hHe7KeoeyvvEjpU,445840
236
+ sage/modular/pollack_stevens/dist.pyx,sha256=592HPKcP_lByHWTOHXQDI8pjTm3-kWaPS4HpYp3tzrY,49709
237
237
  sage/modular/pollack_stevens/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
238
238
  sage/modular/pollack_stevens/dist.pxd,sha256=F5t1rwfGeTdI78Sj5zpfGhazKkBFdjYlt4oVaZdahRY,1064
239
- sage/modular/modsym/apply.cpython-39-darwin.so,sha256=GLR5QyBOVU3yz4-FxFiLVuvFtrep4MAJdNXPeHgl5O0,121488
239
+ sage/modular/modsym/apply.cpython-39-darwin.so,sha256=A5elvj7kb_ftZszbYtRr2gLC_tHMG9mMdmIkA2DXzBY,121488
240
240
  sage/modular/modsym/apply.pyx,sha256=5awe3uEkPQLrlZADvuyb47jMNUPGEwXHxXM2pshjpRY,3148
241
241
  sage/modular/modsym/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
242
- sage/modular/modsym/heilbronn.cpython-39-darwin.so,sha256=mfk76O6cJAz6V2V-w_7Rg68btnOtVdAAS7g0bzgFLZ0,237008
242
+ sage/modular/modsym/heilbronn.cpython-39-darwin.so,sha256=2q-l0_2qo3bKmkj9UQCdsLss7L0E7xktD8X5d6WRcJY,237008
243
243
  sage/modular/modsym/apply.pxd,sha256=TfQrRggt8yd48QvYXp5ZBzYqLNURJmyPhtpLimj58Nw,256
244
244
  sage/modular/modsym/heilbronn.pyx,sha256=iPDl8pLfdospDqNxMSf5EkGQ3pr3Eg6uTBvB0JyAZdM,32302
245
- sage/modular/modform/eis_series_cython.cpython-39-darwin.so,sha256=TEuOf_lp04W_1-rfO3G-LkaCGpNc_5OTohfOrsHsYeg,124128
245
+ sage/modular/modform/eis_series_cython.cpython-39-darwin.so,sha256=ddxTKY2465Q-DXe26ciy39QucChNS5w8lNikEeLZYmg,124128
246
246
  sage/modular/modform/eis_series_cython.pyx,sha256=5U4NnwiHvPJcHFsEOlVdO3Jbv3GNSyiLTUi_Cr5XM0I,7021
247
247
  sage/modular/modform/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
248
- sage/rings/complex_arb.pyx,sha256=9o_Iit0eeSF7Q1Xp1yzefMadYYr9S_lH54vYEQuytm0,176675
249
- sage/rings/qqbar.py,sha256=6eXbEX9ox8Vuj__-GSEuormppkMqFTm84ZrfvA7izdg,336409
248
+ sage/rings/complex_arb.pyx,sha256=C7W6QLnToO-PhRFzonjAgQ8dmtWNu_Je_aurczKrJ1U,178934
249
+ sage/rings/qqbar.py,sha256=6MPhyBTuk8r4_zrlAXhQnf1DsaN2VOi8s7UtijbFeYQ,336695
250
250
  sage/rings/complex_interval.pxd,sha256=VT84I3LrXcKU24cN-f_ouS50P3VyAnWn_1fD9iWLVUI,986
251
251
  sage/rings/imaginary_unit.py,sha256=GTfOWZSQQza5cdPMSAl9BQpk0fj2OyikYhuMliTr6Z0,135
252
252
  sage/rings/real_interval_absolute.pyx,sha256=0qk3iTLy-EaGb--8tY4euEXb4suwWaSFZYe_FmXNYRA,36712
253
- sage/rings/real_arb.cpython-39-darwin.so,sha256=k_77HITKNYA867Jy2dNWlRBk7PkIsfUqnczYDd9bddQ,614736
254
- sage/rings/complex_interval.cpython-39-darwin.so,sha256=Xso_F16FCmcTRotKFA8aEb5dGtl0eBocDb9yuYmKEEs,366080
255
- sage/rings/real_mpfi.cpython-39-darwin.so,sha256=gX2kDOYJhUuXRRJHizx3iK7eNLdDOcNXVxFAzS9gjME,643488
253
+ sage/rings/real_arb.cpython-39-darwin.so,sha256=U6ijT1K6WJLlkJQ_iCpOP0tJOF-UCmybsCgaHifFkqA,614736
254
+ sage/rings/complex_interval.cpython-39-darwin.so,sha256=lQq4MSvK6TLG4fy2abfgHMXVWjPh2MTLXzOUUxSFP3M,366080
255
+ sage/rings/real_mpfi.cpython-39-darwin.so,sha256=7cTmE4Cgs3e-Xg0_QbOi2I0oTBLRgUljaGowBccld_s,643488
256
256
  sage/rings/fraction_field_FpT.pyx,sha256=kK9AE7XKvpN2VyAwYln4JI1aF7jCr9GqkM624G9gxi0,63587
257
- sage/rings/fraction_field_FpT.cpython-39-darwin.so,sha256=XOJKnm_yf4wQk_uGz8qNc1EXvxdGaAJtxQ_1VzhRC6k,371616
257
+ sage/rings/fraction_field_FpT.cpython-39-darwin.so,sha256=JBesrrrOyN3Ny7wHXnshLMmRKBtBGN3eyD7UOCfeaXs,371616
258
258
  sage/rings/real_arb.pxd,sha256=Ao86JjZUmunlKL8ye5DEkIveabaIqq8fK_Xu2_tWFq8,844
259
259
  sage/rings/all__sagemath_flint.py,sha256=jnjyyqskGNcCqOq11gc-3PyCP92GfupWv8Ojw5YmNKE,1114
260
- sage/rings/complex_arb.cpython-39-darwin.so,sha256=zJsFJcoZJAMpxTF7EC_w8YK5iAoozrA99AUaiiOZeHA,746704
260
+ sage/rings/complex_arb.cpython-39-darwin.so,sha256=CGGkwU59Ui2ooIYHwIkomgAyl7FlkWLPGJi6k3y6yz8,764608
261
261
  sage/rings/real_arb.pyx,sha256=iHHEEuubw3cqCNAMpMNmmWS3Jdds9uAeLqjU0aZadN0,126399
262
- sage/rings/factorint_flint.cpython-39-darwin.so,sha256=QYM6kNMRZ3slw0pkVLsBn4c9xBElEbFW6YAQd-3bSZo,100736
263
- sage/rings/real_interval_absolute.cpython-39-darwin.so,sha256=Y4zqk0OP3eMbWSnoK1_VYwPeF9oER179ye2cjDC-4Ps,304688
262
+ sage/rings/factorint_flint.cpython-39-darwin.so,sha256=N7IQvJmsqtqL0iD0ppVgDMHcTJcP0rigQC7vGLPqRT4,100736
263
+ sage/rings/real_interval_absolute.cpython-39-darwin.so,sha256=BmWTtWm4IzP3s-Lb3bH_wzJr_yEb3VI42zxks_OcRuQ,304688
264
264
  sage/rings/fraction_field_FpT.pxd,sha256=ZwvNHfOoJIpyTjWoMNInEmeiI7-iYCDJGfyDrFVOPcA,807
265
265
  sage/rings/factorint_flint.pyx,sha256=9mQEqOdcIg6xgNnlG-8AuIm3kTJOgdFnvGZ2SyNlcTM,2598
266
266
  sage/rings/complex_interval_field.py,sha256=KIXrN_Ol8dUS3O502U-gzQCCAxBgPMvETdDhAe6in_o,21858
267
267
  sage/rings/cif.py,sha256=ws0SNraUJnvO4APtW4ZDCd16Mgrw-TuSCgwOkPisrVg,141
268
268
  sage/rings/complex_interval.pyx,sha256=ZGDregJUCoQPyoMOI9h2gRWbc5j0YzayeMsOmOr93bo,84288
269
269
  sage/rings/monomials.py,sha256=1nTdkeYs67IklE6VydcS6cnJJUlWVO3bSg4f3CDvxKg,2116
270
- sage/rings/real_mpfi.pyx,sha256=xYlDXxHtRMW0wSfX_qpsIV_wgKr7mqkvDVvo8wmnc_I,177253
270
+ sage/rings/real_mpfi.pyx,sha256=o_3hPOEXvyvgajwo74gzjzkz62Xn05elaJ7cafqA8mg,177257
271
271
  sage/rings/complex_arb.pxd,sha256=vjVPkuiQC7trTz-belXKb2s-hboBu9mC9qSfuL6CJM8,984
272
272
  sage/rings/padics/all__sagemath_flint.py,sha256=x3prfnuoIEkYoOkaVFLESdcMyalr9Gr9QfnxIiFbKMU,95
273
- sage/rings/number_field/galois_group.py,sha256=uIm_4nhooQMaZsVAzipg0v_7YH6YGtBsBDBIywFzpsc,48112
274
- sage/rings/number_field/maps.py,sha256=-zTLOrWECwRi-buAEEj03jXgpZQaFT9hSP_U8YEk85c,24742
273
+ sage/rings/number_field/galois_group.py,sha256=h9FI33HIMK3n-dzanUYRf7fjyL4tsYkbxrs-rJkxGBk,48108
274
+ sage/rings/number_field/maps.py,sha256=18sEapbrtklBLOqRCyYWjtPZxY1Sg5WJOQjrgeLBklE,24734
275
275
  sage/rings/number_field/class_group.py,sha256=zNsofisfBueLOkB0OcE6PAWlg80ip_-2_nPUIzf7FQU,25664
276
276
  sage/rings/number_field/selmer_group.py,sha256=Ddey1MDi3WgtlDLojmBzbEK-jsGyxz0RkTBbz6xTgWU,24440
277
- sage/rings/number_field/splitting_field.py,sha256=8p4cQpSzasJcD9CyKsf8d-LgYaFUwT9J5_qIOZZOfEo,26969
277
+ sage/rings/number_field/splitting_field.py,sha256=HXbctiCEzKcnudaope55c_GBcgB3YS_qe_MGE0HEkbk,26997
278
278
  sage/rings/number_field/number_field_morphisms.pyx,sha256=czP4GusZXYeBQsbLfWPWsDdpXzGhwEyYHv6iIz2MG_8,28529
279
- sage/rings/number_field/number_field.py,sha256=MeHOwbbIrOGdZHAklEbnCRUGnlURsBbpm3uimPA6ZEI,478051
279
+ sage/rings/number_field/number_field.py,sha256=MnrSMIUoX_84L6sMpfRy2Z3acmBVwtMUVrsCivkpe_s,476439
280
280
  sage/rings/number_field/number_field_element_quadratic.pxd,sha256=gvPXtoxMUM0c1I3WOKrHFH14xrreCZCnmVQJsqMrYHs,1160
281
- sage/rings/number_field/order.py,sha256=srWxXMeEVQ2v8n9ATcKXBuVFZAkKKtEPdnS3gPWmvnw,105643
281
+ sage/rings/number_field/order.py,sha256=vn2d1m5gtS0KTceEE9nhsSCcSEPVsb0m8MFzF3UZqiQ,105771
282
282
  sage/rings/number_field/S_unit_solver.py,sha256=lmopRsDEMATKkUzLV9FBJLDWmiIgT7i-aAqa26ZCfr0,105419
283
- sage/rings/number_field/number_field_element_quadratic.cpython-39-darwin.so,sha256=UAt3S1fJ90OrX265mvo0l83PsY5B9eMmLhia19az0Rc,491264
283
+ sage/rings/number_field/number_field_element_quadratic.cpython-39-darwin.so,sha256=2qd_TYe7mMRwWQyCMT3pfndjvV78l97OVwGqx0LYQMs,491264
284
284
  sage/rings/number_field/number_field_element.pxd,sha256=WHRhdPTKIUniKcKtka8lcKCLih2pPVqcpMeQoz4jtnU,1860
285
285
  sage/rings/number_field/all__sagemath_flint.py,sha256=EGBWTnS5YR2UdjnLwlLGW4AZ5lpupWyetcrAZsBKXsg,424
286
286
  sage/rings/number_field/number_field_element.pyx,sha256=q0hWF8MYazAZqt3mHRAdhVsj6dz6YVVpGxribQlZH-w,193629
287
- sage/rings/number_field/small_primes_of_degree_one.py,sha256=8wqqzI6-MyCMQ1Ucu4adqvnHp4vCL98PJU2c7hUIC0M,8858
287
+ sage/rings/number_field/small_primes_of_degree_one.py,sha256=r2nYYFl4QSO0OZez8hskGr5lVdidhP2lu5yG7XF_zxU,8854
288
288
  sage/rings/number_field/homset.py,sha256=B5rYSpzt1XwgM-93kiyTJUXak8EIn9_WD79PPAB1DwA,24156
289
289
  sage/rings/number_field/number_field_element_quadratic.pyx,sha256=hUJNNx2qSxEcL2y5UBeaeyGU9RFBCPbINLP4cxjBjXM,104110
290
290
  sage/rings/number_field/structure.py,sha256=8d7QdPX9FbSyJp7JanfWqe5X3NkK_Rk93hiZJk5WhkQ,14215
291
- sage/rings/number_field/number_field_rel.py,sha256=1maJhBzGwQtKTVGYWkRB8KAv9SrIN4esbbq5f2W3xso,107057
292
- sage/rings/number_field/number_field_morphisms.cpython-39-darwin.so,sha256=KBGLzrWRz9Am6b921353Hy8H0zwjAWXy9BEtgMapvLY,224080
291
+ sage/rings/number_field/number_field_rel.py,sha256=CTz0CPJkSvAzZ_bbuqhD1Mufv_xxvDi-J_kigIUjoo0,107054
292
+ sage/rings/number_field/number_field_morphisms.cpython-39-darwin.so,sha256=XGE9RI7qkfJbVlt-JjQ_JhW8CFG1ax1qcFFhNtCwHW0,224080
293
293
  sage/rings/number_field/morphism.py,sha256=1cQZeKGHlSezfweJTzZDyeQsFmitKJKC99qmsye9Ld4,10228
294
- sage/rings/number_field/bdd_height.py,sha256=o6T2M9rL-KZcOptJJnTzpHSEuw5n6KuvYiQ5TaUhMUw,21782
295
- sage/rings/number_field/number_field_element.cpython-39-darwin.so,sha256=VtsXVpe4YdMx8hoZXySXmC3tPhFJ__3zhYVwnG4klXs,1002784
294
+ sage/rings/number_field/bdd_height.py,sha256=zvD6GiVy2acMgEzAxpIyXUfl2vGqvnqCPYRJDHYrAb0,21765
295
+ sage/rings/number_field/number_field_element.cpython-39-darwin.so,sha256=a4mYqd4wNWFzwKg5XtNz14eyOv4SOFQKV46jymlouaA,1002784
296
296
  sage/rings/number_field/number_field_ideal_rel.py,sha256=KOSQ1F-SNjQ6dTQVwd6pbQfetxZ071LcpzSPr2L_hpI,32834
297
- sage/rings/number_field/unit_group.py,sha256=BXLMtl2Zvo8ZQa_IeH2icl_bi_2CVJvSbhd2dd8thL0,24005
297
+ sage/rings/number_field/unit_group.py,sha256=aoE8PSVTyJKgYHZcSXhk-rHQBZNww9MJ39ZWfHiLuDs,24001
298
298
  sage/rings/number_field/order_ideal.py,sha256=tn4tGjOqK3eps4B3s7siT1p9OvJ2Tpg5nHtUA1jKhOQ,27409
299
299
  sage/rings/polynomial/real_roots.pxd,sha256=hGHYKRfVROqdKussrisPauOyfIjfubm9Eo5RNyVzW20,2031
300
- sage/rings/polynomial/polynomial_rational_flint.pyx,sha256=usbqmGCyUsf_qWGgHOahL8CTWRJcS1Jhqfc_ElkOPJI,87524
301
- sage/rings/polynomial/polynomial_integer_dense_flint.pyx,sha256=hu9C6En5QO4r4gfSid8H5aAk8XvjCwqrvVSZxKPlEdA,58968
300
+ sage/rings/polynomial/polynomial_rational_flint.pyx,sha256=kXcsUpiQzpfhAbpM0SsyJ5g2oWR4kV8EBrJkF-o213Y,87527
301
+ sage/rings/polynomial/polynomial_integer_dense_flint.pyx,sha256=3Ik9FwNoKdF6S8DbN_AlvuyI9K-Dkq1aP1MAH_J6DDg,58998
302
302
  sage/rings/polynomial/polynomial_complex_arb.pyx,sha256=99kaGCdw3hp3kA_pAqFTzoMLkB6fazHnlRH1w-NwQWA,32578
303
- sage/rings/polynomial/polynomial_zmod_flint.pyx,sha256=xjEkDFUqdInX9JVuTAd28c-QhDFvi2Kirz9zd3a4SAM,35546
303
+ sage/rings/polynomial/polynomial_zmod_flint.pyx,sha256=thUg8lmBS_xxo42Ej_XvEq2xnomAvCDZjLRJR9T1xGA,35557
304
304
  sage/rings/polynomial/evaluation_flint.pxd,sha256=mAN7DjrMU9gr2b_HrZNqy5YdL3UUl7PzXmMbp93e-8E,340
305
305
  sage/rings/polynomial/complex_roots.py,sha256=XLlnhqawWk31gT5J11MUtE04VBkcpCxw_tBiTejQM34,11205
306
- sage/rings/polynomial/polynomial_rational_flint.cpython-39-darwin.so,sha256=U96HLj7Zw1Sr-MSZbO35JuJMA_e7oj1vbhwf29pRdDE,508160
306
+ sage/rings/polynomial/polynomial_rational_flint.cpython-39-darwin.so,sha256=wuOc-qxRVfxDTW_p3QIqizNbiZSx22iHyCAi91QduBU,508160
307
307
  sage/rings/polynomial/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
308
308
  sage/rings/polynomial/polynomial_number_field.pyx,sha256=nGK2SfmdfS0Dp3cvpoQ3mkShvgMwh9WJocwlmLnnbH4,11465
309
- sage/rings/polynomial/refine_root.cpython-39-darwin.so,sha256=M3dskShqw5EHEZ72rEL0RS_PH94lAWiCZZosFpns3i8,79056
309
+ sage/rings/polynomial/refine_root.cpython-39-darwin.so,sha256=qxlWU-uL3rkgZ8ZJyDZ9nyO8qeI7ZlRpgx8WsBGShyk,79056
310
310
  sage/rings/polynomial/polynomial_zmod_flint.pxd,sha256=f1uiTT30tOyQJ5dspV7kp8O6mOXIf1lu_oC7Yvlg0O4,879
311
311
  sage/rings/polynomial/evaluation_flint.pyx,sha256=viULCThQumdclBxHWRyqGUJ7CT71nuKmgdYEO2Yph3I,2276
312
- sage/rings/polynomial/evaluation_flint.cpython-39-darwin.so,sha256=mWMZo_grzkwOdfCfHDusQw3ikx5idFZ83vILLszvjAQ,93008
313
- sage/rings/polynomial/polynomial_number_field.cpython-39-darwin.so,sha256=rBPVowBjdeBv4zUs8UDEWaf-V9zwi7AC_h0H8rpUunU,145512
312
+ sage/rings/polynomial/evaluation_flint.cpython-39-darwin.so,sha256=fAQEucC6eVmjgxZVCUMdStlsnmYn8pswP1Jrr_pEyXQ,93008
313
+ sage/rings/polynomial/polynomial_number_field.cpython-39-darwin.so,sha256=04zW3KHc5n6AoLl58J2G1MsxhNMfPPbmdNTGd0reS9Q,145512
314
314
  sage/rings/polynomial/polynomial_complex_arb.pxd,sha256=dL33x7bBB_CF41pR_EOCXKsVUl6lsw7eJ8yjlrsKeek,321
315
- sage/rings/polynomial/hilbert.cpython-39-darwin.so,sha256=4-AYolR5CAYl-rAE1nEIrV4AriWNLEr8Z56b_Gqhnbc,220704
316
- sage/rings/polynomial/real_roots.cpython-39-darwin.so,sha256=ypva7vn7HxECkxllVkPhB54rN0JrodYTp8N0angoRAc,1064400
315
+ sage/rings/polynomial/hilbert.cpython-39-darwin.so,sha256=ecl_ic1GhFlr7Qkj-2S9c-7vDwglVwJDXTs3nRPn0H4,220704
316
+ sage/rings/polynomial/real_roots.cpython-39-darwin.so,sha256=eVD0lA5A4XpQRd1EANIEJM29HJaEHqAffawJWIbNQTs,1064400
317
317
  sage/rings/polynomial/refine_root.pyx,sha256=u97R1beu8_JCYEMVF7B5dT_aM0KF_S4yyuGoQxPxkTQ,5643
318
318
  sage/rings/polynomial/polynomial_integer_dense_flint.pxd,sha256=EqFP3CLIYkY2rPttb3djvVg_sphHO2PHYW4KxkmKKx4,452
319
319
  sage/rings/polynomial/real_roots.pyx,sha256=wGCK5MVnwYfndCzFr4HrLzNfCHxwiPe3tORdjrrlfj8,185288
320
320
  sage/rings/polynomial/polynomial_rational_flint.pxd,sha256=1gV8T53ETOy2C0ssd1xoqGV-Z4vtIU7JFhlSZX6PA4Q,971
321
- sage/rings/polynomial/polynomial_complex_arb.cpython-39-darwin.so,sha256=0R1a8IMWFy7dPXVJnnjlxqxCUxJCgYsS5x41GEL4QV8,260176
322
- sage/rings/polynomial/polynomial_integer_dense_flint.cpython-39-darwin.so,sha256=4EKMWzlaLfFZLzXDFSlNlcPNaKgemZb4oI7K0VVZvW8,472352
321
+ sage/rings/polynomial/polynomial_complex_arb.cpython-39-darwin.so,sha256=qnKzxpPW7ypkbWo5NOfaLf92csSrou6Fvld8a_9UmAo,260176
322
+ sage/rings/polynomial/polynomial_integer_dense_flint.cpython-39-darwin.so,sha256=C4K29JgabLGJnF7zwyohfh6r01acrB06LIHig1Np3SM,472528
323
323
  sage/rings/polynomial/hilbert.pyx,sha256=bYcHjTSkNlPPUvRDdXuVzfY-Tngcaod-GIeiRVlzFV0,24239
324
- sage/rings/polynomial/polynomial_zmod_flint.cpython-39-darwin.so,sha256=JnopP4yuxJR-LmMBQfsJX9Dcu0r4CAKj1yFmoeMxR70,434768
324
+ sage/rings/polynomial/polynomial_zmod_flint.cpython-39-darwin.so,sha256=q7mOipOQji6OTOgngt3XTJkOUqMyABFjLNyx1c1FNLI,434816
325
325
  sage/rings/polynomial/weil/weil_polynomials.pyx,sha256=9RtMa1Zpa50T8aCvxIOpq68u5T21bdQDsLoO1KRTKKE,23168
326
326
  sage/rings/polynomial/weil/power_sums.h,sha256=Xe1slUe1-dIxSCqoeJjwJxPMhRhVz9bSa-8yqkeOxMQ,1442
327
327
  sage/rings/polynomial/weil/all.py,sha256=3NYIrj3CtGikzDqtOiS02xEU6PSLuXlvel6rSCgtDQY,184
328
- sage/rings/polynomial/weil/weil_polynomials.cpython-39-darwin.so,sha256=mohvRy-Up83Vea2JFwHSbbXajHFRZxOUUaukbTPkVKg,240720
328
+ sage/rings/polynomial/weil/weil_polynomials.cpython-39-darwin.so,sha256=MdNVOKWZa_85wT3oCipc7WsKxwdDxONPmWPGAXx5c5I,240720
329
329
  sage/rings/convert/mpfi.pyx,sha256=J4M5js1bHLO7It4PJlqevP_McO9DHHqkk14tBCswytk,21061
330
330
  sage/rings/convert/all.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
331
- sage/rings/convert/mpfi.cpython-39-darwin.so,sha256=BMK5dJKUSPpGVuuiQUs-gJwKy7ubFGH8v7-_LBYkDEE,151424
331
+ sage/rings/convert/mpfi.cpython-39-darwin.so,sha256=0CGB_y_JhYnumrn7A36FdhaIvpEK51kT9PzYgkAlwWQ,151424
332
332
  sage/rings/convert/mpfi.pxd,sha256=6h4LlaWwZj3OFqe_whD3Fb9CTE48BwlEYbDLvkLeY3s,310
333
333
  sage/graphs/chrompoly.pyx,sha256=9qwZSd4xyM0amW-nJEHXyu3ABbAcKr_jJCIq8qujORc,20413
334
334
  sage/graphs/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
335
335
  sage/graphs/matchpoly.pyx,sha256=d4NEXXWmwMqRVrOCUy_Xqvyek7XA79VQQ87rbyy6vp0,14439
336
- sage/graphs/chrompoly.cpython-39-darwin.so,sha256=-aP1lZw80Vo5z2XpmIs_43cTfgC5LD2MX1Oddy-JefU,241072
337
- sage/graphs/matchpoly.cpython-39-darwin.so,sha256=VjYL9XGSmU1Vw15-3tazW3Ph4xL7rr6CxD8y6TP1ipk,170928
336
+ sage/graphs/chrompoly.cpython-39-darwin.so,sha256=z-56AbNA2SfCnMiqnZx5KcFavGk5uCVAZS2uF35cTug,241072
337
+ sage/graphs/matchpoly.cpython-39-darwin.so,sha256=vw9ib9QEBfU3VivFET2Veyxpk3RKAWTWofxB5_USYcc,170928
338
338
  sage/matrix/matrix_integer_sparse.pxd,sha256=6HyqNcPXHpvlHCcUdh2OjEDlM55OoMi410wNTJPuMDQ,311
339
339
  sage/matrix/matrix_rational_sparse.pxd,sha256=AaOUlYCJ5aHoD5ComWm0APlveJyzk0LunRe8lmNNmW0,380
340
340
  sage/matrix/matrix_rational_dense.pxd,sha256=URcgszbgnqo0j1geqVtKAFv7SbE3sKWKATSJca_qDoM,883
341
- sage/matrix/misc_flint.cpython-39-darwin.so,sha256=GxpEGWksPzz-BcJDZuPee0ErqvG3JwoJbyFQuGLb5HU,105920
342
- sage/matrix/matrix_cyclo_dense.cpython-39-darwin.so,sha256=fTJELCAyZOU7sHTwi5ox7sXe5qEq62xlTr8Gxh9q5i0,374624
343
- sage/matrix/matrix_integer_sparse.cpython-39-darwin.so,sha256=grL56blvFyszJLD0TBw9q9jRTwLNjjIIR9RzqbX8AzE,239040
341
+ sage/matrix/misc_flint.cpython-39-darwin.so,sha256=1U9AXGAPFN7RjbxRoBJd7sSpY8-02a-_ywu1iNrye2M,105920
342
+ sage/matrix/matrix_cyclo_dense.cpython-39-darwin.so,sha256=j-80O-hZkpYqELSYcOGyunA3XTV9YjfdzEC1CpXJW4g,374624
343
+ sage/matrix/matrix_integer_sparse.cpython-39-darwin.so,sha256=lUzHqnlKtBHzl9zOWJ7r617X92YnC4EL6fLtw-QJU6I,239040
344
344
  sage/matrix/matrix_integer_dense_hnf.py,sha256=CP_bD7fo1KVSFLvNMvQlBYHiLmBNdnP50k6lYeDgYkk,41267
345
345
  sage/matrix/matrix_cyclo_dense.pyx,sha256=rM7sPan-m9tXRdfNKRilm31FfSh7AVhT8SgFZnsbNxc,64000
346
346
  sage/matrix/matrix_complex_ball_dense.pyx,sha256=BO71xyUS58IP4bWJULNIdZKM6vjU9y42dm79ZvmNmR4,35715
347
347
  sage/matrix/matrix_integer_dense_saturation.py,sha256=sBNiLA4sQPUQKJM6DTM0eprdcTkqcBnrVp065SNpU_0,10553
348
- sage/matrix/matrix_rational_sparse.cpython-39-darwin.so,sha256=IkLIBhGDX2YvgdAmzCAVswQ1roS8ODxqoizy5s7-WqI,213216
348
+ sage/matrix/matrix_rational_sparse.cpython-39-darwin.so,sha256=E2i68Ky9_6lCLPcByX9JPnjywXwHOnr4THr52HAgGpA,213216
349
349
  sage/matrix/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
350
- sage/matrix/matrix_integer_dense.pyx,sha256=50n6u4FZjfJXN3_I0jUtMvArLjLQEC54fBhLuDu7Hxw,194631
350
+ sage/matrix/matrix_integer_dense.pyx,sha256=L_ssepPKvX27DumsfeQKjabzVyXRhM6kCab9RIFRHck,194451
351
351
  sage/matrix/matrix_integer_dense.pxd,sha256=HvwFb4B8O9YwXxm0wNYLtgmnoxjQr3qqNutzvRCBzQs,1386
352
352
  sage/matrix/misc_flint.pyx,sha256=jYYkMonN03klh5BrbPQvpFmeoQbOjWiXeaBmmNkiCwE,3619
353
353
  sage/matrix/matrix_complex_ball_dense.pxd,sha256=xYKLJBlL3RIRQtD5MbO2wTvS-vidmNqdlZ_ga9gxItQ,580
354
354
  sage/matrix/matrix_cyclo_dense.pxd,sha256=6Hj_fUpHuMzG86NyDJPmT4vHMh1lOk4kEajf9LHY9Us,542
355
- sage/matrix/matrix_complex_ball_dense.cpython-39-darwin.so,sha256=7gD-Hp3635kxMk3_ExvS85BzVtBov61fso07jUtY8dU,247712
356
- sage/matrix/matrix_rational_dense.cpython-39-darwin.so,sha256=lkaqWHi_D3racg8HqbSxMdOker6p-aMxJltZJRDNVOA,507456
355
+ sage/matrix/matrix_complex_ball_dense.cpython-39-darwin.so,sha256=CEGa0bOACby-MsCY8yK3ryVR_Ndqhnz6LNnduuBu-nc,247712
356
+ sage/matrix/matrix_rational_dense.cpython-39-darwin.so,sha256=MNkGM1kHLgLB2lHgbmHZ7kxLuGnwGtXG7qP-s5UyhKs,507456
357
357
  sage/matrix/change_ring.pyx,sha256=OI-cWieOjF5p77XnEjQyhfbcMqP1yQucaiTaEjrq6x0,1557
358
- sage/matrix/change_ring.cpython-39-darwin.so,sha256=ttLi5sDHXoLGqF1rNIct0aTfqOqsZygeMUfMmxRnBvo,102928
359
- sage/matrix/matrix_rational_dense.pyx,sha256=ePJ0pnbqo4aRPkckY_zEn3_RbOs03qp2f0SiOLtfKWk,103032
358
+ sage/matrix/change_ring.cpython-39-darwin.so,sha256=rB97lhlZstCBQEse8kmZSAL68WQmpP67BMrRDkeIcMA,102928
359
+ sage/matrix/matrix_rational_dense.pyx,sha256=jZVIuxes7Fm0y6qj51lCrCyLfiyfMkG1HQqggQL89Us,103034
360
360
  sage/matrix/matrix_rational_sparse.pyx,sha256=qZ8P8uGbO4_7PvV-7tyofQ_4a6MMvaaSj7Ijj-SEYb4,26068
361
- sage/matrix/matrix_integer_dense.cpython-39-darwin.so,sha256=3ipvhk7B0uNKKitY72KAnh9QKQIwiwtmVyeRhEe6tUU,878080
361
+ sage/matrix/matrix_integer_dense.cpython-39-darwin.so,sha256=ujc5S3jD4e2bMsM-AdC0xPMnjT1Wwf22zv5nVWMFHwg,878080
362
362
  sage/matrix/matrix_integer_sparse.pyx,sha256=uLTe8Am19fCqbLGZHgIU0uSIoGRaeZJl7ggnjWDHXB8,37071
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.8.0)
2
+ Generator: setuptools (78.1.0)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp39-cp39-macosx_13_0_x86_64
5
5
 
Binary file
Binary file
@@ -1373,10 +1373,8 @@ def _biseq_stresstest():
1373
1373
  TESTS::
1374
1374
 
1375
1375
  sage: from sage.data_structures.bounded_integer_sequences import _biseq_stresstest
1376
- sage: alarm(1); _biseq_stresstest() # long time
1377
- Traceback (most recent call last):
1378
- ...
1379
- AlarmInterrupt
1376
+ sage: from sage.doctest.util import ensure_interruptible_after
1377
+ sage: with ensure_interruptible_after(1): _biseq_stresstest() # long time
1380
1378
  """
1381
1379
  cdef int branch
1382
1380
  cdef Py_ssize_t x, y, z
Binary file
Binary file
Binary file
Binary file
@@ -541,10 +541,8 @@ cdef inline int celement_pow(nmod_poly_t res, nmod_poly_t x, long e, nmod_poly_t
541
541
 
542
542
  sage: # needs sage.rings.finite_rings
543
543
  sage: n = 2^23
544
- sage: alarm(0.2); x^n; cancel_alarm()
545
- Traceback (most recent call last):
546
- ...
547
- AlarmInterrupt
544
+ sage: from sage.doctest.util import ensure_interruptible_after
545
+ sage: with ensure_interruptible_after(0.2): (x^n).degree()
548
546
  """
549
547
  if modulus != NULL:
550
548
  sig_on()
Binary file
@@ -4272,14 +4272,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
4272
4272
 
4273
4273
  sage: A = random_matrix(ZZ, 2000, 2000)
4274
4274
  sage: B = random_matrix(ZZ, 2000, 2000)
4275
- sage: t0 = walltime()
4276
- sage: alarm(2); A._solve_iml(B) # long time
4277
- Traceback (most recent call last):
4278
- ...
4279
- AlarmInterrupt
4280
- sage: t = walltime(t0)
4281
- sage: t < 10 or t
4282
- True
4275
+ sage: from sage.doctest.util import ensure_interruptible_after
4276
+ sage: with ensure_interruptible_after(2, max_wait_after_interrupt=8): A._solve_iml(B)
4283
4277
 
4284
4278
  ALGORITHM: Uses IML.
4285
4279
 
@@ -4363,14 +4357,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
4363
4357
 
4364
4358
  sage: A = random_matrix(ZZ, 2000, 2000)
4365
4359
  sage: B = random_matrix(ZZ, 2000, 2000)
4366
- sage: t0 = walltime()
4367
- sage: alarm(2); A._solve_flint(B) # long time
4368
- Traceback (most recent call last):
4369
- ...
4370
- AlarmInterrupt
4371
- sage: t = walltime(t0)
4372
- sage: t < 10 or t
4373
- True
4360
+ sage: from sage.doctest.util import ensure_interruptible_after
4361
+ sage: with ensure_interruptible_after(2, max_wait_after_interrupt=8): A._solve_flint(B)
4374
4362
 
4375
4363
  AUTHORS:
4376
4364
 
@@ -722,7 +722,7 @@ cdef class Matrix_rational_dense(Matrix_dense):
722
722
  if algorithm == "flint":
723
723
  return self._invert_flint()
724
724
  elif algorithm == "pari":
725
- from sage.libs.pari.all import PariError
725
+ from cypari2.handle_error import PariError
726
726
  from .matrix_rational_pari import _invert_pari
727
727
  try:
728
728
  return _invert_pari(self)
Binary file
@@ -29,7 +29,7 @@ REFERENCES:
29
29
  # ****************************************************************************
30
30
  import operator
31
31
 
32
- from sage.arith.misc import binomial, bernoulli
32
+ from sage.arith.misc import bernoulli
33
33
  from sage.categories.fields import Fields
34
34
  from sage.matrix.constructor import matrix
35
35
  from sage.matrix.matrix cimport Matrix
@@ -1131,7 +1131,7 @@ cdef class Dist_vector(Dist):
1131
1131
  """
1132
1132
  # assert self._moments[0][0]==0, "not total measure zero"
1133
1133
  # print("result accurate modulo p^",self.moment(0).valuation(self.p) )
1134
- # v=[0 for j in range(0,i)]+[binomial(j,i)*bernoulli(j-i) for j in range(i,M)]
1134
+ # v=[0 for j in range(i)]+[binomial(j,i)*bernoulli(j-i) for j in range(i,M)]
1135
1135
  M = self.precision_relative()
1136
1136
  R = self.parent().base_ring()
1137
1137
  K = R.fraction_field()
@@ -1144,7 +1144,7 @@ cdef class Dist_vector(Dist):
1144
1144
  # bernoulli(1) = -1/2; the only nonzero odd Bernoulli number
1145
1145
  v[m] += m * minhalf * scalar
1146
1146
  for j in range(m - 1, M, 2):
1147
- v[j] += binomial(j, m - 1) * bern[(j - m + 1) // 2] * scalar
1147
+ v[j] += ZZ(j).binomial(m - 1) * bern[(j - m + 1) // 2] * scalar
1148
1148
  p = self.parent().prime()
1149
1149
  cdef Dist_vector ans
1150
1150
  if p == 0:
@@ -269,9 +269,10 @@ cdef class PathAlgebraElement(RingElement):
269
269
  sage: X # indirect doctest
270
270
  5*e_0 + a + 2*b + 3*c + 3*e_2
271
271
  """
272
+ parent = self._parent
272
273
  return repr_lincomb(self._sorted_items_for_printing(), strip_one=True,
273
- scalar_mult=self.parent()._print_options['scalar_mult'],
274
- repr_monomial=self._parent._repr_monomial)
274
+ scalar_mult=parent._print_options['scalar_mult'],
275
+ repr_monomial=parent._repr_monomial)
275
276
 
276
277
  def _latex_(self):
277
278
  r"""
@@ -286,11 +287,12 @@ cdef class PathAlgebraElement(RingElement):
286
287
  sage: latex(X*X)
287
288
  10 e_0 + 3 a\cdot c + 5 a + b + 3 c\cdot a + 6 c\cdot b + 9 e_2
288
289
  """
290
+ parent = self._parent
289
291
  return repr_lincomb(self._sorted_items_for_printing(),
290
- scalar_mult=self.parent()._print_options['scalar_mult'],
291
- latex_scalar_mult=self.parent()._print_options['latex_scalar_mult'],
292
- repr_monomial=self._parent._latex_monomial,
293
- is_latex=True, strip_one=True)
292
+ scalar_mult=parent._print_options['scalar_mult'],
293
+ latex_scalar_mult=parent._print_options['latex_scalar_mult'],
294
+ repr_monomial=parent._latex_monomial,
295
+ is_latex=True, strip_one=True)
294
296
 
295
297
  # Basic properties
296
298
 
Binary file
Binary file
@@ -169,6 +169,7 @@ from sage.libs.flint.acb_hypgeom cimport *
169
169
  from sage.libs.flint.acb_elliptic cimport *
170
170
  from sage.libs.flint.acb_modular cimport *
171
171
  from sage.libs.flint.acb_poly cimport *
172
+ from sage.libs.flint.acb_dirichlet cimport *
172
173
  from sage.libs.flint.arf cimport arf_init, arf_get_d, arf_get_mpfr, arf_clear, arf_set, arf_is_nan
173
174
  from sage.libs.flint.mag cimport (mag_init, mag_clear, mag_set_d,
174
175
  MAG_BITS, mag_zero, mag_set_ui_2exp_si,
@@ -1187,13 +1188,10 @@ class ComplexBallField(UniqueRepresentation, sage.rings.abc.ComplexBallField):
1187
1188
  sage: ComplexBallField(100).integral(lambda x, _: sin(x), RBF(0), RBF(1))
1188
1189
  [0.4596976941318602825990633926 +/- ...e-29]
1189
1190
 
1190
- sage: from cysignals.alarm import alarm
1191
- sage: alarm(0.1r)
1192
- sage: C = ComplexBallField(1000000)
1193
- sage: C.integral(lambda x, _: x.cos() * x.sin(), 0, 1)
1194
- Traceback (most recent call last):
1195
- ...
1196
- AlarmInterrupt
1191
+ sage: from sage.doctest.util import ensure_interruptible_after
1192
+ sage: with ensure_interruptible_after(0.1):
1193
+ ....: C = ComplexBallField(1000000)
1194
+ ....: C.integral(lambda x, _: x.cos() * x.sin(), 0, 1)
1197
1195
  """
1198
1196
  cdef IntegrationContext ctx = IntegrationContext()
1199
1197
  cdef acb_calc_integrate_opt_t arb_opts
@@ -1264,6 +1262,70 @@ class ComplexBallField(UniqueRepresentation, sage.rings.abc.ComplexBallField):
1264
1262
 
1265
1263
  return res
1266
1264
 
1265
+ def zeta_zeros(self, count, start=1):
1266
+ r"""
1267
+ Compute consecutive zeros of the Riemann zeta function.
1268
+
1269
+ INPUT:
1270
+
1271
+ - ``count`` -- positive integer; number of zeros to be computed, must fit in a machine integer
1272
+
1273
+ - ``start`` -- positive integer (default: 1); index of the first zero to be computed
1274
+
1275
+ OUTPUT:
1276
+
1277
+ A list of ``count`` consecutive zeros of the Riemann zeta function, starting from the ``start``-th zero.
1278
+ Indexing starts at one, following usual mathematical notations.
1279
+
1280
+ EXAMPLES::
1281
+
1282
+ sage: CBF.zeta_zeros(10)
1283
+ [0.5000000000000000 + [14.134725141734...]*I,
1284
+ 0.5000000000000000 + [21.0220396387715...]*I,
1285
+ 0.5000000000000000 + [25.010857580145...]*I,
1286
+ 0.5000000000000000 + [30.4248761258595...]*I,
1287
+ 0.5000000000000000 + [32.935061587739...]*I,
1288
+ 0.5000000000000000 + [37.586178158825...]*I,
1289
+ 0.5000000000000000 + [40.918719012147...]*I,
1290
+ 0.5000000000000000 + [43.32707328091...]*I,
1291
+ 0.5000000000000000 + [48.005150881167...]*I,
1292
+ 0.5000000000000000 + [49.773832477672...]*I]
1293
+
1294
+ sage: CBF.zeta_zeros(6, start=5)
1295
+ [0.5000000000000000 + [32.935061587739...]*I,
1296
+ 0.5000000000000000 + [37.586178158825...]*I,
1297
+ 0.5000000000000000 + [40.918719012147...]*I,
1298
+ 0.5000000000000000 + [43.32707328091...]*I,
1299
+ 0.5000000000000000 + [48.005150881167...]*I,
1300
+ 0.5000000000000000 + [49.773832477672...]*I]
1301
+ """
1302
+ cdef fmpz_t _start
1303
+ fmpz_init(_start)
1304
+ fmpz_set_mpz(_start, (<Integer> Integer(start)).value)
1305
+
1306
+ cdef long _count = count
1307
+ if _count < 1:
1308
+ raise ValueError("count must be positive")
1309
+
1310
+ cdef acb_ptr ar = _acb_vec_init(_count)
1311
+
1312
+ sig_on()
1313
+ acb_dirichlet_zeta_zeros(ar, _start, _count, self._prec)
1314
+ sig_off()
1315
+
1316
+ res = []
1317
+ cdef ComplexBall b
1318
+ for i in range(_count):
1319
+ b = ComplexBall.__new__(ComplexBall)
1320
+ b._parent = self
1321
+ acb_swap(b.value, &ar[i])
1322
+ res.append(b)
1323
+
1324
+ _acb_vec_clear(ar, _count)
1325
+ fmpz_clear(_start)
1326
+
1327
+ return res
1328
+
1267
1329
 
1268
1330
  cdef inline bint _do_sig(long prec) noexcept:
1269
1331
  """
@@ -609,8 +609,8 @@ def bdd_height(K, height_bound, tolerance=1e-2, precision=53):
609
609
  u_height = sum([max(u_log[k], 0) for k in range(r + 1)])
610
610
  unit_height_dict[u] = u_height
611
611
  if u_height < inter_bound:
612
- U0.append(u)
613
- if inter_bound <= u_height and u_height < b - (t/12):
612
+ U0.append(u)
613
+ if inter_bound <= u_height < b - (t/12):
614
614
  U0_tilde.append(u)
615
615
  if u_height > t/12 + d_tilde:
616
616
  U_copy.remove(u)
@@ -17,7 +17,7 @@ from sage.groups.perm_gps.permgroup_element import PermutationGroupElement
17
17
  from sage.misc.superseded import deprecation
18
18
  from sage.misc.cachefunc import cached_method
19
19
  from sage.misc.lazy_attribute import lazy_attribute
20
- from sage.libs.pari.all import pari
20
+ from sage.libs.pari import pari
21
21
  from sage.rings.infinity import infinity
22
22
  from sage.rings.number_field.number_field import refine_embedding
23
23
  from sage.rings.number_field.morphism import NumberFieldHomomorphism_im_gens
@@ -307,7 +307,7 @@ class MapRelativeVectorSpaceToRelativeNumberField(NumberFieldIsomorphism):
307
307
  sage: fr(to(a0 + 2*b0)), fr(V([0, 1])), fr(V([b0, 2*b0])) # indirect doctest
308
308
  (a + 2*b0, a, 2*b0*a + b0)
309
309
  """
310
- from sage.libs.pari.all import pari
310
+ from sage.libs.pari import pari
311
311
 
312
312
  K = self.codomain()
313
313
  B = K.base_field().absolute_field('a')
@@ -377,7 +377,7 @@ class MapRelativeNumberFieldToRelativeVectorSpace(NumberFieldIsomorphism):
377
377
  sage: to_V(a) # indirect doctest
378
378
  (a)
379
379
  """
380
- from sage.libs.pari.all import pari
380
+ from sage.libs.pari import pari
381
381
 
382
382
  K = self.domain()
383
383
  # The element alpha is represented internally by an absolute
@@ -220,7 +220,8 @@ from sage.rings.real_lazy import RLF, CLF
220
220
  from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
221
221
 
222
222
  try:
223
- from sage.libs.pari.all import pari, pari_gen
223
+ from sage.libs.pari import pari
224
+ from cypari2.gen import Gen as pari_gen
224
225
  except ImportError:
225
226
  pari_gen = ()
226
227
 
@@ -7406,7 +7407,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
7406
7407
 
7407
7408
  EXAMPLES::
7408
7409
 
7409
- sage: # needs fpylll sage.rings.padics
7410
+ sage: # needs fpylll sage.rings.padics sage.symbolic
7410
7411
  sage: x = polygen(QQ, 'x')
7411
7412
  sage: K.<xi> = NumberField(x^2 + x + 1)
7412
7413
  sage: S = K.primes_above(3)
@@ -7415,7 +7416,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
7415
7416
 
7416
7417
  You can get the exponent vectors::
7417
7418
 
7418
- sage: # needs fpylll sage.rings.padics
7419
+ sage: # needs fpylll sage.rings.padics sage.symbolic
7419
7420
  sage: K.S_unit_solutions(S, include_exponents=True) # random, due to ordering
7420
7421
  [((2, 1), (4, 0), xi + 2, -xi - 1),
7421
7422
  ((5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
@@ -7424,7 +7425,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
7424
7425
 
7425
7426
  And the computed bound::
7426
7427
 
7427
- sage: # needs fpylll sage.rings.padics
7428
+ sage: # needs fpylll sage.rings.padics sage.symbolic
7428
7429
  sage: solutions, bound = K.S_unit_solutions(S, prec=100, include_bound=True)
7429
7430
  sage: bound
7430
7431
  7
@@ -8785,40 +8786,10 @@ class NumberField_absolute(NumberField_generic):
8785
8786
  polynomials are supported (:issue:`252`)::
8786
8787
 
8787
8788
  sage: K.<a> = NumberField(2*x^4 + 6*x^2 + 1/2)
8788
- sage: sorted(K.subfields(), key=lambda x: x[0].discriminant())
8789
- [(Number Field in a3 with defining polynomial x^2 + 2,
8790
- Ring morphism:
8791
- From: Number Field in a3 with defining polynomial x^2 + 2
8792
- To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
8793
- Defn: a3 |--> 2*a^3 + 5*a,
8794
- None),
8795
- (Number Field in a2 with defining polynomial x^2 + 4,
8796
- Ring morphism:
8797
- From: Number Field in a2 with defining polynomial x^2 + 4
8798
- To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
8799
- Defn: a2 |--> 2*a^3 + 7*a,
8800
- None),
8801
- (Number Field in a0 with defining polynomial x,
8802
- Ring morphism:
8803
- From: Number Field in a0 with defining polynomial x
8804
- To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
8805
- Defn: 0 |--> 0,
8806
- None),
8807
- (Number Field in a1 with defining polynomial x^2 - 2,
8808
- Ring morphism:
8809
- From: Number Field in a1 with defining polynomial x^2 - 2
8810
- To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
8811
- Defn: a1 |--> a^2 + 3/2,
8812
- None),
8813
- (Number Field in a4 with defining polynomial x^4 + 1,
8814
- Ring morphism:
8815
- From: Number Field in a4 with defining polynomial x^4 + 1
8816
- To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
8817
- Defn: a4 |--> a^3 + 1/2*a^2 + 5/2*a + 3/4,
8818
- Ring morphism:
8819
- From: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
8820
- To: Number Field in a4 with defining polynomial x^4 + 1
8821
- Defn: a |--> -1/2*a4^3 + a4^2 - 1/2*a4)]
8789
+ sage: K
8790
+ Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
8791
+ sage: sorted([F.discriminant() for F, _, _ in K.subfields()])
8792
+ [-8, -4, 1, 8, 256]
8822
8793
  """
8823
8794
  return self._subfields_helper(degree=degree, name=name,
8824
8795
  both_maps=True, optimize=False)
@@ -101,7 +101,7 @@ from sage.rings.number_field.number_field_base import NumberField as NumberField
101
101
  from sage.rings.number_field.order import (RelativeOrder,
102
102
  relative_order_from_ring_generators)
103
103
  from sage.rings.number_field.morphism import RelativeNumberFieldHomomorphism_from_abs
104
- from sage.libs.pari.all import pari_gen
104
+ from cypari2.gen import Gen as pari_gen
105
105
 
106
106
  from sage.categories.homset import Hom
107
107
  from sage.categories.sets_cat import Sets
@@ -302,7 +302,7 @@ class NumberField_relative(NumberField_generic):
302
302
  raise ValueError("base field and extension cannot have the same name %r" % name)
303
303
  if polynomial.parent().base_ring() != base:
304
304
  polynomial = polynomial.change_ring(base)
305
- #raise ValueError, "The polynomial must be defined over the base field"
305
+ # raise ValueError("The polynomial must be defined over the base field")
306
306
 
307
307
  # Generate the nf and bnf corresponding to the base field
308
308
  # defined as polynomials in y, e.g. for rnfisfree
@@ -1654,7 +1654,7 @@ class NumberField_relative(NumberField_generic):
1654
1654
  elif f.poldegree() == 1:
1655
1655
  # PARI's rnfpolredbest() does not always return a
1656
1656
  # polynomial with integral coefficients in this case.
1657
- from sage.libs.pari.all import pari
1657
+ from sage.libs.pari import pari
1658
1658
  g = f.variable()
1659
1659
  alpha = -f[0]/f[1]
1660
1660
  beta = pari(0).Mod(f)
@@ -108,7 +108,7 @@ def quadratic_order_class_number(disc):
108
108
  ALGORITHM: Either :pari:`qfbclassno` or :pari:`quadclassunit`,
109
109
  depending on the size of the discriminant.
110
110
  """
111
- from sage.libs.pari.all import pari
111
+ from sage.libs.pari import pari
112
112
 
113
113
  # cutoffs from PARI documentation
114
114
  if disc < -10**25 or disc > 10**10:
@@ -2777,11 +2777,11 @@ def absolute_order_from_module_generators(gens,
2777
2777
  in Number Field in i with defining polynomial x^2 + 1
2778
2778
  sage: R.basis()
2779
2779
  [2, 2*i]
2780
- sage: R = absolute_order_from_module_generators([k(1)],
2780
+ sage: R = absolute_order_from_module_generators([k(1)], # needs sage.symbolic
2781
2781
  ....: check_rank=False); R
2782
2782
  Order of conductor I generated by []
2783
2783
  in Number Field in i with defining polynomial x^2 + 1
2784
- sage: R.basis()
2784
+ sage: R.basis() # needs sage.symbolic
2785
2785
  [1]
2786
2786
 
2787
2787
  If the order contains a non-integral element, even if we do not check
@@ -136,7 +136,7 @@ class Small_primes_of_degree_one_iter:
136
136
  self._lc = self._poly.leading_coefficient()
137
137
 
138
138
  # this uses that [ O_K : Z[a] ]^2 = | disc(f(x)) / disc(O_K) |
139
- from sage.libs.pari.all import pari
139
+ from sage.libs.pari import pari
140
140
  self._prod_of_small_primes = ZZ(pari('TEMPn = %s; TEMPps = primes(TEMPn); prod(X = 1, TEMPn, TEMPps[X])' % num_integer_primes))
141
141
  self._prod_of_small_primes //= self._prod_of_small_primes.gcd(self._poly.discriminant() * self._lc)
142
142
 
@@ -24,7 +24,8 @@ from sage.arith.misc import factorial
24
24
  from sage.rings.number_field.number_field import NumberField
25
25
  from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
26
26
  from sage.rings.rational_field import RationalField
27
- from sage.libs.pari.all import pari, PariError
27
+ from sage.libs.pari import pari
28
+ from cypari2.handle_error import PariError
28
29
 
29
30
 
30
31
  class SplittingFieldAbort(Exception):
@@ -169,7 +169,7 @@ AUTHOR:
169
169
 
170
170
  from sage.groups.abelian_gps.values import AbelianGroupWithValues_class
171
171
  from sage.structure.proof.proof import get_flag
172
- from sage.libs.pari.all import pari
172
+ from sage.libs.pari import pari
173
173
  from sage.misc.misc_c import prod
174
174
  from sage.rings.integer_ring import ZZ
175
175
 
@@ -77,7 +77,8 @@ from sage.rings.real_mpfi cimport RealIntervalFieldElement
77
77
  from sage.rings.polynomial.evaluation_flint cimport fmpz_poly_evaluation_mpfr, fmpz_poly_evaluation_mpfi
78
78
 
79
79
  try:
80
- from sage.libs.pari.all import pari, pari_gen
80
+ from sage.libs.pari import pari
81
+ from cypari2.gen import Gen as pari_gen
81
82
  except ImportError:
82
83
  pari_gen = ()
83
84
 
@@ -2167,7 +2167,7 @@ cdef class Polynomial_rational_flint(Polynomial):
2167
2167
  Transitive group number 183 of degree 12
2168
2168
 
2169
2169
  sage: f.galois_group(algorithm='magma') # optional - magma
2170
- Transitive group number 5 of degree 4
2170
+ Transitive group number 183 of degree 12
2171
2171
 
2172
2172
  TESTS:
2173
2173
 
@@ -817,10 +817,8 @@ cdef class Polynomial_zmod_flint(Polynomial_template):
817
817
  sage: # needs sage.rings.finite_rings
818
818
  sage: R.<x> = PolynomialRing(GF(65537), implementation="FLINT")
819
819
  sage: f = R.random_element(9973) * R.random_element(10007)
820
- sage: alarm(0.5); f.factor()
821
- Traceback (most recent call last):
822
- ...
823
- AlarmInterrupt
820
+ sage: from sage.doctest.util import ensure_interruptible_after
821
+ sage: with ensure_interruptible_after(0.5): f.factor()
824
822
 
825
823
  Test zero polynomial::
826
824
 
sage/rings/qqbar.py CHANGED
@@ -7089,7 +7089,7 @@ class AlgebraicPolynomialTracker(SageObject):
7089
7089
  return roots
7090
7090
 
7091
7091
  def exactify(self):
7092
- """
7092
+ r"""
7093
7093
  Compute a common field that holds all of the algebraic coefficients
7094
7094
  of this polynomial, then factor the polynomial over that field.
7095
7095
  Store the factors for later use (ignoring multiplicity).
@@ -7112,14 +7112,14 @@ class AlgebraicPolynomialTracker(SageObject):
7112
7112
  sage: x = polygen(AA)
7113
7113
  sage: p = AA(2)^(1/100) * x + AA(3)^(1/100)
7114
7114
  sage: cp = AA.common_polynomial(p)
7115
- sage: alarm(0.5); cp.generator()
7116
- Traceback (most recent call last):
7117
- ...
7118
- AlarmInterrupt
7119
- sage: alarm(0.5); cp.generator()
7120
- Traceback (most recent call last):
7121
- ...
7122
- AlarmInterrupt
7115
+ sage: from sage.doctest.util import ensure_interruptible_after
7116
+ sage: from warnings import catch_warnings, filterwarnings
7117
+ sage: with ensure_interruptible_after(0.5), catch_warnings():
7118
+ ....: filterwarnings("ignore", r"cypari2 leaked \d+ bytes on the PARI stack")
7119
+ ....: cp.generator()
7120
+ sage: with ensure_interruptible_after(0.5), catch_warnings():
7121
+ ....: filterwarnings("ignore", r"cypari2 leaked \d+ bytes on the PARI stack")
7122
+ ....: cp.generator()
7123
7123
  """
7124
7124
  if self._exact:
7125
7125
  return
Binary file
Binary file
sage/rings/real_mpfi.pyx CHANGED
@@ -254,7 +254,7 @@ TESTS::
254
254
 
255
255
  sage: import numpy # needs numpy
256
256
  sage: if int(numpy.version.short_version[0]) > 1: # needs numpy
257
- ....: numpy.set_printoptions(legacy="1.25") # needs numpy
257
+ ....: _ = numpy.set_printoptions(legacy="1.25") # needs numpy
258
258
  sage: RIF(2) == numpy.int8('2') # needs numpy
259
259
  True
260
260
  sage: numpy.int8('2') == RIF(2) # needs numpy
@@ -1208,10 +1208,8 @@ def two_descent_by_two_isogeny(E,
1208
1208
  Elliptic Curve defined by y^2 = x^3 - x^2 - 900*x - 10098 over Rational Field
1209
1209
  sage: E.sha().an()
1210
1210
  4
1211
- sage: alarm(0.5); two_descent_by_two_isogeny(E, global_limit_large=10^8)
1212
- Traceback (most recent call last):
1213
- ...
1214
- AlarmInterrupt
1211
+ sage: from sage.doctest.util import ensure_interruptible_after
1212
+ sage: with ensure_interruptible_after(0.5): two_descent_by_two_isogeny(E, global_limit_large=10^8)
1215
1213
  """
1216
1214
  cdef Integer a1, a2, a3, a4, a6, s2, s4, s6
1217
1215
  cdef Integer c, d, x0
@@ -1318,7 +1316,7 @@ def two_descent_by_two_isogeny_work(Integer c, Integer d,
1318
1316
  p_list_len += 1
1319
1317
  else:
1320
1318
  # Factor more slowly using Pari via Python.
1321
- from sage.libs.pari.all import pari
1319
+ from sage.libs.pari import pari
1322
1320
  d = Integer(0)
1323
1321
  mpz_set(d.value, d_mpz)
1324
1322
  primes = list(pari(d).factor()[0])