passagemath-flint 10.5.22__cp310-cp310-macosx_14_0_arm64.whl → 10.5.24__cp310-cp310-macosx_14_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of passagemath-flint might be problematic. Click here for more details.
- {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.24.dist-info}/METADATA +4 -4
- {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.24.dist-info}/RECORD +80 -80
- {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.24.dist-info}/WHEEL +1 -1
- passagemath_flint.dylibs/libmpfi.0.dylib +0 -0
- passagemath_flint.dylibs/libopenblas_armv8p-r0.3.28.dylib +0 -0
- sage/combinat/posets/hasse_cython_flint.cpython-310-darwin.so +0 -0
- sage/data_structures/bounded_integer_sequences.cpython-310-darwin.so +0 -0
- sage/data_structures/bounded_integer_sequences.pyx +2 -4
- sage/graphs/chrompoly.cpython-310-darwin.so +0 -0
- sage/graphs/matchpoly.cpython-310-darwin.so +0 -0
- sage/libs/arb/arith.cpython-310-darwin.so +0 -0
- sage/libs/flint/arith.cpython-310-darwin.so +0 -0
- sage/libs/flint/arith_sage.cpython-310-darwin.so +0 -0
- sage/libs/flint/flint_sage.cpython-310-darwin.so +0 -0
- sage/libs/flint/fmpq_poly_sage.cpython-310-darwin.so +0 -0
- sage/libs/flint/fmpz_factor_sage.cpython-310-darwin.so +0 -0
- sage/libs/flint/fmpz_poly.cpython-310-darwin.so +0 -0
- sage/libs/flint/fmpz_poly_sage.cpython-310-darwin.so +0 -0
- sage/libs/flint/nmod_poly_linkage.pxi +2 -4
- sage/libs/flint/qsieve.cpython-310-darwin.so +0 -0
- sage/libs/flint/qsieve_sage.cpython-310-darwin.so +0 -0
- sage/libs/flint/ulong_extras.cpython-310-darwin.so +0 -0
- sage/libs/flint/ulong_extras_sage.cpython-310-darwin.so +0 -0
- sage/matrix/change_ring.cpython-310-darwin.so +0 -0
- sage/matrix/matrix_complex_ball_dense.cpython-310-darwin.so +0 -0
- sage/matrix/matrix_cyclo_dense.cpython-310-darwin.so +0 -0
- sage/matrix/matrix_integer_dense.cpython-310-darwin.so +0 -0
- sage/matrix/matrix_integer_dense.pyx +26 -16
- sage/matrix/matrix_integer_sparse.cpython-310-darwin.so +0 -0
- sage/matrix/matrix_rational_dense.cpython-310-darwin.so +0 -0
- sage/matrix/matrix_rational_dense.pyx +1 -1
- sage/matrix/matrix_rational_sparse.cpython-310-darwin.so +0 -0
- sage/matrix/misc_flint.cpython-310-darwin.so +0 -0
- sage/modular/modform/eis_series_cython.cpython-310-darwin.so +0 -0
- sage/modular/modsym/apply.cpython-310-darwin.so +0 -0
- sage/modular/modsym/heilbronn.cpython-310-darwin.so +0 -0
- sage/modular/pollack_stevens/dist.cpython-310-darwin.so +0 -0
- sage/modular/pollack_stevens/dist.pyx +3 -3
- sage/quivers/algebra_elements.cpython-310-darwin.so +0 -0
- sage/quivers/algebra_elements.pyx +8 -6
- sage/quivers/paths.cpython-310-darwin.so +0 -0
- sage/rings/complex_arb.cpython-310-darwin.so +0 -0
- sage/rings/complex_arb.pyx +69 -7
- sage/rings/complex_interval.cpython-310-darwin.so +0 -0
- sage/rings/convert/mpfi.cpython-310-darwin.so +0 -0
- sage/rings/factorint_flint.cpython-310-darwin.so +0 -0
- sage/rings/fraction_field_FpT.cpython-310-darwin.so +0 -0
- sage/rings/number_field/bdd_height.py +2 -2
- sage/rings/number_field/galois_group.py +1 -1
- sage/rings/number_field/maps.py +2 -2
- sage/rings/number_field/number_field.py +9 -38
- sage/rings/number_field/number_field_element.cpython-310-darwin.so +0 -0
- sage/rings/number_field/number_field_element_quadratic.cpython-310-darwin.so +0 -0
- sage/rings/number_field/number_field_morphisms.cpython-310-darwin.so +0 -0
- sage/rings/number_field/number_field_rel.py +3 -3
- sage/rings/number_field/order.py +3 -3
- sage/rings/number_field/small_primes_of_degree_one.py +1 -1
- sage/rings/number_field/splitting_field.py +2 -1
- sage/rings/number_field/unit_group.py +1 -1
- sage/rings/polynomial/evaluation_flint.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/hilbert.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/polynomial_complex_arb.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/polynomial_integer_dense_flint.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/polynomial_integer_dense_flint.pyx +2 -1
- sage/rings/polynomial/polynomial_number_field.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/polynomial_rational_flint.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/polynomial_rational_flint.pyx +1 -1
- sage/rings/polynomial/polynomial_zmod_flint.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/polynomial_zmod_flint.pyx +2 -4
- sage/rings/polynomial/real_roots.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/refine_root.cpython-310-darwin.so +0 -0
- sage/rings/polynomial/weil/weil_polynomials.cpython-310-darwin.so +0 -0
- sage/rings/qqbar.py +9 -9
- sage/rings/real_arb.cpython-310-darwin.so +0 -0
- sage/rings/real_interval_absolute.cpython-310-darwin.so +0 -0
- sage/rings/real_mpfi.cpython-310-darwin.so +0 -0
- sage/rings/real_mpfi.pyx +1 -1
- sage/schemes/elliptic_curves/descent_two_isogeny.cpython-310-darwin.so +0 -0
- sage/schemes/elliptic_curves/descent_two_isogeny.pyx +3 -5
- {passagemath_flint-10.5.22.dist-info → passagemath_flint-10.5.24.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
|
|
1
|
-
Metadata-Version: 2.
|
1
|
+
Metadata-Version: 2.4
|
2
2
|
Name: passagemath-flint
|
3
|
-
Version: 10.5.
|
3
|
+
Version: 10.5.24
|
4
4
|
Summary: passagemath: Fast computations with MPFI and FLINT
|
5
5
|
Author-email: The Sage Developers <sage-support@googlegroups.com>
|
6
6
|
Maintainer: Matthias Köppe, passagemath contributors
|
@@ -29,8 +29,8 @@ Classifier: Programming Language :: Python :: Implementation :: CPython
|
|
29
29
|
Classifier: Topic :: Scientific/Engineering :: Mathematics
|
30
30
|
Requires-Python: <3.14,>=3.9
|
31
31
|
Description-Content-Type: text/x-rst
|
32
|
-
Requires-Dist: passagemath-categories~=10.5.
|
33
|
-
Requires-Dist: passagemath-ntl~=10.5.
|
32
|
+
Requires-Dist: passagemath-categories~=10.5.24.0
|
33
|
+
Requires-Dist: passagemath-ntl~=10.5.24.0
|
34
34
|
Requires-Dist: numpy>=1.19
|
35
35
|
Requires-Dist: numpy>=1.22.4
|
36
36
|
Provides-Extra: test
|
@@ -1,32 +1,32 @@
|
|
1
|
+
passagemath_flint-10.5.24.dist-info/RECORD,,
|
2
|
+
passagemath_flint-10.5.24.dist-info/WHEEL,sha256=ML3QW-Y0MA2y4y3MlP-8v1-CfbvCHOSLZAMsHL0UMkk,109
|
3
|
+
passagemath_flint-10.5.24.dist-info/top_level.txt,sha256=Kmzulf9WsphADFQuqgvdy5mvTLDj_V2zkFHU2s3UXos,6
|
4
|
+
passagemath_flint-10.5.24.dist-info/METADATA,sha256=BQjE6O_cM1kTVdCnMe1MaayyFjd_AKHRkSlYH66wxrc,3601
|
1
5
|
passagemath_flint.dylibs/libgsl.28.dylib,sha256=m529JfgXvK7_GqkgNneDp5N3qCFM7QUVP413LG_VQQo,2618912
|
2
|
-
passagemath_flint.dylibs/libmpfi.0.dylib,sha256=
|
6
|
+
passagemath_flint.dylibs/libmpfi.0.dylib,sha256=XagTezoW_ggysV_Y-kMASzl3aJTadDMRfVeslGIBpkY,167952
|
3
7
|
passagemath_flint.dylibs/libgf2x.3.dylib,sha256=DM8u7l1mWzRdj2W0Qr2GZvvuSE7nqMmamZYEdkDNcCY,137056
|
4
8
|
passagemath_flint.dylibs/libntl.44.dylib,sha256=N66XnE_d3syV5xgPbWYg2l7NSbFab3othVCddgsdVx4,2170096
|
5
9
|
passagemath_flint.dylibs/libgfortran.5.dylib,sha256=X50-wF9JpEZCtwDdg1_D0m-WFGSIf6HYEmaBQascQjs,1947952
|
6
|
-
passagemath_flint.dylibs/libopenblas_armv8p-r0.3.28.dylib,sha256=
|
10
|
+
passagemath_flint.dylibs/libopenblas_armv8p-r0.3.28.dylib,sha256=SFSCualxWQe3nY2kd4whk0MNQbZTxgLY65aKuXu_Zyg,12763056
|
7
11
|
passagemath_flint.dylibs/libflint.19.0.dylib,sha256=ECJj2qkRTo2nA-HjMivoSHxmYFRC84MKIWYL4Ss0RfA,8722128
|
8
12
|
passagemath_flint.dylibs/libquadmath.0.dylib,sha256=jkNHyAe-J-POk4QVEm0bs3nyJUl4K_mZGzU6hoBoU9Q,362752
|
9
13
|
passagemath_flint.dylibs/libgcc_s.1.1.dylib,sha256=Bf9UjkCnDbKpr5eUehjGUSBcUFA5AmsCvC6n0-zAH10,220512
|
10
14
|
passagemath_flint.dylibs/libgmp.10.dylib,sha256=g7hHJUv_Qd8h0sAQ68FpONMchYA47i6pf4snUVQDm98,464688
|
11
15
|
passagemath_flint.dylibs/libmpfr.6.dylib,sha256=0u3F5_rqspXFiE2VzyWtVx8MmBUf8qTIIHgnq5IFQjo,466160
|
12
|
-
passagemath_flint-10.5.22.dist-info/RECORD,,
|
13
|
-
passagemath_flint-10.5.22.dist-info/WHEEL,sha256=TAIYU7skie6QxsHLepjfWpVTq0DJ-igei-LfP8w5Nq8,109
|
14
|
-
passagemath_flint-10.5.22.dist-info/top_level.txt,sha256=Kmzulf9WsphADFQuqgvdy5mvTLDj_V2zkFHU2s3UXos,6
|
15
|
-
passagemath_flint-10.5.22.dist-info/METADATA,sha256=wdytC83F6n2uNabQUql8N-cjosTKTc0Soewxz86thQU,3601
|
16
16
|
sage/all__sagemath_flint.py,sha256=EpfIEBXUSo5cMp6KaD15mzl8rOQ2T74yGMlgLUdmxRU,876
|
17
17
|
sage/schemes/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
18
18
|
sage/schemes/elliptic_curves/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
19
19
|
sage/schemes/elliptic_curves/descent_two_isogeny_pari.pxd,sha256=uVI64a0PV_sEVlGOMCM9z9mIxmEaD8siAPN_ga0DTu8,165
|
20
|
-
sage/schemes/elliptic_curves/descent_two_isogeny.pyx,sha256=
|
21
|
-
sage/schemes/elliptic_curves/descent_two_isogeny.cpython-310-darwin.so,sha256=
|
22
|
-
sage/data_structures/bounded_integer_sequences.pyx,sha256=
|
20
|
+
sage/schemes/elliptic_curves/descent_two_isogeny.pyx,sha256=WqDEAM-fORj-xluLzeMRxp-AU8Z-W_yWOp40Wl7fi9Y,45790
|
21
|
+
sage/schemes/elliptic_curves/descent_two_isogeny.cpython-310-darwin.so,sha256=SBK4jpfMVWGsREwWjkbOLrj8-3Y0VjYOYhgz2ShtdUM,216256
|
22
|
+
sage/data_structures/bounded_integer_sequences.pyx,sha256=ud2KW0jdslwZkxHFAkcsLogl3Mec1cVUat0NcLw9Q5U,46261
|
23
23
|
sage/data_structures/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
24
|
-
sage/data_structures/bounded_integer_sequences.cpython-310-darwin.so,sha256=
|
24
|
+
sage/data_structures/bounded_integer_sequences.cpython-310-darwin.so,sha256=70q3JN_xTZhquTuXGl1uCH721vY8Lo7dKrqoxgJURcU,250176
|
25
25
|
sage/data_structures/bounded_integer_sequences.pxd,sha256=vnbaCjLfE3YIYUBLoUBbV5k9j9AeKRfpEiv_20krzzc,3055
|
26
26
|
sage/combinat/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
27
27
|
sage/combinat/posets/hasse_cython_flint.pyx,sha256=SJW3TizRL0g-UAZjUompM4q6LAuW9jzCYBmto3M7QY8,6666
|
28
28
|
sage/combinat/posets/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
29
|
-
sage/combinat/posets/hasse_cython_flint.cpython-310-darwin.so,sha256=
|
29
|
+
sage/combinat/posets/hasse_cython_flint.cpython-310-darwin.so,sha256=zFxggIcP9W32BJOFxvvdLz1xXJZmVQ2GS6QTMI3Y6nA,138848
|
30
30
|
sage/libs/all__sagemath_flint.py,sha256=1-6VHt1LGmqytv1a62Ol9YJiqrdx9pwtCvw9NHusZrs,325
|
31
31
|
sage/libs/flint/nmod_vec.pxd,sha256=K-zUPBTYd5YkP7hLaHqvg6cbN972OYFxUgqylMQYITI,2617
|
32
32
|
sage/libs/flint/types.pxd,sha256=lcQIOdiecpQT0qTy3wenqmApByRMQy-iFP5vIV6Rx1A,59611
|
@@ -35,7 +35,7 @@ sage/libs/flint/fmpz_mod.pxd,sha256=wBDLQqJQxJdbqYCRdkH1TkRf_k3RUpflLEe1S8HCISs,
|
|
35
35
|
sage/libs/flint/acb_poly.pxd,sha256=djf1V89O9tW_A8dMkupnpZEYtWjbGljTwHraE4nKEPY,24181
|
36
36
|
sage/libs/flint/fexpr_builtin.pxd,sha256=BnTmxRMDNENBvk5siHWzAMfvrNYbd0KSoTYL3seJ-TI,824
|
37
37
|
sage/libs/flint/fmpz_poly_factor.pxd,sha256=kfYqKE4KKMulqqteFa6lzdTI22uaS4kLahj0fui5Rjs,2190
|
38
|
-
sage/libs/flint/ulong_extras.cpython-310-darwin.so,sha256=
|
38
|
+
sage/libs/flint/ulong_extras.cpython-310-darwin.so,sha256=AO8dXbCuwz-wYwvDcko9SjNNQv3cl0F38tDJ1FbjHIc,75616
|
39
39
|
sage/libs/flint/qsieve_sage.pyx,sha256=LW8-Gsb_LTrUv-njgXXp0VntVoHI7H3x4rj-IjdE87Y,1775
|
40
40
|
sage/libs/flint/fmpq_mpoly.pxd,sha256=eOs_loBwNji2quGsk01o7f0d-LoL8KAiUeK9X2BIsuM,17439
|
41
41
|
sage/libs/flint/dirichlet.pxd,sha256=0OTNQRGxd5zxJceoZ_whGC_yPvaKqbFi7nf_gSTfj8c,4472
|
@@ -46,12 +46,12 @@ sage/libs/flint/acb_theta.pxd,sha256=DlehCISFPz5ignGvjTjf9gpKWis0gfgXiO5uVH5gGBI
|
|
46
46
|
sage/libs/flint/arb.pxd,sha256=kKAQCy2RYzhOt4wj9fv3S9Wjxh4GlKsoxbfwo9G30GY,27663
|
47
47
|
sage/libs/flint/acb_hypgeom.pxd,sha256=gVLOZa-kbz1o36-d-3yLWHUyqxKkhhQIYkB7duEy1HM,17837
|
48
48
|
sage/libs/flint/fmpq.pxd,sha256=91bzF_SKVILYgQeXz2pfAh-GvpB8u_AVJc6-bVi-OVI,10104
|
49
|
-
sage/libs/flint/nmod_poly_linkage.pxi,sha256=
|
49
|
+
sage/libs/flint/nmod_poly_linkage.pxi,sha256=E-qIZ5X2uYw4KbgdZ2tmeZQg4sZZGXsNVnSWiJwPOL8,19847
|
50
50
|
sage/libs/flint/acb_poly_macros.pxd,sha256=rinr1AXMquqZzvV6R0ECakGqQiUNmA7fhP6jjoIs6IM,236
|
51
51
|
sage/libs/flint/fmpq_vec.pxd,sha256=Yw9w5hG01GeNkQyZNr0H5gK-lbXYD-eoRnP4kFjumVk,1444
|
52
52
|
sage/libs/flint/acb_mat.pxd,sha256=Gj2bp0QaCAq3vlEZn9k4p6CWPwTzi92ixIh2TY_Ga-U,11206
|
53
53
|
sage/libs/flint/fmpzi.pxd,sha256=Uk4WhEZx0tuE0COTp4Va1_7sNC3kKVmCHh7v3LyWMNA,2909
|
54
|
-
sage/libs/flint/fmpz_factor_sage.cpython-310-darwin.so,sha256=
|
54
|
+
sage/libs/flint/fmpz_factor_sage.cpython-310-darwin.so,sha256=WHE-bar0No9Dk5yqOh-lP3Amyz7svesJIn30ka686wY,93968
|
55
55
|
sage/libs/flint/nmod.pxd,sha256=Xnpcb9rEVdMdZm4Eglh_ozNhTG-LRJ9t2muwjOfidjw,2102
|
56
56
|
sage/libs/flint/ca.pxd,sha256=uaapkTzKw_-tEH8juU6NOJxVCP8GBrDoA_TuDyt5bto,14250
|
57
57
|
sage/libs/flint/padic_mat.pxd,sha256=boQdbTiqNE7uT12YHXzHYV0AGPPzBafqIfv8NjiG6mk,4616
|
@@ -84,7 +84,7 @@ sage/libs/flint/padic_poly.pxd,sha256=UoaXUuXeBOzfhmIZ4hZ7gAloUUgzLYfLnIX_L7a0jP
|
|
84
84
|
sage/libs/flint/fmpz_mpoly_q.pxd,sha256=KydHPEHerR3bsYz3KWtkv96gpCW-cFZ3Zx__KZstf54,5169
|
85
85
|
sage/libs/flint/fmpz_mod_mpoly_factor.pxd,sha256=WJo1pXK1Wvyw8dbq4betsa58-UpHelyAb2viLAjFc0A,2030
|
86
86
|
sage/libs/flint/fft.pxd,sha256=sM3hJfYAo5I3OFu1X9e_h06Z8RKVugVFnu7c7VJg25M,7600
|
87
|
-
sage/libs/flint/fmpz_poly.cpython-310-darwin.so,sha256=
|
87
|
+
sage/libs/flint/fmpz_poly.cpython-310-darwin.so,sha256=sEUEfBggj9iM0Q9yopxZkUJRhH_4iGEAXoz_EEjhY_g,75568
|
88
88
|
sage/libs/flint/fq_default_poly.pxd,sha256=SSkmFqxJFb9n4lnhiuCKzUYo1p37qIspvQ_lAL_ZaTo,11087
|
89
89
|
sage/libs/flint/ca_ext.pxd,sha256=A0wbYcHWtQp3RT66ya0e_sIKGuPNCo4kjxLQUWlqViE,2070
|
90
90
|
sage/libs/flint/flint_ntl_wrap.h,sha256=B44t1cizugg1OEON_jqmegN2SLgFP8YVFisXR5VnMBE,811
|
@@ -127,14 +127,14 @@ sage/libs/flint/ca_mat.pxd,sha256=LFUgjVWMWgYGDXNWzIMmV0zI2NDX7aMCc3b23k0yM2s,10
|
|
127
127
|
sage/libs/flint/mpn_extras.pxd,sha256=Ivl8VhbFDQIuR6Uim29GUGsGZ3rcz14hzjZ9gMXxQy4,3130
|
128
128
|
sage/libs/flint/fmpz_mod_poly.pxd,sha256=yrivEJSIaZePuTqVLAb08sgA1TLrwOubYi-CIkxQAyk,33189
|
129
129
|
sage/libs/flint/qqbar.pxd,sha256=BFPBmBGCAjsZ8NNvINbK4ripuDImEdI0OPMIPAY3wNs,11883
|
130
|
-
sage/libs/flint/ulong_extras_sage.cpython-310-darwin.so,sha256=
|
130
|
+
sage/libs/flint/ulong_extras_sage.cpython-310-darwin.so,sha256=ZP0W3QQpNn7syYR3Fqi1NhGSzax3STaXQiR8zGok-2Y,93968
|
131
131
|
sage/libs/flint/fq_nmod_poly_factor.pxd,sha256=2TFR_KbMCzNNwppdDDfKfBKHBv81fr_vL6-rhLkdkZk,4419
|
132
132
|
sage/libs/flint/partitions.pxd,sha256=xGUoZni_lXL6nB3gk_vsae9XCAKjvArZ3GAZMsWVS8k,1140
|
133
133
|
sage/libs/flint/fq_default_mat.pxd,sha256=pC7NSjhmoSaIcmCHkEYSu493hOK1B3McXyjaFc1QTgs,6993
|
134
134
|
sage/libs/flint/nmod_poly.pxd,sha256=em9TUmiOgJUSSjeuoVorbac8BasrpEIt_ykgWiyWN_s,34962
|
135
135
|
sage/libs/flint/nmod_mat.pxd,sha256=ChgqzJ_CywBF3HjgD0NOdbXNzwPrGZQH0Qbc4vvdluk,8071
|
136
|
-
sage/libs/flint/flint_sage.cpython-310-darwin.so,sha256=
|
137
|
-
sage/libs/flint/fmpz_poly_sage.cpython-310-darwin.so,sha256=
|
136
|
+
sage/libs/flint/flint_sage.cpython-310-darwin.so,sha256=ew3sGgJ_6DjTRPs1XDGwbivXYvlXNGqsoBeEFOWNpvM,100704
|
137
|
+
sage/libs/flint/fmpz_poly_sage.cpython-310-darwin.so,sha256=C89ckGWBjIygt57qACiAhQxLQr3ratLVXFwpJRDYnV0,169584
|
138
138
|
sage/libs/flint/arb_macros.pxd,sha256=FLc5nWU20Njem8SJUkMZTNwaVsGYsv0fpk7rF8GLMPA,237
|
139
139
|
sage/libs/flint/acb_mat_macros.pxd,sha256=1E4D94r7wnKkVsDLCUZ72AVvb_rwr_oejiemi4fFLHw,306
|
140
140
|
sage/libs/flint/flint_sage.pyx,sha256=z2bse_jCPwA4Z5ZnaaOJ0NoxHU_d_0hGll_6X2EAHXo,4378
|
@@ -165,7 +165,7 @@ sage/libs/flint/arb_fmpz_poly.pxd,sha256=bXDTW5A7IBJ4pyGM6fAr5GtFAjFubvDOfb0Yv0s
|
|
165
165
|
sage/libs/flint/double_interval.pxd,sha256=T1gP41ucAeW2rLXa5qagjRqQ6i2BUXNteo2OaAL2zqI,1558
|
166
166
|
sage/libs/flint/thread_pool.pxd,sha256=aD1GwQqq_oiEJgKFRcRlUzzjpPBCDbnj5kD1yTx9Nbs,1286
|
167
167
|
sage/libs/flint/fq_zech_embed.pxd,sha256=EqmO-xmYUWjnn0ByhqZLtt0lzy-LXp9iS_HlmUh5hGM,2111
|
168
|
-
sage/libs/flint/arith.cpython-310-darwin.so,sha256=
|
168
|
+
sage/libs/flint/arith.cpython-310-darwin.so,sha256=YK0mqqZxKt2I1FM5rv-T_tT3GmlW7Zbv2vLIQcjZzNI,92656
|
169
169
|
sage/libs/flint/fq_zech_poly.pxd,sha256=LBHA7HiQZkrsX42lbcVh6IjRu3DPwdYV92zL44AvB24,26877
|
170
170
|
sage/libs/flint/fq_nmod_mpoly_factor.pxd,sha256=HhYsLK30caQKPPLD0rfrVUJYRiiiu2G4PKYWdRGEWJ4,2003
|
171
171
|
sage/libs/flint/acb_calc.pxd,sha256=uvglv9itbkMDK4iBqCaHOOHS1jhA4B9wJ2lJwqcmakE,1506
|
@@ -176,13 +176,13 @@ sage/libs/flint/gr_mpoly.pxd,sha256=amaIG1kRq1U6ZY7ee7WahAt3MKA6o7VRpZUg3xYt6sM,
|
|
176
176
|
sage/libs/flint/mag_macros.pxd,sha256=wOEz2FZY8IPTzPtw7pNXVibhW5By7TGviMr0lsI8syk,191
|
177
177
|
sage/libs/flint/gr_special.pxd,sha256=TxT5ZltQSTivnPdZkJDaeJdzfKsRCoIu-MlmLXstU0o,18038
|
178
178
|
sage/libs/flint/ca_poly.pxd,sha256=wk4MDQ7HRTvCGOqhib9Zj44QyAxryBr_cPYQCxN7c-c,9002
|
179
|
-
sage/libs/flint/fmpq_poly_sage.cpython-310-darwin.so,sha256=
|
179
|
+
sage/libs/flint/fmpq_poly_sage.cpython-310-darwin.so,sha256=ZJYaRUBm2vFmRBBNBljNzhAri3IyaKbXJixJCSc8ibA,76336
|
180
180
|
sage/libs/flint/nmod_poly_factor.pxd,sha256=HV9fQY-8dJtWU5eQdnFlZ4K32z7NM1lMxs-sXExOuQg,3057
|
181
181
|
sage/libs/flint/arb_mat.pxd,sha256=VgNmnf8IJKVoSwKoYwUNaQ1UA3b6jefEvK7sS4RpZb8,11093
|
182
182
|
sage/libs/flint/acb_dft.pxd,sha256=ebWFOonmFFFzyqJ4YYXT1nnHVWh_98K0o9WoRVDsmko,3464
|
183
183
|
sage/libs/flint/flint_wrap.h,sha256=L2ye0ILRPcIThvcTIWREtgDU9Bs0qens4mRqdUeQmQM,5587
|
184
184
|
sage/libs/flint/bernoulli.pxd,sha256=ypr4vCX4kOqEaADrBNwhylarJtfemCIIV7trHKMLRs8,1412
|
185
|
-
sage/libs/flint/arith_sage.cpython-310-darwin.so,sha256=
|
185
|
+
sage/libs/flint/arith_sage.cpython-310-darwin.so,sha256=eER6UqMIe85tGO2SwFRox0_SNLDg5IOEp_PIcLceBis,116576
|
186
186
|
sage/libs/flint/mpfr_vec.pxd,sha256=mWyyXQ4DjPzDPve2361val8x6GSfTv7N9F8zzT7GnmU,1326
|
187
187
|
sage/libs/flint/fq_nmod_mat.pxd,sha256=ZAYi9SQUgytyWUauwLm9NhRFuj170aq2R4gOirEQ5a8,8211
|
188
188
|
sage/libs/flint/fq_poly_factor.pxd,sha256=iS_IytZgOQA4BvodIRMVI50tpvjpc5-CAzr5Kbjo6ow,3849
|
@@ -195,10 +195,10 @@ sage/libs/flint/fmpz_mat.pxd,sha256=QZiE2BaE8929KjRYx5imvLA0C6eiHM0OfcFjwX9Huyk,
|
|
195
195
|
sage/libs/flint/mpf_mat.pxd,sha256=xXxgFiH2l7eLTWCP351BYanQY25IF1x_4_QxlHNfhfw,1952
|
196
196
|
sage/libs/flint/fmpz_mod_poly_factor.pxd,sha256=TYHdmIIKU_aE_V9G8Q_U3UiccSr6axeX9IqoOt2oJeQ,4216
|
197
197
|
sage/libs/flint/gr_mat.pxd,sha256=n-jELiSeruDiA_Kz0CDV_5ftsFCqX7_h7-YT-MlWEGU,14338
|
198
|
-
sage/libs/flint/qsieve.cpython-310-darwin.so,sha256=
|
198
|
+
sage/libs/flint/qsieve.cpython-310-darwin.so,sha256=0nlAOD62LIw8a48y5Uen991ZtrJDV2Uv5zmfL15jgrs,75472
|
199
199
|
sage/libs/flint/fmpz_poly_q.pxd,sha256=fY875U3L-o7xC4QokqZbOvFj6tMR6dKgG8D1HVzgOyA,3913
|
200
200
|
sage/libs/flint/nmod_poly_mat.pxd,sha256=Zvdev9reIgaJfH6Fb1z5FlZTO3s8ISHfBFTzu4Ay42A,6086
|
201
|
-
sage/libs/flint/qsieve_sage.cpython-310-darwin.so,sha256=
|
201
|
+
sage/libs/flint/qsieve_sage.cpython-310-darwin.so,sha256=2sOKnPF3Fi5fumktAhx3n31OMKUxya6bSHRdfbNztTQ,94976
|
202
202
|
sage/libs/arb/types.pxd,sha256=YqMZvzPqZ0aUJURL0-B5ZQvnz6GKUh39AxptoVmPHTc,739
|
203
203
|
sage/libs/arb/acb_poly.pxd,sha256=By7SdGG9f-RRQPi59cge7RsxFel2WOwpMwkSbo-g1do,6124
|
204
204
|
sage/libs/arb/arb.pxd,sha256=02M-3Sw2DGydgNBfM8KxbG5WblWoOPWp2e5yJi8V42s,4678
|
@@ -214,129 +214,129 @@ sage/libs/arb/acb.pxd,sha256=DxWgW1OtKYzPeUZ9V6sN337R23HlahAMs_-8haoB8s0,2810
|
|
214
214
|
sage/libs/arb/arb_wrap.h,sha256=vTLu2NXhIYMQLIEfT9BMiT4VihNE8v2wwde0bAwdKkQ,747
|
215
215
|
sage/libs/arb/arb_hypgeom.pxd,sha256=frVtrP511unCxhE17kqZCLBTJQ6w1pFr-aHZJyQCpO8,2391
|
216
216
|
sage/libs/arb/arb_fmpz_poly.pxd,sha256=hZSkpuSW0CAK7RiXYGUpELhZf-5we4sLzltsOwivt8w,807
|
217
|
-
sage/libs/arb/arith.cpython-310-darwin.so,sha256=
|
217
|
+
sage/libs/arb/arith.cpython-310-darwin.so,sha256=jlWJ2Tw3C927Tq9vjtQNGy8R0FDMmr9tMxrv-_jQlV4,96512
|
218
218
|
sage/libs/arb/acb_calc.pxd,sha256=NFYXS5aWinQYYHfoYhO1xYD5xq5kVcVrRf85FdijawM,337
|
219
219
|
sage/libs/arb/bernoulli.pxd,sha256=-6_hHEKtKYdoId07wfl0wlChHBjRTew0pdW3bSpP0rU,227
|
220
220
|
sage/quivers/paths.pyx,sha256=9LTXkSCzX90XqHdTXEgDgegmSYoKUPE7pruWg9Mnf5w,26592
|
221
|
-
sage/quivers/algebra_elements.pyx,sha256=
|
221
|
+
sage/quivers/algebra_elements.pyx,sha256=s823R8Nc39dHipX6FY106YVxkL1rQ9ZAY2U3OSBExQ4,52256
|
222
222
|
sage/quivers/algebra_elements.pxi,sha256=31sewC1VB685NcX0PwqSsos9Lvc5CDUGX1Rkc8kc9fc,44890
|
223
223
|
sage/quivers/algebra.py,sha256=lApwrXpv8zx341pLbARCeq0lf5hyZWQNKA64sl4SDAg,25123
|
224
224
|
sage/quivers/ar_quiver.py,sha256=Zdu2nWJQZByhzww3MBKuU84inLm5GRtO-Pz7lXnpgwY,33821
|
225
225
|
sage/quivers/all.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
226
|
-
sage/quivers/algebra_elements.cpython-310-darwin.so,sha256=
|
226
|
+
sage/quivers/algebra_elements.cpython-310-darwin.so,sha256=Hec9xB5oJ-CTMTVFcp2QllTRfShuJzDAzv-jgPZPBzo,306592
|
227
227
|
sage/quivers/path_semigroup.py,sha256=mMQSFhcLFoMXIF2_h367fQD5HS2yy-VtIUrf9PoOlvU,42259
|
228
|
-
sage/quivers/paths.cpython-310-darwin.so,sha256=
|
228
|
+
sage/quivers/paths.cpython-310-darwin.so,sha256=CDSbkXz14ny91IcHm56CXLGC4gqTWVfL7FaCtdyi8ZA,211248
|
229
229
|
sage/quivers/morphism.py,sha256=5ZMNlntBhmru5XSutFaTS_PA55xibWhIYnXxHgsQBLY,50051
|
230
230
|
sage/quivers/algebra_elements.pxd,sha256=jZmiF9NWpynNAoCrzh_UBXZTmTKab9BM9r68DCOrB7g,4132
|
231
231
|
sage/quivers/homspace.py,sha256=5olvtgHsGC1qNyCPku7pyBrMCsMde80qw4DRWfAEX8I,25005
|
232
232
|
sage/quivers/paths.pxd,sha256=-DeHgEKG3x5xjRq7xqq_VOBu2SvZHSf9O5UHwvR8g70,547
|
233
233
|
sage/quivers/representation.py,sha256=S5tJm5rasuX38ZlEJWIp5pGgfUqOUAV7edcSXmC0zR4,111401
|
234
234
|
sage/modular/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
235
|
-
sage/modular/pollack_stevens/dist.pyx,sha256=
|
235
|
+
sage/modular/pollack_stevens/dist.pyx,sha256=592HPKcP_lByHWTOHXQDI8pjTm3-kWaPS4HpYp3tzrY,49709
|
236
236
|
sage/modular/pollack_stevens/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
237
|
-
sage/modular/pollack_stevens/dist.cpython-310-darwin.so,sha256=
|
237
|
+
sage/modular/pollack_stevens/dist.cpython-310-darwin.so,sha256=LaXJ2Td6mGYn5eSo8hm9Y2nXa_s0i_cgoPiqlSQX_io,398176
|
238
238
|
sage/modular/pollack_stevens/dist.pxd,sha256=F5t1rwfGeTdI78Sj5zpfGhazKkBFdjYlt4oVaZdahRY,1064
|
239
|
-
sage/modular/modsym/heilbronn.cpython-310-darwin.so,sha256=
|
239
|
+
sage/modular/modsym/heilbronn.cpython-310-darwin.so,sha256=i6mmYI1Cu7-cfv_WRTIrRLKiOQPlsfd3dzYmXziw4iU,203440
|
240
240
|
sage/modular/modsym/apply.pyx,sha256=5awe3uEkPQLrlZADvuyb47jMNUPGEwXHxXM2pshjpRY,3148
|
241
241
|
sage/modular/modsym/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
242
|
-
sage/modular/modsym/apply.cpython-310-darwin.so,sha256=
|
242
|
+
sage/modular/modsym/apply.cpython-310-darwin.so,sha256=5SKndeZNB2nkI-sfIK3EzlZTEsiSUOIInW7l5GzLWuw,98208
|
243
243
|
sage/modular/modsym/apply.pxd,sha256=TfQrRggt8yd48QvYXp5ZBzYqLNURJmyPhtpLimj58Nw,256
|
244
244
|
sage/modular/modsym/heilbronn.pyx,sha256=iPDl8pLfdospDqNxMSf5EkGQ3pr3Eg6uTBvB0JyAZdM,32302
|
245
245
|
sage/modular/modform/eis_series_cython.pyx,sha256=5U4NnwiHvPJcHFsEOlVdO3Jbv3GNSyiLTUi_Cr5XM0I,7021
|
246
246
|
sage/modular/modform/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
247
|
-
sage/modular/modform/eis_series_cython.cpython-310-darwin.so,sha256=
|
248
|
-
sage/rings/complex_arb.pyx,sha256=
|
249
|
-
sage/rings/qqbar.py,sha256=
|
247
|
+
sage/modular/modform/eis_series_cython.cpython-310-darwin.so,sha256=k2uEFTF7Va05ZC6b19iGgugQzb6HM2phjDsDnWci6zw,116304
|
248
|
+
sage/rings/complex_arb.pyx,sha256=C7W6QLnToO-PhRFzonjAgQ8dmtWNu_Je_aurczKrJ1U,178934
|
249
|
+
sage/rings/qqbar.py,sha256=6MPhyBTuk8r4_zrlAXhQnf1DsaN2VOi8s7UtijbFeYQ,336695
|
250
250
|
sage/rings/complex_interval.pxd,sha256=VT84I3LrXcKU24cN-f_ouS50P3VyAnWn_1fD9iWLVUI,986
|
251
251
|
sage/rings/imaginary_unit.py,sha256=GTfOWZSQQza5cdPMSAl9BQpk0fj2OyikYhuMliTr6Z0,135
|
252
252
|
sage/rings/real_interval_absolute.pyx,sha256=0qk3iTLy-EaGb--8tY4euEXb4suwWaSFZYe_FmXNYRA,36712
|
253
|
-
sage/rings/real_interval_absolute.cpython-310-darwin.so,sha256=
|
253
|
+
sage/rings/real_interval_absolute.cpython-310-darwin.so,sha256=i2ZYHvMVDdPfA1WaGMfCAfhG09r3UToCjEEAznVK1Eg,279136
|
254
254
|
sage/rings/fraction_field_FpT.pyx,sha256=kK9AE7XKvpN2VyAwYln4JI1aF7jCr9GqkM624G9gxi0,63587
|
255
255
|
sage/rings/real_arb.pxd,sha256=Ao86JjZUmunlKL8ye5DEkIveabaIqq8fK_Xu2_tWFq8,844
|
256
|
-
sage/rings/real_arb.cpython-310-darwin.so,sha256=
|
256
|
+
sage/rings/real_arb.cpython-310-darwin.so,sha256=tSfINLJDcXaGPY7KC2hjto30mqla_j3ZgZ0Rj2b7Ea8,583616
|
257
257
|
sage/rings/all__sagemath_flint.py,sha256=jnjyyqskGNcCqOq11gc-3PyCP92GfupWv8Ojw5YmNKE,1114
|
258
|
-
sage/rings/factorint_flint.cpython-310-darwin.so,sha256=
|
259
|
-
sage/rings/complex_interval.cpython-310-darwin.so,sha256=
|
258
|
+
sage/rings/factorint_flint.cpython-310-darwin.so,sha256=A4PPS99tBGLXAsgsCt19Mx2oK_MBz7tuOPP0e7uYVNM,94688
|
259
|
+
sage/rings/complex_interval.cpython-310-darwin.so,sha256=Q_9hPMN0y4JUdvUMOH6UWW3rZMz9WFL8v1N5gP4aT8M,352320
|
260
260
|
sage/rings/real_arb.pyx,sha256=iHHEEuubw3cqCNAMpMNmmWS3Jdds9uAeLqjU0aZadN0,126399
|
261
261
|
sage/rings/fraction_field_FpT.pxd,sha256=ZwvNHfOoJIpyTjWoMNInEmeiI7-iYCDJGfyDrFVOPcA,807
|
262
|
-
sage/rings/fraction_field_FpT.cpython-310-darwin.so,sha256=
|
262
|
+
sage/rings/fraction_field_FpT.cpython-310-darwin.so,sha256=sVrxSanX_QhTqzA2yIs1j--JWDAHhn0KkKvRaLr71mg,335120
|
263
263
|
sage/rings/factorint_flint.pyx,sha256=9mQEqOdcIg6xgNnlG-8AuIm3kTJOgdFnvGZ2SyNlcTM,2598
|
264
|
-
sage/rings/complex_arb.cpython-310-darwin.so,sha256=
|
265
|
-
sage/rings/real_mpfi.cpython-310-darwin.so,sha256=
|
264
|
+
sage/rings/complex_arb.cpython-310-darwin.so,sha256=Hrl4tsxkwnrCao7gwYFRU_eXEUAGNah3peCef9sfwBU,731008
|
265
|
+
sage/rings/real_mpfi.cpython-310-darwin.so,sha256=Mw2H8plmUsUmc6CNG5mgLvbpqYamJ4YJM7tyf9VunUk,614384
|
266
266
|
sage/rings/complex_interval_field.py,sha256=KIXrN_Ol8dUS3O502U-gzQCCAxBgPMvETdDhAe6in_o,21858
|
267
267
|
sage/rings/cif.py,sha256=ws0SNraUJnvO4APtW4ZDCd16Mgrw-TuSCgwOkPisrVg,141
|
268
268
|
sage/rings/complex_interval.pyx,sha256=ZGDregJUCoQPyoMOI9h2gRWbc5j0YzayeMsOmOr93bo,84288
|
269
269
|
sage/rings/monomials.py,sha256=1nTdkeYs67IklE6VydcS6cnJJUlWVO3bSg4f3CDvxKg,2116
|
270
|
-
sage/rings/real_mpfi.pyx,sha256=
|
270
|
+
sage/rings/real_mpfi.pyx,sha256=o_3hPOEXvyvgajwo74gzjzkz62Xn05elaJ7cafqA8mg,177257
|
271
271
|
sage/rings/complex_arb.pxd,sha256=vjVPkuiQC7trTz-belXKb2s-hboBu9mC9qSfuL6CJM8,984
|
272
272
|
sage/rings/padics/all__sagemath_flint.py,sha256=x3prfnuoIEkYoOkaVFLESdcMyalr9Gr9QfnxIiFbKMU,95
|
273
|
-
sage/rings/number_field/number_field_morphisms.cpython-310-darwin.so,sha256=
|
274
|
-
sage/rings/number_field/number_field_element.cpython-310-darwin.so,sha256=
|
275
|
-
sage/rings/number_field/galois_group.py,sha256=
|
276
|
-
sage/rings/number_field/maps.py,sha256
|
273
|
+
sage/rings/number_field/number_field_morphisms.cpython-310-darwin.so,sha256=qEdtEQlDnAMsrYwr-79mQoIkYcaGnK2WwIMqNRzQCwc,209056
|
274
|
+
sage/rings/number_field/number_field_element.cpython-310-darwin.so,sha256=pHze_SbdeTV53qkeRekFnRHiIWEoQYlkugjUIedtXQ8,912384
|
275
|
+
sage/rings/number_field/galois_group.py,sha256=h9FI33HIMK3n-dzanUYRf7fjyL4tsYkbxrs-rJkxGBk,48108
|
276
|
+
sage/rings/number_field/maps.py,sha256=18sEapbrtklBLOqRCyYWjtPZxY1Sg5WJOQjrgeLBklE,24734
|
277
277
|
sage/rings/number_field/class_group.py,sha256=zNsofisfBueLOkB0OcE6PAWlg80ip_-2_nPUIzf7FQU,25664
|
278
278
|
sage/rings/number_field/selmer_group.py,sha256=Ddey1MDi3WgtlDLojmBzbEK-jsGyxz0RkTBbz6xTgWU,24440
|
279
|
-
sage/rings/number_field/splitting_field.py,sha256=
|
279
|
+
sage/rings/number_field/splitting_field.py,sha256=HXbctiCEzKcnudaope55c_GBcgB3YS_qe_MGE0HEkbk,26997
|
280
280
|
sage/rings/number_field/number_field_morphisms.pyx,sha256=czP4GusZXYeBQsbLfWPWsDdpXzGhwEyYHv6iIz2MG_8,28529
|
281
|
-
sage/rings/number_field/number_field.py,sha256=
|
281
|
+
sage/rings/number_field/number_field.py,sha256=MnrSMIUoX_84L6sMpfRy2Z3acmBVwtMUVrsCivkpe_s,476439
|
282
282
|
sage/rings/number_field/number_field_element_quadratic.pxd,sha256=gvPXtoxMUM0c1I3WOKrHFH14xrreCZCnmVQJsqMrYHs,1160
|
283
|
-
sage/rings/number_field/order.py,sha256=
|
283
|
+
sage/rings/number_field/order.py,sha256=vn2d1m5gtS0KTceEE9nhsSCcSEPVsb0m8MFzF3UZqiQ,105771
|
284
284
|
sage/rings/number_field/S_unit_solver.py,sha256=lmopRsDEMATKkUzLV9FBJLDWmiIgT7i-aAqa26ZCfr0,105419
|
285
|
-
sage/rings/number_field/number_field_element_quadratic.cpython-310-darwin.so,sha256=
|
285
|
+
sage/rings/number_field/number_field_element_quadratic.cpython-310-darwin.so,sha256=TLHXRNIVpRRPUE7DIlCp2qjlbaZ79TtOk3zJ7CKiDOo,429280
|
286
286
|
sage/rings/number_field/number_field_element.pxd,sha256=WHRhdPTKIUniKcKtka8lcKCLih2pPVqcpMeQoz4jtnU,1860
|
287
287
|
sage/rings/number_field/all__sagemath_flint.py,sha256=EGBWTnS5YR2UdjnLwlLGW4AZ5lpupWyetcrAZsBKXsg,424
|
288
288
|
sage/rings/number_field/number_field_element.pyx,sha256=q0hWF8MYazAZqt3mHRAdhVsj6dz6YVVpGxribQlZH-w,193629
|
289
|
-
sage/rings/number_field/small_primes_of_degree_one.py,sha256=
|
289
|
+
sage/rings/number_field/small_primes_of_degree_one.py,sha256=r2nYYFl4QSO0OZez8hskGr5lVdidhP2lu5yG7XF_zxU,8854
|
290
290
|
sage/rings/number_field/homset.py,sha256=B5rYSpzt1XwgM-93kiyTJUXak8EIn9_WD79PPAB1DwA,24156
|
291
291
|
sage/rings/number_field/number_field_element_quadratic.pyx,sha256=hUJNNx2qSxEcL2y5UBeaeyGU9RFBCPbINLP4cxjBjXM,104110
|
292
292
|
sage/rings/number_field/structure.py,sha256=8d7QdPX9FbSyJp7JanfWqe5X3NkK_Rk93hiZJk5WhkQ,14215
|
293
|
-
sage/rings/number_field/number_field_rel.py,sha256=
|
293
|
+
sage/rings/number_field/number_field_rel.py,sha256=CTz0CPJkSvAzZ_bbuqhD1Mufv_xxvDi-J_kigIUjoo0,107054
|
294
294
|
sage/rings/number_field/morphism.py,sha256=1cQZeKGHlSezfweJTzZDyeQsFmitKJKC99qmsye9Ld4,10228
|
295
|
-
sage/rings/number_field/bdd_height.py,sha256=
|
295
|
+
sage/rings/number_field/bdd_height.py,sha256=zvD6GiVy2acMgEzAxpIyXUfl2vGqvnqCPYRJDHYrAb0,21765
|
296
296
|
sage/rings/number_field/number_field_ideal_rel.py,sha256=KOSQ1F-SNjQ6dTQVwd6pbQfetxZ071LcpzSPr2L_hpI,32834
|
297
|
-
sage/rings/number_field/unit_group.py,sha256=
|
297
|
+
sage/rings/number_field/unit_group.py,sha256=aoE8PSVTyJKgYHZcSXhk-rHQBZNww9MJ39ZWfHiLuDs,24001
|
298
298
|
sage/rings/number_field/order_ideal.py,sha256=tn4tGjOqK3eps4B3s7siT1p9OvJ2Tpg5nHtUA1jKhOQ,27409
|
299
299
|
sage/rings/polynomial/real_roots.pxd,sha256=hGHYKRfVROqdKussrisPauOyfIjfubm9Eo5RNyVzW20,2031
|
300
|
-
sage/rings/polynomial/polynomial_rational_flint.pyx,sha256=
|
301
|
-
sage/rings/polynomial/polynomial_number_field.cpython-310-darwin.so,sha256=
|
302
|
-
sage/rings/polynomial/polynomial_integer_dense_flint.pyx,sha256=
|
303
|
-
sage/rings/polynomial/polynomial_complex_arb.cpython-310-darwin.so,sha256=
|
300
|
+
sage/rings/polynomial/polynomial_rational_flint.pyx,sha256=kXcsUpiQzpfhAbpM0SsyJ5g2oWR4kV8EBrJkF-o213Y,87527
|
301
|
+
sage/rings/polynomial/polynomial_number_field.cpython-310-darwin.so,sha256=gZMz3Tfpx-dMnIrAuzETfAT5TrGkgdJjO_gLfRmHfCE,140864
|
302
|
+
sage/rings/polynomial/polynomial_integer_dense_flint.pyx,sha256=3Ik9FwNoKdF6S8DbN_AlvuyI9K-Dkq1aP1MAH_J6DDg,58998
|
303
|
+
sage/rings/polynomial/polynomial_complex_arb.cpython-310-darwin.so,sha256=oP46SV9crEM0pFIxdTI6w_lYp93opgIOlILcDyOdsNU,256416
|
304
304
|
sage/rings/polynomial/polynomial_complex_arb.pyx,sha256=99kaGCdw3hp3kA_pAqFTzoMLkB6fazHnlRH1w-NwQWA,32578
|
305
|
-
sage/rings/polynomial/polynomial_zmod_flint.pyx,sha256=
|
305
|
+
sage/rings/polynomial/polynomial_zmod_flint.pyx,sha256=thUg8lmBS_xxo42Ej_XvEq2xnomAvCDZjLRJR9T1xGA,35557
|
306
306
|
sage/rings/polynomial/evaluation_flint.pxd,sha256=mAN7DjrMU9gr2b_HrZNqy5YdL3UUl7PzXmMbp93e-8E,340
|
307
307
|
sage/rings/polynomial/complex_roots.py,sha256=XLlnhqawWk31gT5J11MUtE04VBkcpCxw_tBiTejQM34,11205
|
308
|
-
sage/rings/polynomial/hilbert.cpython-310-darwin.so,sha256=
|
308
|
+
sage/rings/polynomial/hilbert.cpython-310-darwin.so,sha256=ftFgEJ4TdVe7f018VGAdNM-_yVXJ-hpNXl6M89-DPig,207440
|
309
309
|
sage/rings/polynomial/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
310
310
|
sage/rings/polynomial/polynomial_number_field.pyx,sha256=nGK2SfmdfS0Dp3cvpoQ3mkShvgMwh9WJocwlmLnnbH4,11465
|
311
|
-
sage/rings/polynomial/real_roots.cpython-310-darwin.so,sha256
|
312
|
-
sage/rings/polynomial/polynomial_rational_flint.cpython-310-darwin.so,sha256=
|
311
|
+
sage/rings/polynomial/real_roots.cpython-310-darwin.so,sha256=-eBQbcnfkAskpGlfRi6TsB3eezx09yhpI13MWnr0Bdw,886528
|
312
|
+
sage/rings/polynomial/polynomial_rational_flint.cpython-310-darwin.so,sha256=nZbxaw0eBKGvkiq5CMXorvIs2kcuIGrnjmnZOjeDXgU,465008
|
313
313
|
sage/rings/polynomial/polynomial_zmod_flint.pxd,sha256=f1uiTT30tOyQJ5dspV7kp8O6mOXIf1lu_oC7Yvlg0O4,879
|
314
314
|
sage/rings/polynomial/evaluation_flint.pyx,sha256=viULCThQumdclBxHWRyqGUJ7CT71nuKmgdYEO2Yph3I,2276
|
315
315
|
sage/rings/polynomial/polynomial_complex_arb.pxd,sha256=dL33x7bBB_CF41pR_EOCXKsVUl6lsw7eJ8yjlrsKeek,321
|
316
316
|
sage/rings/polynomial/refine_root.pyx,sha256=u97R1beu8_JCYEMVF7B5dT_aM0KF_S4yyuGoQxPxkTQ,5643
|
317
317
|
sage/rings/polynomial/polynomial_integer_dense_flint.pxd,sha256=EqFP3CLIYkY2rPttb3djvVg_sphHO2PHYW4KxkmKKx4,452
|
318
|
-
sage/rings/polynomial/polynomial_integer_dense_flint.cpython-310-darwin.so,sha256=
|
318
|
+
sage/rings/polynomial/polynomial_integer_dense_flint.cpython-310-darwin.so,sha256=SZ6wXUZ4PQR099w7syjDM5cWuByYB5x0s0Lst8jR5M4,400304
|
319
319
|
sage/rings/polynomial/real_roots.pyx,sha256=wGCK5MVnwYfndCzFr4HrLzNfCHxwiPe3tORdjrrlfj8,185288
|
320
320
|
sage/rings/polynomial/polynomial_rational_flint.pxd,sha256=1gV8T53ETOy2C0ssd1xoqGV-Z4vtIU7JFhlSZX6PA4Q,971
|
321
321
|
sage/rings/polynomial/hilbert.pyx,sha256=bYcHjTSkNlPPUvRDdXuVzfY-Tngcaod-GIeiRVlzFV0,24239
|
322
|
-
sage/rings/polynomial/refine_root.cpython-310-darwin.so,sha256=
|
323
|
-
sage/rings/polynomial/evaluation_flint.cpython-310-darwin.so,sha256=
|
324
|
-
sage/rings/polynomial/polynomial_zmod_flint.cpython-310-darwin.so,sha256=
|
322
|
+
sage/rings/polynomial/refine_root.cpython-310-darwin.so,sha256=n0KVcwBT01Bi0-rLL1bORkjnBRINZzisRKhIQMbFqFI,78384
|
323
|
+
sage/rings/polynomial/evaluation_flint.cpython-310-darwin.so,sha256=Ye6zKtA0qg_uMCpzEx6OBNSb2C4_Q6JU8wWjyFdOroI,92192
|
324
|
+
sage/rings/polynomial/polynomial_zmod_flint.cpython-310-darwin.so,sha256=0QgyBI6jRZ2W24Fom2aaUMl8lTY1bzQtCLseIYHkow0,395776
|
325
325
|
sage/rings/polynomial/weil/weil_polynomials.pyx,sha256=9RtMa1Zpa50T8aCvxIOpq68u5T21bdQDsLoO1KRTKKE,23168
|
326
326
|
sage/rings/polynomial/weil/power_sums.h,sha256=Xe1slUe1-dIxSCqoeJjwJxPMhRhVz9bSa-8yqkeOxMQ,1442
|
327
327
|
sage/rings/polynomial/weil/all.py,sha256=3NYIrj3CtGikzDqtOiS02xEU6PSLuXlvel6rSCgtDQY,184
|
328
|
-
sage/rings/polynomial/weil/weil_polynomials.cpython-310-darwin.so,sha256
|
328
|
+
sage/rings/polynomial/weil/weil_polynomials.cpython-310-darwin.so,sha256=4XaeET_-zrlUdzgAjcc6KZKFOryVmpVlxUpEmZeNsco,228640
|
329
329
|
sage/rings/convert/mpfi.pyx,sha256=J4M5js1bHLO7It4PJlqevP_McO9DHHqkk14tBCswytk,21061
|
330
330
|
sage/rings/convert/all.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
331
|
-
sage/rings/convert/mpfi.cpython-310-darwin.so,sha256=
|
331
|
+
sage/rings/convert/mpfi.cpython-310-darwin.so,sha256=HmKeYwfqnZrhUsP-PgjOVnWv45dkqeDlpgTD7532UYQ,140144
|
332
332
|
sage/rings/convert/mpfi.pxd,sha256=6h4LlaWwZj3OFqe_whD3Fb9CTE48BwlEYbDLvkLeY3s,310
|
333
|
-
sage/graphs/matchpoly.cpython-310-darwin.so,sha256=
|
333
|
+
sage/graphs/matchpoly.cpython-310-darwin.so,sha256=51CsTDvJVlPbbDJ20-2x_8_OxbVa2uds2IdpkxEGwkw,160944
|
334
334
|
sage/graphs/chrompoly.pyx,sha256=9qwZSd4xyM0amW-nJEHXyu3ABbAcKr_jJCIq8qujORc,20413
|
335
|
-
sage/graphs/chrompoly.cpython-310-darwin.so,sha256=
|
335
|
+
sage/graphs/chrompoly.cpython-310-darwin.so,sha256=ekAEIYiFlJvewR94MZKKk7_y9m1kV6r7PLmWRldKc48,225408
|
336
336
|
sage/graphs/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
337
337
|
sage/graphs/matchpoly.pyx,sha256=d4NEXXWmwMqRVrOCUy_Xqvyek7XA79VQQ87rbyy6vp0,14439
|
338
338
|
sage/matrix/matrix_integer_sparse.pxd,sha256=6HyqNcPXHpvlHCcUdh2OjEDlM55OoMi410wNTJPuMDQ,311
|
339
|
-
sage/matrix/matrix_complex_ball_dense.cpython-310-darwin.so,sha256=
|
339
|
+
sage/matrix/matrix_complex_ball_dense.cpython-310-darwin.so,sha256=Wbt99gxZeg8FwA_otKvestu6acExORx3yHpyhPyQ6v4,226448
|
340
340
|
sage/matrix/matrix_rational_sparse.pxd,sha256=AaOUlYCJ5aHoD5ComWm0APlveJyzk0LunRe8lmNNmW0,380
|
341
341
|
sage/matrix/matrix_rational_dense.pxd,sha256=URcgszbgnqo0j1geqVtKAFv7SbE3sKWKATSJca_qDoM,883
|
342
342
|
sage/matrix/matrix_integer_dense_hnf.py,sha256=CP_bD7fo1KVSFLvNMvQlBYHiLmBNdnP50k6lYeDgYkk,41267
|
@@ -344,19 +344,19 @@ sage/matrix/matrix_cyclo_dense.pyx,sha256=rM7sPan-m9tXRdfNKRilm31FfSh7AVhT8SgFZn
|
|
344
344
|
sage/matrix/matrix_complex_ball_dense.pyx,sha256=BO71xyUS58IP4bWJULNIdZKM6vjU9y42dm79ZvmNmR4,35715
|
345
345
|
sage/matrix/matrix_integer_dense_saturation.py,sha256=sBNiLA4sQPUQKJM6DTM0eprdcTkqcBnrVp065SNpU_0,10553
|
346
346
|
sage/matrix/all__sagemath_flint.py,sha256=xBFppIZjh2y3Vj3UOLBqiOgsWbPPkZfHvSIpAIizHSk,44
|
347
|
-
sage/matrix/matrix_integer_dense.pyx,sha256=
|
347
|
+
sage/matrix/matrix_integer_dense.pyx,sha256=1ZhMybi4gc0f544sSf4udiyJ4jLdMJv8oSFcTIqjLuQ,195095
|
348
348
|
sage/matrix/matrix_integer_dense.pxd,sha256=HvwFb4B8O9YwXxm0wNYLtgmnoxjQr3qqNutzvRCBzQs,1386
|
349
|
-
sage/matrix/matrix_rational_dense.cpython-310-darwin.so,sha256=
|
350
|
-
sage/matrix/misc_flint.cpython-310-darwin.so,sha256=
|
349
|
+
sage/matrix/matrix_rational_dense.cpython-310-darwin.so,sha256=NoJpcJDKfbjLzdLKcvkLY4ejSPMc6Pmt48ZagvzjrOA,479024
|
350
|
+
sage/matrix/misc_flint.cpython-310-darwin.so,sha256=IfUwaChGR3PYTGqs5X4tsuQEsnbE3jGUX8JYfqSkDv4,98144
|
351
351
|
sage/matrix/misc_flint.pyx,sha256=jYYkMonN03klh5BrbPQvpFmeoQbOjWiXeaBmmNkiCwE,3619
|
352
352
|
sage/matrix/matrix_complex_ball_dense.pxd,sha256=xYKLJBlL3RIRQtD5MbO2wTvS-vidmNqdlZ_ga9gxItQ,580
|
353
353
|
sage/matrix/matrix_cyclo_dense.pxd,sha256=6Hj_fUpHuMzG86NyDJPmT4vHMh1lOk4kEajf9LHY9Us,542
|
354
|
-
sage/matrix/matrix_integer_dense.cpython-310-darwin.so,sha256=
|
355
|
-
sage/matrix/matrix_rational_sparse.cpython-310-darwin.so,sha256
|
356
|
-
sage/matrix/matrix_integer_sparse.cpython-310-darwin.so,sha256=
|
354
|
+
sage/matrix/matrix_integer_dense.cpython-310-darwin.so,sha256=jgEA-pjWCAySL-jp931l7lC9vPv3hqx7835I7GmyJCQ,796064
|
355
|
+
sage/matrix/matrix_rational_sparse.cpython-310-darwin.so,sha256=wctwHfr1631cmwPuwiuCXA3uPIPZVWbURvsPct6gCws,200928
|
356
|
+
sage/matrix/matrix_integer_sparse.cpython-310-darwin.so,sha256=dfkabpqsOoEpy2wPfCX8dAJYNE8iuiaW5oeRX9EBr08,222960
|
357
357
|
sage/matrix/change_ring.pyx,sha256=OI-cWieOjF5p77XnEjQyhfbcMqP1yQucaiTaEjrq6x0,1557
|
358
|
-
sage/matrix/matrix_cyclo_dense.cpython-310-darwin.so,sha256=
|
359
|
-
sage/matrix/matrix_rational_dense.pyx,sha256=
|
358
|
+
sage/matrix/matrix_cyclo_dense.cpython-310-darwin.so,sha256=V5xKZy2ZkG9d2z7qJM-bSo77H845rc8-lcRkRH8Rzyo,322464
|
359
|
+
sage/matrix/matrix_rational_dense.pyx,sha256=jZVIuxes7Fm0y6qj51lCrCyLfiyfMkG1HQqggQL89Us,103034
|
360
360
|
sage/matrix/matrix_rational_sparse.pyx,sha256=qZ8P8uGbO4_7PvV-7tyofQ_4a6MMvaaSj7Ijj-SEYb4,26068
|
361
361
|
sage/matrix/matrix_integer_sparse.pyx,sha256=uLTe8Am19fCqbLGZHgIU0uSIoGRaeZJl7ggnjWDHXB8,37071
|
362
|
-
sage/matrix/change_ring.cpython-310-darwin.so,sha256=
|
362
|
+
sage/matrix/change_ring.cpython-310-darwin.so,sha256=3Yg9FlMXvzhrsdADtOMISKZPzqYSpiGqQhmGWfRPoVQ,95216
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -1373,10 +1373,8 @@ def _biseq_stresstest():
|
|
1373
1373
|
TESTS::
|
1374
1374
|
|
1375
1375
|
sage: from sage.data_structures.bounded_integer_sequences import _biseq_stresstest
|
1376
|
-
sage:
|
1377
|
-
|
1378
|
-
...
|
1379
|
-
AlarmInterrupt
|
1376
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
1377
|
+
sage: with ensure_interruptible_after(1): _biseq_stresstest() # long time
|
1380
1378
|
"""
|
1381
1379
|
cdef int branch
|
1382
1380
|
cdef Py_ssize_t x, y, z
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -541,10 +541,8 @@ cdef inline int celement_pow(nmod_poly_t res, nmod_poly_t x, long e, nmod_poly_t
|
|
541
541
|
|
542
542
|
sage: # needs sage.rings.finite_rings
|
543
543
|
sage: n = 2^23
|
544
|
-
sage:
|
545
|
-
|
546
|
-
...
|
547
|
-
AlarmInterrupt
|
544
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
545
|
+
sage: with ensure_interruptible_after(0.2): (x^n).degree()
|
548
546
|
"""
|
549
547
|
if modulus != NULL:
|
550
548
|
sig_on()
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -3220,6 +3220,28 @@ cdef class Matrix_integer_dense(Matrix_dense):
|
|
3220
3220
|
else:
|
3221
3221
|
return R
|
3222
3222
|
|
3223
|
+
def is_unimodular(self):
|
3224
|
+
r"""
|
3225
|
+
EXAMPLES::
|
3226
|
+
|
3227
|
+
sage: M = matrix(ZZ, [[1, 0, 0], [0, 1, 0]]); M
|
3228
|
+
[1 0 0]
|
3229
|
+
[0 1 0]
|
3230
|
+
sage: M.is_unimodular()
|
3231
|
+
True
|
3232
|
+
sage: M = matrix(ZZ, [[1, 1, 0], [-1, 1, 1]]); M
|
3233
|
+
[ 1 1 0]
|
3234
|
+
[-1 1 1]
|
3235
|
+
sage: M.is_unimodular()
|
3236
|
+
False
|
3237
|
+
"""
|
3238
|
+
from .matrix_cmr_sparse import Matrix_cmr_chr_sparse
|
3239
|
+
from .matrix_space import MatrixSpace
|
3240
|
+
|
3241
|
+
MS = MatrixSpace(ZZ, self.nrows(), self.ncols(), sparse=True)
|
3242
|
+
M = Matrix_cmr_chr_sparse(MS, self)
|
3243
|
+
return M.is_unimodular()
|
3244
|
+
|
3223
3245
|
def is_LLL_reduced(self, delta=None, eta=None, algorithm='fpLLL'):
|
3224
3246
|
r"""
|
3225
3247
|
Return ``True`` if this lattice is `(\delta, \eta)`-LLL reduced.
|
@@ -4272,14 +4294,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
|
|
4272
4294
|
|
4273
4295
|
sage: A = random_matrix(ZZ, 2000, 2000)
|
4274
4296
|
sage: B = random_matrix(ZZ, 2000, 2000)
|
4275
|
-
sage:
|
4276
|
-
sage:
|
4277
|
-
Traceback (most recent call last):
|
4278
|
-
...
|
4279
|
-
AlarmInterrupt
|
4280
|
-
sage: t = walltime(t0)
|
4281
|
-
sage: t < 10 or t
|
4282
|
-
True
|
4297
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
4298
|
+
sage: with ensure_interruptible_after(2, max_wait_after_interrupt=8): A._solve_iml(B)
|
4283
4299
|
|
4284
4300
|
ALGORITHM: Uses IML.
|
4285
4301
|
|
@@ -4363,14 +4379,8 @@ cdef class Matrix_integer_dense(Matrix_dense):
|
|
4363
4379
|
|
4364
4380
|
sage: A = random_matrix(ZZ, 2000, 2000)
|
4365
4381
|
sage: B = random_matrix(ZZ, 2000, 2000)
|
4366
|
-
sage:
|
4367
|
-
sage:
|
4368
|
-
Traceback (most recent call last):
|
4369
|
-
...
|
4370
|
-
AlarmInterrupt
|
4371
|
-
sage: t = walltime(t0)
|
4372
|
-
sage: t < 10 or t
|
4373
|
-
True
|
4382
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
4383
|
+
sage: with ensure_interruptible_after(2, max_wait_after_interrupt=8): A._solve_flint(B)
|
4374
4384
|
|
4375
4385
|
AUTHORS:
|
4376
4386
|
|
Binary file
|
Binary file
|
@@ -722,7 +722,7 @@ cdef class Matrix_rational_dense(Matrix_dense):
|
|
722
722
|
if algorithm == "flint":
|
723
723
|
return self._invert_flint()
|
724
724
|
elif algorithm == "pari":
|
725
|
-
from
|
725
|
+
from cypari2.handle_error import PariError
|
726
726
|
from .matrix_rational_pari import _invert_pari
|
727
727
|
try:
|
728
728
|
return _invert_pari(self)
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -29,7 +29,7 @@ REFERENCES:
|
|
29
29
|
# ****************************************************************************
|
30
30
|
import operator
|
31
31
|
|
32
|
-
from sage.arith.misc import
|
32
|
+
from sage.arith.misc import bernoulli
|
33
33
|
from sage.categories.fields import Fields
|
34
34
|
from sage.matrix.constructor import matrix
|
35
35
|
from sage.matrix.matrix cimport Matrix
|
@@ -1131,7 +1131,7 @@ cdef class Dist_vector(Dist):
|
|
1131
1131
|
"""
|
1132
1132
|
# assert self._moments[0][0]==0, "not total measure zero"
|
1133
1133
|
# print("result accurate modulo p^",self.moment(0).valuation(self.p) )
|
1134
|
-
# v=[0 for j in range(
|
1134
|
+
# v=[0 for j in range(i)]+[binomial(j,i)*bernoulli(j-i) for j in range(i,M)]
|
1135
1135
|
M = self.precision_relative()
|
1136
1136
|
R = self.parent().base_ring()
|
1137
1137
|
K = R.fraction_field()
|
@@ -1144,7 +1144,7 @@ cdef class Dist_vector(Dist):
|
|
1144
1144
|
# bernoulli(1) = -1/2; the only nonzero odd Bernoulli number
|
1145
1145
|
v[m] += m * minhalf * scalar
|
1146
1146
|
for j in range(m - 1, M, 2):
|
1147
|
-
v[j] += binomial(
|
1147
|
+
v[j] += ZZ(j).binomial(m - 1) * bern[(j - m + 1) // 2] * scalar
|
1148
1148
|
p = self.parent().prime()
|
1149
1149
|
cdef Dist_vector ans
|
1150
1150
|
if p == 0:
|
Binary file
|
@@ -269,9 +269,10 @@ cdef class PathAlgebraElement(RingElement):
|
|
269
269
|
sage: X # indirect doctest
|
270
270
|
5*e_0 + a + 2*b + 3*c + 3*e_2
|
271
271
|
"""
|
272
|
+
parent = self._parent
|
272
273
|
return repr_lincomb(self._sorted_items_for_printing(), strip_one=True,
|
273
|
-
|
274
|
-
|
274
|
+
scalar_mult=parent._print_options['scalar_mult'],
|
275
|
+
repr_monomial=parent._repr_monomial)
|
275
276
|
|
276
277
|
def _latex_(self):
|
277
278
|
r"""
|
@@ -286,11 +287,12 @@ cdef class PathAlgebraElement(RingElement):
|
|
286
287
|
sage: latex(X*X)
|
287
288
|
10 e_0 + 3 a\cdot c + 5 a + b + 3 c\cdot a + 6 c\cdot b + 9 e_2
|
288
289
|
"""
|
290
|
+
parent = self._parent
|
289
291
|
return repr_lincomb(self._sorted_items_for_printing(),
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
292
|
+
scalar_mult=parent._print_options['scalar_mult'],
|
293
|
+
latex_scalar_mult=parent._print_options['latex_scalar_mult'],
|
294
|
+
repr_monomial=parent._latex_monomial,
|
295
|
+
is_latex=True, strip_one=True)
|
294
296
|
|
295
297
|
# Basic properties
|
296
298
|
|
Binary file
|
Binary file
|
sage/rings/complex_arb.pyx
CHANGED
@@ -169,6 +169,7 @@ from sage.libs.flint.acb_hypgeom cimport *
|
|
169
169
|
from sage.libs.flint.acb_elliptic cimport *
|
170
170
|
from sage.libs.flint.acb_modular cimport *
|
171
171
|
from sage.libs.flint.acb_poly cimport *
|
172
|
+
from sage.libs.flint.acb_dirichlet cimport *
|
172
173
|
from sage.libs.flint.arf cimport arf_init, arf_get_d, arf_get_mpfr, arf_clear, arf_set, arf_is_nan
|
173
174
|
from sage.libs.flint.mag cimport (mag_init, mag_clear, mag_set_d,
|
174
175
|
MAG_BITS, mag_zero, mag_set_ui_2exp_si,
|
@@ -1187,13 +1188,10 @@ class ComplexBallField(UniqueRepresentation, sage.rings.abc.ComplexBallField):
|
|
1187
1188
|
sage: ComplexBallField(100).integral(lambda x, _: sin(x), RBF(0), RBF(1))
|
1188
1189
|
[0.4596976941318602825990633926 +/- ...e-29]
|
1189
1190
|
|
1190
|
-
sage: from
|
1191
|
-
sage:
|
1192
|
-
|
1193
|
-
|
1194
|
-
Traceback (most recent call last):
|
1195
|
-
...
|
1196
|
-
AlarmInterrupt
|
1191
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
1192
|
+
sage: with ensure_interruptible_after(0.1):
|
1193
|
+
....: C = ComplexBallField(1000000)
|
1194
|
+
....: C.integral(lambda x, _: x.cos() * x.sin(), 0, 1)
|
1197
1195
|
"""
|
1198
1196
|
cdef IntegrationContext ctx = IntegrationContext()
|
1199
1197
|
cdef acb_calc_integrate_opt_t arb_opts
|
@@ -1264,6 +1262,70 @@ class ComplexBallField(UniqueRepresentation, sage.rings.abc.ComplexBallField):
|
|
1264
1262
|
|
1265
1263
|
return res
|
1266
1264
|
|
1265
|
+
def zeta_zeros(self, count, start=1):
|
1266
|
+
r"""
|
1267
|
+
Compute consecutive zeros of the Riemann zeta function.
|
1268
|
+
|
1269
|
+
INPUT:
|
1270
|
+
|
1271
|
+
- ``count`` -- positive integer; number of zeros to be computed, must fit in a machine integer
|
1272
|
+
|
1273
|
+
- ``start`` -- positive integer (default: 1); index of the first zero to be computed
|
1274
|
+
|
1275
|
+
OUTPUT:
|
1276
|
+
|
1277
|
+
A list of ``count`` consecutive zeros of the Riemann zeta function, starting from the ``start``-th zero.
|
1278
|
+
Indexing starts at one, following usual mathematical notations.
|
1279
|
+
|
1280
|
+
EXAMPLES::
|
1281
|
+
|
1282
|
+
sage: CBF.zeta_zeros(10)
|
1283
|
+
[0.5000000000000000 + [14.134725141734...]*I,
|
1284
|
+
0.5000000000000000 + [21.0220396387715...]*I,
|
1285
|
+
0.5000000000000000 + [25.010857580145...]*I,
|
1286
|
+
0.5000000000000000 + [30.4248761258595...]*I,
|
1287
|
+
0.5000000000000000 + [32.935061587739...]*I,
|
1288
|
+
0.5000000000000000 + [37.586178158825...]*I,
|
1289
|
+
0.5000000000000000 + [40.918719012147...]*I,
|
1290
|
+
0.5000000000000000 + [43.32707328091...]*I,
|
1291
|
+
0.5000000000000000 + [48.005150881167...]*I,
|
1292
|
+
0.5000000000000000 + [49.773832477672...]*I]
|
1293
|
+
|
1294
|
+
sage: CBF.zeta_zeros(6, start=5)
|
1295
|
+
[0.5000000000000000 + [32.935061587739...]*I,
|
1296
|
+
0.5000000000000000 + [37.586178158825...]*I,
|
1297
|
+
0.5000000000000000 + [40.918719012147...]*I,
|
1298
|
+
0.5000000000000000 + [43.32707328091...]*I,
|
1299
|
+
0.5000000000000000 + [48.005150881167...]*I,
|
1300
|
+
0.5000000000000000 + [49.773832477672...]*I]
|
1301
|
+
"""
|
1302
|
+
cdef fmpz_t _start
|
1303
|
+
fmpz_init(_start)
|
1304
|
+
fmpz_set_mpz(_start, (<Integer> Integer(start)).value)
|
1305
|
+
|
1306
|
+
cdef long _count = count
|
1307
|
+
if _count < 1:
|
1308
|
+
raise ValueError("count must be positive")
|
1309
|
+
|
1310
|
+
cdef acb_ptr ar = _acb_vec_init(_count)
|
1311
|
+
|
1312
|
+
sig_on()
|
1313
|
+
acb_dirichlet_zeta_zeros(ar, _start, _count, self._prec)
|
1314
|
+
sig_off()
|
1315
|
+
|
1316
|
+
res = []
|
1317
|
+
cdef ComplexBall b
|
1318
|
+
for i in range(_count):
|
1319
|
+
b = ComplexBall.__new__(ComplexBall)
|
1320
|
+
b._parent = self
|
1321
|
+
acb_swap(b.value, &ar[i])
|
1322
|
+
res.append(b)
|
1323
|
+
|
1324
|
+
_acb_vec_clear(ar, _count)
|
1325
|
+
fmpz_clear(_start)
|
1326
|
+
|
1327
|
+
return res
|
1328
|
+
|
1267
1329
|
|
1268
1330
|
cdef inline bint _do_sig(long prec) noexcept:
|
1269
1331
|
"""
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -609,8 +609,8 @@ def bdd_height(K, height_bound, tolerance=1e-2, precision=53):
|
|
609
609
|
u_height = sum([max(u_log[k], 0) for k in range(r + 1)])
|
610
610
|
unit_height_dict[u] = u_height
|
611
611
|
if u_height < inter_bound:
|
612
|
-
|
613
|
-
if inter_bound <= u_height
|
612
|
+
U0.append(u)
|
613
|
+
if inter_bound <= u_height < b - (t/12):
|
614
614
|
U0_tilde.append(u)
|
615
615
|
if u_height > t/12 + d_tilde:
|
616
616
|
U_copy.remove(u)
|
@@ -17,7 +17,7 @@ from sage.groups.perm_gps.permgroup_element import PermutationGroupElement
|
|
17
17
|
from sage.misc.superseded import deprecation
|
18
18
|
from sage.misc.cachefunc import cached_method
|
19
19
|
from sage.misc.lazy_attribute import lazy_attribute
|
20
|
-
from sage.libs.pari
|
20
|
+
from sage.libs.pari import pari
|
21
21
|
from sage.rings.infinity import infinity
|
22
22
|
from sage.rings.number_field.number_field import refine_embedding
|
23
23
|
from sage.rings.number_field.morphism import NumberFieldHomomorphism_im_gens
|
sage/rings/number_field/maps.py
CHANGED
@@ -307,7 +307,7 @@ class MapRelativeVectorSpaceToRelativeNumberField(NumberFieldIsomorphism):
|
|
307
307
|
sage: fr(to(a0 + 2*b0)), fr(V([0, 1])), fr(V([b0, 2*b0])) # indirect doctest
|
308
308
|
(a + 2*b0, a, 2*b0*a + b0)
|
309
309
|
"""
|
310
|
-
from sage.libs.pari
|
310
|
+
from sage.libs.pari import pari
|
311
311
|
|
312
312
|
K = self.codomain()
|
313
313
|
B = K.base_field().absolute_field('a')
|
@@ -377,7 +377,7 @@ class MapRelativeNumberFieldToRelativeVectorSpace(NumberFieldIsomorphism):
|
|
377
377
|
sage: to_V(a) # indirect doctest
|
378
378
|
(a)
|
379
379
|
"""
|
380
|
-
from sage.libs.pari
|
380
|
+
from sage.libs.pari import pari
|
381
381
|
|
382
382
|
K = self.domain()
|
383
383
|
# The element alpha is represented internally by an absolute
|
@@ -220,7 +220,8 @@ from sage.rings.real_lazy import RLF, CLF
|
|
220
220
|
from sage.rings.finite_rings.integer_mod_ring import IntegerModRing
|
221
221
|
|
222
222
|
try:
|
223
|
-
from sage.libs.pari
|
223
|
+
from sage.libs.pari import pari
|
224
|
+
from cypari2.gen import Gen as pari_gen
|
224
225
|
except ImportError:
|
225
226
|
pari_gen = ()
|
226
227
|
|
@@ -7406,7 +7407,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
7406
7407
|
|
7407
7408
|
EXAMPLES::
|
7408
7409
|
|
7409
|
-
sage: # needs fpylll sage.rings.padics
|
7410
|
+
sage: # needs fpylll sage.rings.padics sage.symbolic
|
7410
7411
|
sage: x = polygen(QQ, 'x')
|
7411
7412
|
sage: K.<xi> = NumberField(x^2 + x + 1)
|
7412
7413
|
sage: S = K.primes_above(3)
|
@@ -7415,7 +7416,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
7415
7416
|
|
7416
7417
|
You can get the exponent vectors::
|
7417
7418
|
|
7418
|
-
sage: # needs fpylll sage.rings.padics
|
7419
|
+
sage: # needs fpylll sage.rings.padics sage.symbolic
|
7419
7420
|
sage: K.S_unit_solutions(S, include_exponents=True) # random, due to ordering
|
7420
7421
|
[((2, 1), (4, 0), xi + 2, -xi - 1),
|
7421
7422
|
((5, -1), (4, -1), 1/3*xi + 2/3, -1/3*xi + 1/3),
|
@@ -7424,7 +7425,7 @@ class NumberField_generic(WithEqualityById, number_field_base.NumberField):
|
|
7424
7425
|
|
7425
7426
|
And the computed bound::
|
7426
7427
|
|
7427
|
-
sage: # needs fpylll sage.rings.padics
|
7428
|
+
sage: # needs fpylll sage.rings.padics sage.symbolic
|
7428
7429
|
sage: solutions, bound = K.S_unit_solutions(S, prec=100, include_bound=True)
|
7429
7430
|
sage: bound
|
7430
7431
|
7
|
@@ -8785,40 +8786,10 @@ class NumberField_absolute(NumberField_generic):
|
|
8785
8786
|
polynomials are supported (:issue:`252`)::
|
8786
8787
|
|
8787
8788
|
sage: K.<a> = NumberField(2*x^4 + 6*x^2 + 1/2)
|
8788
|
-
sage:
|
8789
|
-
|
8790
|
-
|
8791
|
-
|
8792
|
-
To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
|
8793
|
-
Defn: a3 |--> 2*a^3 + 5*a,
|
8794
|
-
None),
|
8795
|
-
(Number Field in a2 with defining polynomial x^2 + 4,
|
8796
|
-
Ring morphism:
|
8797
|
-
From: Number Field in a2 with defining polynomial x^2 + 4
|
8798
|
-
To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
|
8799
|
-
Defn: a2 |--> 2*a^3 + 7*a,
|
8800
|
-
None),
|
8801
|
-
(Number Field in a0 with defining polynomial x,
|
8802
|
-
Ring morphism:
|
8803
|
-
From: Number Field in a0 with defining polynomial x
|
8804
|
-
To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
|
8805
|
-
Defn: 0 |--> 0,
|
8806
|
-
None),
|
8807
|
-
(Number Field in a1 with defining polynomial x^2 - 2,
|
8808
|
-
Ring morphism:
|
8809
|
-
From: Number Field in a1 with defining polynomial x^2 - 2
|
8810
|
-
To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
|
8811
|
-
Defn: a1 |--> a^2 + 3/2,
|
8812
|
-
None),
|
8813
|
-
(Number Field in a4 with defining polynomial x^4 + 1,
|
8814
|
-
Ring morphism:
|
8815
|
-
From: Number Field in a4 with defining polynomial x^4 + 1
|
8816
|
-
To: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
|
8817
|
-
Defn: a4 |--> a^3 + 1/2*a^2 + 5/2*a + 3/4,
|
8818
|
-
Ring morphism:
|
8819
|
-
From: Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
|
8820
|
-
To: Number Field in a4 with defining polynomial x^4 + 1
|
8821
|
-
Defn: a |--> -1/2*a4^3 + a4^2 - 1/2*a4)]
|
8789
|
+
sage: K
|
8790
|
+
Number Field in a with defining polynomial 2*x^4 + 6*x^2 + 1/2
|
8791
|
+
sage: sorted([F.discriminant() for F, _, _ in K.subfields()])
|
8792
|
+
[-8, -4, 1, 8, 256]
|
8822
8793
|
"""
|
8823
8794
|
return self._subfields_helper(degree=degree, name=name,
|
8824
8795
|
both_maps=True, optimize=False)
|
Binary file
|
Binary file
|
Binary file
|
@@ -101,7 +101,7 @@ from sage.rings.number_field.number_field_base import NumberField as NumberField
|
|
101
101
|
from sage.rings.number_field.order import (RelativeOrder,
|
102
102
|
relative_order_from_ring_generators)
|
103
103
|
from sage.rings.number_field.morphism import RelativeNumberFieldHomomorphism_from_abs
|
104
|
-
from
|
104
|
+
from cypari2.gen import Gen as pari_gen
|
105
105
|
|
106
106
|
from sage.categories.homset import Hom
|
107
107
|
from sage.categories.sets_cat import Sets
|
@@ -302,7 +302,7 @@ class NumberField_relative(NumberField_generic):
|
|
302
302
|
raise ValueError("base field and extension cannot have the same name %r" % name)
|
303
303
|
if polynomial.parent().base_ring() != base:
|
304
304
|
polynomial = polynomial.change_ring(base)
|
305
|
-
#raise ValueError
|
305
|
+
# raise ValueError("The polynomial must be defined over the base field")
|
306
306
|
|
307
307
|
# Generate the nf and bnf corresponding to the base field
|
308
308
|
# defined as polynomials in y, e.g. for rnfisfree
|
@@ -1654,7 +1654,7 @@ class NumberField_relative(NumberField_generic):
|
|
1654
1654
|
elif f.poldegree() == 1:
|
1655
1655
|
# PARI's rnfpolredbest() does not always return a
|
1656
1656
|
# polynomial with integral coefficients in this case.
|
1657
|
-
from sage.libs.pari
|
1657
|
+
from sage.libs.pari import pari
|
1658
1658
|
g = f.variable()
|
1659
1659
|
alpha = -f[0]/f[1]
|
1660
1660
|
beta = pari(0).Mod(f)
|
sage/rings/number_field/order.py
CHANGED
@@ -108,7 +108,7 @@ def quadratic_order_class_number(disc):
|
|
108
108
|
ALGORITHM: Either :pari:`qfbclassno` or :pari:`quadclassunit`,
|
109
109
|
depending on the size of the discriminant.
|
110
110
|
"""
|
111
|
-
from sage.libs.pari
|
111
|
+
from sage.libs.pari import pari
|
112
112
|
|
113
113
|
# cutoffs from PARI documentation
|
114
114
|
if disc < -10**25 or disc > 10**10:
|
@@ -2777,11 +2777,11 @@ def absolute_order_from_module_generators(gens,
|
|
2777
2777
|
in Number Field in i with defining polynomial x^2 + 1
|
2778
2778
|
sage: R.basis()
|
2779
2779
|
[2, 2*i]
|
2780
|
-
sage: R = absolute_order_from_module_generators([k(1)],
|
2780
|
+
sage: R = absolute_order_from_module_generators([k(1)], # needs sage.symbolic
|
2781
2781
|
....: check_rank=False); R
|
2782
2782
|
Order of conductor I generated by []
|
2783
2783
|
in Number Field in i with defining polynomial x^2 + 1
|
2784
|
-
sage: R.basis()
|
2784
|
+
sage: R.basis() # needs sage.symbolic
|
2785
2785
|
[1]
|
2786
2786
|
|
2787
2787
|
If the order contains a non-integral element, even if we do not check
|
@@ -136,7 +136,7 @@ class Small_primes_of_degree_one_iter:
|
|
136
136
|
self._lc = self._poly.leading_coefficient()
|
137
137
|
|
138
138
|
# this uses that [ O_K : Z[a] ]^2 = | disc(f(x)) / disc(O_K) |
|
139
|
-
from sage.libs.pari
|
139
|
+
from sage.libs.pari import pari
|
140
140
|
self._prod_of_small_primes = ZZ(pari('TEMPn = %s; TEMPps = primes(TEMPn); prod(X = 1, TEMPn, TEMPps[X])' % num_integer_primes))
|
141
141
|
self._prod_of_small_primes //= self._prod_of_small_primes.gcd(self._poly.discriminant() * self._lc)
|
142
142
|
|
@@ -24,7 +24,8 @@ from sage.arith.misc import factorial
|
|
24
24
|
from sage.rings.number_field.number_field import NumberField
|
25
25
|
from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing
|
26
26
|
from sage.rings.rational_field import RationalField
|
27
|
-
from sage.libs.pari
|
27
|
+
from sage.libs.pari import pari
|
28
|
+
from cypari2.handle_error import PariError
|
28
29
|
|
29
30
|
|
30
31
|
class SplittingFieldAbort(Exception):
|
@@ -169,7 +169,7 @@ AUTHOR:
|
|
169
169
|
|
170
170
|
from sage.groups.abelian_gps.values import AbelianGroupWithValues_class
|
171
171
|
from sage.structure.proof.proof import get_flag
|
172
|
-
from sage.libs.pari
|
172
|
+
from sage.libs.pari import pari
|
173
173
|
from sage.misc.misc_c import prod
|
174
174
|
from sage.rings.integer_ring import ZZ
|
175
175
|
|
Binary file
|
Binary file
|
Binary file
|
Binary file
|
@@ -77,7 +77,8 @@ from sage.rings.real_mpfi cimport RealIntervalFieldElement
|
|
77
77
|
from sage.rings.polynomial.evaluation_flint cimport fmpz_poly_evaluation_mpfr, fmpz_poly_evaluation_mpfi
|
78
78
|
|
79
79
|
try:
|
80
|
-
from sage.libs.pari
|
80
|
+
from sage.libs.pari import pari
|
81
|
+
from cypari2.gen import Gen as pari_gen
|
81
82
|
except ImportError:
|
82
83
|
pari_gen = ()
|
83
84
|
|
Binary file
|
Binary file
|
@@ -2167,7 +2167,7 @@ cdef class Polynomial_rational_flint(Polynomial):
|
|
2167
2167
|
Transitive group number 183 of degree 12
|
2168
2168
|
|
2169
2169
|
sage: f.galois_group(algorithm='magma') # optional - magma
|
2170
|
-
Transitive group number
|
2170
|
+
Transitive group number 183 of degree 12
|
2171
2171
|
|
2172
2172
|
TESTS:
|
2173
2173
|
|
Binary file
|
@@ -817,10 +817,8 @@ cdef class Polynomial_zmod_flint(Polynomial_template):
|
|
817
817
|
sage: # needs sage.rings.finite_rings
|
818
818
|
sage: R.<x> = PolynomialRing(GF(65537), implementation="FLINT")
|
819
819
|
sage: f = R.random_element(9973) * R.random_element(10007)
|
820
|
-
sage:
|
821
|
-
|
822
|
-
...
|
823
|
-
AlarmInterrupt
|
820
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
821
|
+
sage: with ensure_interruptible_after(0.5): f.factor()
|
824
822
|
|
825
823
|
Test zero polynomial::
|
826
824
|
|
Binary file
|
Binary file
|
Binary file
|
sage/rings/qqbar.py
CHANGED
@@ -7089,7 +7089,7 @@ class AlgebraicPolynomialTracker(SageObject):
|
|
7089
7089
|
return roots
|
7090
7090
|
|
7091
7091
|
def exactify(self):
|
7092
|
-
"""
|
7092
|
+
r"""
|
7093
7093
|
Compute a common field that holds all of the algebraic coefficients
|
7094
7094
|
of this polynomial, then factor the polynomial over that field.
|
7095
7095
|
Store the factors for later use (ignoring multiplicity).
|
@@ -7112,14 +7112,14 @@ class AlgebraicPolynomialTracker(SageObject):
|
|
7112
7112
|
sage: x = polygen(AA)
|
7113
7113
|
sage: p = AA(2)^(1/100) * x + AA(3)^(1/100)
|
7114
7114
|
sage: cp = AA.common_polynomial(p)
|
7115
|
-
sage:
|
7116
|
-
|
7117
|
-
|
7118
|
-
|
7119
|
-
|
7120
|
-
|
7121
|
-
|
7122
|
-
|
7115
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
7116
|
+
sage: from warnings import catch_warnings, filterwarnings
|
7117
|
+
sage: with ensure_interruptible_after(0.5), catch_warnings():
|
7118
|
+
....: filterwarnings("ignore", r"cypari2 leaked \d+ bytes on the PARI stack")
|
7119
|
+
....: cp.generator()
|
7120
|
+
sage: with ensure_interruptible_after(0.5), catch_warnings():
|
7121
|
+
....: filterwarnings("ignore", r"cypari2 leaked \d+ bytes on the PARI stack")
|
7122
|
+
....: cp.generator()
|
7123
7123
|
"""
|
7124
7124
|
if self._exact:
|
7125
7125
|
return
|
Binary file
|
Binary file
|
Binary file
|
sage/rings/real_mpfi.pyx
CHANGED
@@ -254,7 +254,7 @@ TESTS::
|
|
254
254
|
|
255
255
|
sage: import numpy # needs numpy
|
256
256
|
sage: if int(numpy.version.short_version[0]) > 1: # needs numpy
|
257
|
-
....: numpy.set_printoptions(legacy="1.25") # needs numpy
|
257
|
+
....: _ = numpy.set_printoptions(legacy="1.25") # needs numpy
|
258
258
|
sage: RIF(2) == numpy.int8('2') # needs numpy
|
259
259
|
True
|
260
260
|
sage: numpy.int8('2') == RIF(2) # needs numpy
|
Binary file
|
@@ -1208,10 +1208,8 @@ def two_descent_by_two_isogeny(E,
|
|
1208
1208
|
Elliptic Curve defined by y^2 = x^3 - x^2 - 900*x - 10098 over Rational Field
|
1209
1209
|
sage: E.sha().an()
|
1210
1210
|
4
|
1211
|
-
sage:
|
1212
|
-
|
1213
|
-
...
|
1214
|
-
AlarmInterrupt
|
1211
|
+
sage: from sage.doctest.util import ensure_interruptible_after
|
1212
|
+
sage: with ensure_interruptible_after(0.5): two_descent_by_two_isogeny(E, global_limit_large=10^8)
|
1215
1213
|
"""
|
1216
1214
|
cdef Integer a1, a2, a3, a4, a6, s2, s4, s6
|
1217
1215
|
cdef Integer c, d, x0
|
@@ -1318,7 +1316,7 @@ def two_descent_by_two_isogeny_work(Integer c, Integer d,
|
|
1318
1316
|
p_list_len += 1
|
1319
1317
|
else:
|
1320
1318
|
# Factor more slowly using Pari via Python.
|
1321
|
-
from sage.libs.pari
|
1319
|
+
from sage.libs.pari import pari
|
1322
1320
|
d = Integer(0)
|
1323
1321
|
mpz_set(d.value, d_mpz)
|
1324
1322
|
primes = list(pari(d).factor()[0])
|
File without changes
|