passagemath-eclib 10.6.42__cp313-cp313-musllinux_1_2_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_eclib/__init__.py +3 -0
- passagemath_eclib-10.6.42.dist-info/METADATA +161 -0
- passagemath_eclib-10.6.42.dist-info/RECORD +35 -0
- passagemath_eclib-10.6.42.dist-info/WHEEL +5 -0
- passagemath_eclib-10.6.42.dist-info/top_level.txt +3 -0
- passagemath_eclib.libs/libec-7d1d8090.so.14.1.0 +0 -0
- passagemath_eclib.libs/libflint-edf7fb90.so.22.0.0 +0 -0
- passagemath_eclib.libs/libgcc_s-2d945d6c.so.1 +0 -0
- passagemath_eclib.libs/libgf2x-e54d5509.so.3.0.0 +0 -0
- passagemath_eclib.libs/libgmp-28992bcb.so.10.5.0 +0 -0
- passagemath_eclib.libs/libmpfr-1fc8ea36.so.6.2.2 +0 -0
- passagemath_eclib.libs/libntl-21cb123c.so.45.0.0 +0 -0
- passagemath_eclib.libs/libpari-gmp-tls-f714c61d.so.2.17.2 +0 -0
- passagemath_eclib.libs/libstdc++-85f2cd6d.so.6.0.33 +0 -0
- sage/all__sagemath_eclib.py +17 -0
- sage/interfaces/all__sagemath_eclib.py +1 -0
- sage/interfaces/mwrank.py +370 -0
- sage/libs/all__sagemath_eclib.py +11 -0
- sage/libs/eclib/__init__.pxd +158 -0
- sage/libs/eclib/__init__.py +1 -0
- sage/libs/eclib/all.py +5 -0
- sage/libs/eclib/constructor.py +75 -0
- sage/libs/eclib/homspace.cpython-313-aarch64-linux-musl.so +0 -0
- sage/libs/eclib/homspace.pxd +5 -0
- sage/libs/eclib/homspace.pyx +285 -0
- sage/libs/eclib/interface.py +1329 -0
- sage/libs/eclib/mat.cpython-313-aarch64-linux-musl.so +0 -0
- sage/libs/eclib/mat.pxd +8 -0
- sage/libs/eclib/mat.pyx +247 -0
- sage/libs/eclib/mwrank.cpython-313-aarch64-linux-musl.so +0 -0
- sage/libs/eclib/mwrank.pyx +1327 -0
- sage/libs/eclib/newforms.cpython-313-aarch64-linux-musl.so +0 -0
- sage/libs/eclib/newforms.pxd +8 -0
- sage/libs/eclib/newforms.pyx +394 -0
- sage_wheels/bin/mwrank +0 -0
|
@@ -0,0 +1,1327 @@
|
|
|
1
|
+
# sage_setup: distribution = sagemath-eclib
|
|
2
|
+
"""
|
|
3
|
+
Cython interface to Cremona's ``eclib`` library (also known as ``mwrank``)
|
|
4
|
+
|
|
5
|
+
EXAMPLES::
|
|
6
|
+
|
|
7
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata, _mw
|
|
8
|
+
sage: c = _Curvedata(1,2,3,4,5)
|
|
9
|
+
|
|
10
|
+
sage: print(c)
|
|
11
|
+
[1,2,3,4,5]
|
|
12
|
+
b2 = 9 b4 = 11 b6 = 29 b8 = 35
|
|
13
|
+
c4 = -183 c6 = -3429
|
|
14
|
+
disc = -10351 (# real components = 1)
|
|
15
|
+
#torsion not yet computed
|
|
16
|
+
|
|
17
|
+
sage: t= _mw(c)
|
|
18
|
+
sage: t.search(10)
|
|
19
|
+
sage: t
|
|
20
|
+
[[1:2:1]]
|
|
21
|
+
"""
|
|
22
|
+
import os
|
|
23
|
+
|
|
24
|
+
from cysignals.memory cimport sig_free
|
|
25
|
+
from cysignals.signals cimport sig_on, sig_off
|
|
26
|
+
|
|
27
|
+
from sage.cpython.string cimport char_to_str, str_to_bytes
|
|
28
|
+
from sage.cpython.string import FS_ENCODING
|
|
29
|
+
from sage.libs.eclib cimport bigint, Curvedata, mw, two_descent
|
|
30
|
+
from sage.rings.integer import Integer
|
|
31
|
+
|
|
32
|
+
cdef extern from "wrap.cpp":
|
|
33
|
+
### misc functions ###
|
|
34
|
+
long mwrank_get_precision()
|
|
35
|
+
void mwrank_set_precision(long n)
|
|
36
|
+
void mwrank_initprimes(char* pfilename, int verb)
|
|
37
|
+
|
|
38
|
+
### bigint ###
|
|
39
|
+
bigint* str_to_bigint(char* s)
|
|
40
|
+
char* bigint_to_str(bigint* x)
|
|
41
|
+
|
|
42
|
+
### Curvedata ###
|
|
43
|
+
char* Curvedata_repr(Curvedata* curve)
|
|
44
|
+
double Curvedata_silverman_bound(Curvedata* curve)
|
|
45
|
+
double Curvedata_cps_bound(Curvedata* curve)
|
|
46
|
+
double Curvedata_height_constant(Curvedata* curve)
|
|
47
|
+
char* Curvedata_getdiscr(Curvedata* curve)
|
|
48
|
+
char* Curvedata_conductor(Curvedata* m)
|
|
49
|
+
char* Curvedata_isogeny_class(Curvedata* E, int verbose)
|
|
50
|
+
|
|
51
|
+
## mw ##
|
|
52
|
+
int mw_process(Curvedata* curve, mw* m,
|
|
53
|
+
bigint* x, bigint* y,
|
|
54
|
+
bigint* z, int sat)
|
|
55
|
+
char* mw_getbasis(mw* m)
|
|
56
|
+
double mw_regulator(mw* m)
|
|
57
|
+
int mw_rank(mw* m)
|
|
58
|
+
int mw_saturate(mw* m, long* index, char** unsat,
|
|
59
|
+
long sat_bd, long sat_low_bd)
|
|
60
|
+
void mw_search(mw* m, char* h_lim, int moduli_option, int verb)
|
|
61
|
+
|
|
62
|
+
### two_descent ###
|
|
63
|
+
int two_descent_ok(two_descent* t)
|
|
64
|
+
long two_descent_get_certain(two_descent* t)
|
|
65
|
+
char* two_descent_get_basis(two_descent* t)
|
|
66
|
+
double two_descent_regulator(two_descent* t)
|
|
67
|
+
long two_descent_get_rank(two_descent* t)
|
|
68
|
+
long two_descent_get_rank_bound(two_descent* t)
|
|
69
|
+
long two_descent_get_selmer_rank(two_descent* t)
|
|
70
|
+
void two_descent_saturate(two_descent* t, long sat_bd, long sat_low_bd)
|
|
71
|
+
|
|
72
|
+
cdef object string_sigoff(char* s):
|
|
73
|
+
sig_off()
|
|
74
|
+
# Makes a python string and deletes what is pointed to by s.
|
|
75
|
+
t = char_to_str(s)
|
|
76
|
+
sig_free(s)
|
|
77
|
+
return t
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
# set the default bit precision
|
|
81
|
+
mwrank_set_precision(150)
|
|
82
|
+
|
|
83
|
+
|
|
84
|
+
def get_precision():
|
|
85
|
+
"""
|
|
86
|
+
Return the working floating point bit precision of mwrank, which is
|
|
87
|
+
equal to the global NTL real number precision.
|
|
88
|
+
|
|
89
|
+
OUTPUT: integer; the current precision in bits
|
|
90
|
+
|
|
91
|
+
See also :meth:`set_precision`.
|
|
92
|
+
|
|
93
|
+
EXAMPLES::
|
|
94
|
+
|
|
95
|
+
sage: mwrank_get_precision()
|
|
96
|
+
150
|
|
97
|
+
"""
|
|
98
|
+
return mwrank_get_precision()
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
def set_precision(n):
|
|
102
|
+
"""
|
|
103
|
+
Set the working floating point bit precision of mwrank, which is
|
|
104
|
+
equal to the global NTL real number precision.
|
|
105
|
+
|
|
106
|
+
NTL real number bit precision. This has a massive effect on the
|
|
107
|
+
speed of mwrank calculations. The default (used if this function is
|
|
108
|
+
not called) is ``n=150``, but it might have to be increased if a
|
|
109
|
+
computation fails.
|
|
110
|
+
|
|
111
|
+
INPUT:
|
|
112
|
+
|
|
113
|
+
- ``n`` -- positive integer; the number of bits of precision
|
|
114
|
+
|
|
115
|
+
.. warning::
|
|
116
|
+
|
|
117
|
+
This change is global and affects *all* future calls of eclib
|
|
118
|
+
functions by Sage.
|
|
119
|
+
|
|
120
|
+
.. NOTE::
|
|
121
|
+
|
|
122
|
+
The minimal value to which the precision may be set is 53.
|
|
123
|
+
Lower values will be increased to 53.
|
|
124
|
+
|
|
125
|
+
See also :meth:`get_precision`.
|
|
126
|
+
|
|
127
|
+
EXAMPLES::
|
|
128
|
+
|
|
129
|
+
sage: from sage.libs.eclib.mwrank import set_precision, get_precision
|
|
130
|
+
sage: old_prec = get_precision(); old_prec
|
|
131
|
+
150
|
|
132
|
+
sage: set_precision(50)
|
|
133
|
+
sage: get_precision()
|
|
134
|
+
53
|
|
135
|
+
sage: set_precision(old_prec)
|
|
136
|
+
sage: get_precision()
|
|
137
|
+
150
|
|
138
|
+
"""
|
|
139
|
+
mwrank_set_precision(n)
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
def initprimes(filename, verb=False):
|
|
143
|
+
"""
|
|
144
|
+
Initialises mwrank/eclib's internal prime list.
|
|
145
|
+
|
|
146
|
+
INPUT:
|
|
147
|
+
|
|
148
|
+
- ``filename`` -- string; the name of a file of primes
|
|
149
|
+
|
|
150
|
+
- ``verb`` -- boolean (default: ``False``); verbose or not
|
|
151
|
+
|
|
152
|
+
EXAMPLES::
|
|
153
|
+
|
|
154
|
+
sage: import tempfile
|
|
155
|
+
sage: with tempfile.NamedTemporaryFile(mode='w+t') as f:
|
|
156
|
+
....: data = ' '.join(str(p) for p in prime_range(10^7, 10^7 + 20))
|
|
157
|
+
....: _ = f.write(data)
|
|
158
|
+
....: f.flush()
|
|
159
|
+
....: mwrank_initprimes(f.name, verb=True)
|
|
160
|
+
Computed 78519 primes, largest is 1000253
|
|
161
|
+
reading primes from file ...
|
|
162
|
+
read extra prime 10000019
|
|
163
|
+
finished reading primes from file ...
|
|
164
|
+
Extra primes in list: 10000019
|
|
165
|
+
|
|
166
|
+
sage: mwrank_initprimes(f.name, True)
|
|
167
|
+
Traceback (most recent call last):
|
|
168
|
+
...
|
|
169
|
+
OSError: No such file or directory: ...
|
|
170
|
+
"""
|
|
171
|
+
if not os.path.exists(filename):
|
|
172
|
+
raise IOError('No such file or directory: %s' % filename)
|
|
173
|
+
filename = str_to_bytes(filename, FS_ENCODING, 'surrogateescape')
|
|
174
|
+
mwrank_initprimes(filename, verb)
|
|
175
|
+
|
|
176
|
+
|
|
177
|
+
############# bigint ###########################################
|
|
178
|
+
#
|
|
179
|
+
# In mwrank (and eclib) bigint is synonymous with NTL's ZZ class.
|
|
180
|
+
#
|
|
181
|
+
################################################################
|
|
182
|
+
|
|
183
|
+
cdef class _bigint:
|
|
184
|
+
"""
|
|
185
|
+
Cython class wrapping eclib's bigint class.
|
|
186
|
+
"""
|
|
187
|
+
cdef bigint* x
|
|
188
|
+
|
|
189
|
+
def __init__(self, x='0'):
|
|
190
|
+
"""
|
|
191
|
+
Constructor for bigint class.
|
|
192
|
+
|
|
193
|
+
INPUT:
|
|
194
|
+
|
|
195
|
+
- ``x`` -- string or int: a string representing a decimal
|
|
196
|
+
integer, or a Sage integer
|
|
197
|
+
|
|
198
|
+
EXAMPLES::
|
|
199
|
+
|
|
200
|
+
sage: from sage.libs.eclib.mwrank import _bigint
|
|
201
|
+
sage: _bigint(123)
|
|
202
|
+
123
|
|
203
|
+
sage: _bigint('123')
|
|
204
|
+
123
|
|
205
|
+
sage: type(_bigint(123))
|
|
206
|
+
<class 'sage.libs.eclib.mwrank._bigint'>
|
|
207
|
+
"""
|
|
208
|
+
s = str(x)
|
|
209
|
+
if s.isdigit() or s[0] == "-" and s[1:].isdigit():
|
|
210
|
+
self.x = str_to_bigint(str_to_bytes(s))
|
|
211
|
+
else:
|
|
212
|
+
raise ValueError("invalid _bigint: %r" % x)
|
|
213
|
+
|
|
214
|
+
def __dealloc__(self):
|
|
215
|
+
"""
|
|
216
|
+
Destructor for bigint class (releases memory).
|
|
217
|
+
"""
|
|
218
|
+
del self.x
|
|
219
|
+
|
|
220
|
+
def __repr__(self):
|
|
221
|
+
"""
|
|
222
|
+
String representation of bigint.
|
|
223
|
+
|
|
224
|
+
OUTPUT:
|
|
225
|
+
|
|
226
|
+
(string) the bigint as a string (decimal)
|
|
227
|
+
|
|
228
|
+
EXAMPLES::
|
|
229
|
+
|
|
230
|
+
sage: from sage.libs.eclib.mwrank import _bigint
|
|
231
|
+
sage: a = _bigint('123')
|
|
232
|
+
sage: a.__repr__()
|
|
233
|
+
'123'
|
|
234
|
+
sage: a = _bigint('-456')
|
|
235
|
+
sage: a.__repr__()
|
|
236
|
+
'-456'
|
|
237
|
+
"""
|
|
238
|
+
sig_on()
|
|
239
|
+
return string_sigoff(bigint_to_str(self.x))
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
cdef make_bigint(bigint* x):
|
|
243
|
+
cdef _bigint y
|
|
244
|
+
sig_off()
|
|
245
|
+
y = _bigint.__new__(_bigint)
|
|
246
|
+
y.x = x
|
|
247
|
+
return y
|
|
248
|
+
|
|
249
|
+
############# Curvedata #################
|
|
250
|
+
|
|
251
|
+
cdef class _Curvedata: # cython class wrapping eclib's Curvedata class
|
|
252
|
+
cdef Curvedata* x
|
|
253
|
+
|
|
254
|
+
def __init__(self, a1, a2, a3, a4, a6, min_on_init=0):
|
|
255
|
+
"""
|
|
256
|
+
Constructor for Curvedata class.
|
|
257
|
+
|
|
258
|
+
INPUT:
|
|
259
|
+
|
|
260
|
+
- ``a1``, ``a2``, ``a3``, ``a4``, ``a6`` -- integer coefficients of a
|
|
261
|
+
Weierstrass equation (must be nonsingular)
|
|
262
|
+
|
|
263
|
+
- ``min_on_init`` -- integer (default: 0); flag controlling whether
|
|
264
|
+
the constructed curve is replaced by a global minimal model.
|
|
265
|
+
If nonzero then this minimisation does take place.
|
|
266
|
+
|
|
267
|
+
EXAMPLES::
|
|
268
|
+
|
|
269
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
270
|
+
sage: _Curvedata(1,2,3,4,5)
|
|
271
|
+
[1,2,3,4,5]
|
|
272
|
+
b2 = 9 b4 = 11 b6 = 29 b8 = 35
|
|
273
|
+
c4 = -183 c6 = -3429
|
|
274
|
+
disc = -10351 (# real components = 1)
|
|
275
|
+
#torsion not yet computed
|
|
276
|
+
|
|
277
|
+
A non-minimal example::
|
|
278
|
+
|
|
279
|
+
sage: _Curvedata(0,0,0,0,64)
|
|
280
|
+
[0,0,0,0,64]
|
|
281
|
+
b2 = 0 b4 = 0 b6 = 256 b8 = 0
|
|
282
|
+
c4 = 0 c6 = -55296
|
|
283
|
+
disc = -1769472 (# real components = 1)
|
|
284
|
+
#torsion not yet computed
|
|
285
|
+
|
|
286
|
+
sage: _Curvedata(0,0,0,0,64,min_on_init=1)
|
|
287
|
+
[0,0,0,0,1] (reduced minimal model)
|
|
288
|
+
b2 = 0 b4 = 0 b6 = 4 b8 = 0
|
|
289
|
+
c4 = 0 c6 = -864
|
|
290
|
+
disc = -432 (# real components = 1)
|
|
291
|
+
#torsion not yet computed
|
|
292
|
+
"""
|
|
293
|
+
cdef _bigint _a1, _a2, _a3, _a4, _a6
|
|
294
|
+
_a1 = _bigint(a1)
|
|
295
|
+
_a2 = _bigint(a2)
|
|
296
|
+
_a3 = _bigint(a3)
|
|
297
|
+
_a4 = _bigint(a4)
|
|
298
|
+
_a6 = _bigint(a6)
|
|
299
|
+
self.x = new Curvedata(_a1.x[0], _a2.x[0], _a3.x[0], _a4.x[0], _a6.x[0], min_on_init)
|
|
300
|
+
if self.discriminant() == 0:
|
|
301
|
+
msg = "Invariants (= {},{},{},{},{}) do not describe an elliptic curve."
|
|
302
|
+
raise ArithmeticError(msg.format(a1, a2, a3, a4, a6))
|
|
303
|
+
|
|
304
|
+
def __dealloc__(self):
|
|
305
|
+
"""
|
|
306
|
+
Destructor for Curvedata class.
|
|
307
|
+
"""
|
|
308
|
+
del self.x
|
|
309
|
+
|
|
310
|
+
def __repr__(self):
|
|
311
|
+
r"""
|
|
312
|
+
String representation of Curvedata.
|
|
313
|
+
|
|
314
|
+
EXAMPLES::
|
|
315
|
+
|
|
316
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
317
|
+
sage: E = _Curvedata(1,2,3,4,5)
|
|
318
|
+
sage: E.__repr__()
|
|
319
|
+
'[1,2,3,4,5]\nb2 = 9\t b4 = 11\t b6 = 29\t b8 = 35\nc4 = -183\t\tc6 = -3429\ndisc = -10351\t(# real components = 1)\n#torsion not yet computed'
|
|
320
|
+
sage: E
|
|
321
|
+
[1,2,3,4,5]
|
|
322
|
+
b2 = 9 b4 = 11 b6 = 29 b8 = 35
|
|
323
|
+
c4 = -183 c6 = -3429
|
|
324
|
+
disc = -10351 (# real components = 1)
|
|
325
|
+
#torsion not yet computed
|
|
326
|
+
"""
|
|
327
|
+
sig_on()
|
|
328
|
+
return string_sigoff(Curvedata_repr(self.x))[:-1]
|
|
329
|
+
|
|
330
|
+
def silverman_bound(self):
|
|
331
|
+
r"""
|
|
332
|
+
The Silverman height bound for this elliptic curve.
|
|
333
|
+
|
|
334
|
+
OUTPUT:
|
|
335
|
+
|
|
336
|
+
(float) A nonnegative real number `B` such that for every
|
|
337
|
+
rational point on this elliptic curve `E`, `h(P)\le\hat{h}(P)
|
|
338
|
+
+ B`, where `h(P)` is the naive height and `\hat{h}(P)` the
|
|
339
|
+
canonical height.
|
|
340
|
+
|
|
341
|
+
.. NOTE::
|
|
342
|
+
|
|
343
|
+
Since eclib can compute this to arbitrary precision, we
|
|
344
|
+
could return a Sage real, but this is only a bound and in
|
|
345
|
+
the contexts in which it is used extra precision is
|
|
346
|
+
irrelevant.
|
|
347
|
+
|
|
348
|
+
EXAMPLES::
|
|
349
|
+
|
|
350
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
351
|
+
sage: E = _Curvedata(1,2,3,4,5)
|
|
352
|
+
sage: E.silverman_bound()
|
|
353
|
+
6.52226179519101...
|
|
354
|
+
sage: type(E.silverman_bound())
|
|
355
|
+
<class 'float'>
|
|
356
|
+
"""
|
|
357
|
+
return Curvedata_silverman_bound(self.x)
|
|
358
|
+
|
|
359
|
+
def cps_bound(self):
|
|
360
|
+
r"""
|
|
361
|
+
The Cremona-Prickett-Siksek height bound for this elliptic curve.
|
|
362
|
+
|
|
363
|
+
OUTPUT:
|
|
364
|
+
|
|
365
|
+
(float) A nonnegative real number `B` such that for every
|
|
366
|
+
rational point on this elliptic curve `E`, `h(P)\le\hat{h}(P)
|
|
367
|
+
+ B`, where `h(P)` is the naive height and `\hat{h}(P)` the
|
|
368
|
+
canonical height.
|
|
369
|
+
|
|
370
|
+
.. NOTE::
|
|
371
|
+
|
|
372
|
+
Since ``eclib`` can compute this to arbitrary precision, we
|
|
373
|
+
could return a Sage real, but this is only a bound and in
|
|
374
|
+
the contexts in which it is used extra precision is irrelevant.
|
|
375
|
+
|
|
376
|
+
EXAMPLES::
|
|
377
|
+
|
|
378
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
379
|
+
sage: E = _Curvedata(1,2,3,4,5)
|
|
380
|
+
sage: E.cps_bound()
|
|
381
|
+
0.11912451909250982...
|
|
382
|
+
|
|
383
|
+
Note that this is a better bound than Silverman's in this case::
|
|
384
|
+
|
|
385
|
+
sage: E.silverman_bound()
|
|
386
|
+
6.52226179519101...
|
|
387
|
+
"""
|
|
388
|
+
sig_on()
|
|
389
|
+
x = Curvedata_cps_bound(self.x)
|
|
390
|
+
sig_off()
|
|
391
|
+
return x
|
|
392
|
+
|
|
393
|
+
def height_constant(self):
|
|
394
|
+
r"""
|
|
395
|
+
A height bound for this elliptic curve.
|
|
396
|
+
|
|
397
|
+
OUTPUT:
|
|
398
|
+
|
|
399
|
+
(float) A nonnegative real number `B` such that for every
|
|
400
|
+
rational point on this elliptic curve `E`, `h(P)\le\hat{h}(P)
|
|
401
|
+
+ B`, where `h(P)` is the naive height and `\hat{h}(P)` the
|
|
402
|
+
canonical height. This is the minimum of the Silverman and
|
|
403
|
+
Cremona_Prickett-Siksek height bounds.
|
|
404
|
+
|
|
405
|
+
.. NOTE::
|
|
406
|
+
|
|
407
|
+
Since ``eclib`` can compute this to arbitrary precision, we
|
|
408
|
+
could return a Sage real, but this is only a bound and in
|
|
409
|
+
the contexts in which it is used extra precision is irrelevant.
|
|
410
|
+
|
|
411
|
+
EXAMPLES::
|
|
412
|
+
|
|
413
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
414
|
+
sage: E = _Curvedata(1,2,3,4,5)
|
|
415
|
+
sage: E.height_constant()
|
|
416
|
+
0.119124519092509...
|
|
417
|
+
"""
|
|
418
|
+
return Curvedata_height_constant(self.x)
|
|
419
|
+
|
|
420
|
+
def discriminant(self):
|
|
421
|
+
"""
|
|
422
|
+
The discriminant of this elliptic curve.
|
|
423
|
+
|
|
424
|
+
OUTPUT:
|
|
425
|
+
|
|
426
|
+
(Integer) The discriminant.
|
|
427
|
+
|
|
428
|
+
EXAMPLES::
|
|
429
|
+
|
|
430
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
431
|
+
sage: E = _Curvedata(1,2,3,4,5)
|
|
432
|
+
sage: E.discriminant()
|
|
433
|
+
-10351
|
|
434
|
+
sage: E = _Curvedata(100,200,300,400,500)
|
|
435
|
+
sage: E.discriminant()
|
|
436
|
+
-1269581104000000
|
|
437
|
+
sage: ZZ(E.discriminant())
|
|
438
|
+
-1269581104000000
|
|
439
|
+
"""
|
|
440
|
+
sig_on()
|
|
441
|
+
return Integer(string_sigoff(Curvedata_getdiscr(self.x)))
|
|
442
|
+
|
|
443
|
+
def conductor(self):
|
|
444
|
+
"""
|
|
445
|
+
The conductor of this elliptic curve.
|
|
446
|
+
|
|
447
|
+
OUTPUT:
|
|
448
|
+
|
|
449
|
+
(Integer) The conductor.
|
|
450
|
+
|
|
451
|
+
EXAMPLES::
|
|
452
|
+
|
|
453
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
454
|
+
sage: E = _Curvedata(1,2,3,4,5)
|
|
455
|
+
sage: E.discriminant()
|
|
456
|
+
-10351
|
|
457
|
+
sage: E = _Curvedata(100,200,300,400,500)
|
|
458
|
+
sage: E.conductor()
|
|
459
|
+
126958110400
|
|
460
|
+
"""
|
|
461
|
+
sig_on()
|
|
462
|
+
return Integer(string_sigoff(Curvedata_conductor(self.x)))
|
|
463
|
+
|
|
464
|
+
def isogeny_class(self, verbose=False):
|
|
465
|
+
"""
|
|
466
|
+
The isogeny class of this elliptic curve.
|
|
467
|
+
|
|
468
|
+
OUTPUT:
|
|
469
|
+
|
|
470
|
+
(tuple) A tuple consisting of (1) a list of the curves in the
|
|
471
|
+
isogeny class, each as a list of its Weierstrass coefficients;
|
|
472
|
+
(2) a matrix of the degrees of the isogenies between the
|
|
473
|
+
curves in the class (prime degrees only).
|
|
474
|
+
|
|
475
|
+
.. warning::
|
|
476
|
+
|
|
477
|
+
The list may not be complete, if the precision is too low.
|
|
478
|
+
Use ``mwrank_set_precision()`` to increase the precision.
|
|
479
|
+
|
|
480
|
+
EXAMPLES::
|
|
481
|
+
|
|
482
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
483
|
+
sage: E = _Curvedata(1,0,1,4,-6)
|
|
484
|
+
sage: E.conductor()
|
|
485
|
+
14
|
|
486
|
+
sage: E.isogeny_class()
|
|
487
|
+
([[1, 0, 1, 4, -6], [1, 0, 1, -36, -70], [1, 0, 1, -1, 0], [1, 0, 1, -171, -874], [1, 0, 1, -11, 12], [1, 0, 1, -2731, -55146]], [[0, 2, 3, 3, 0, 0], [2, 0, 0, 0, 3, 3], [3, 0, 0, 0, 2, 0], [3, 0, 0, 0, 0, 2], [0, 3, 2, 0, 0, 0], [0, 3, 0, 2, 0, 0]])
|
|
488
|
+
"""
|
|
489
|
+
sig_on()
|
|
490
|
+
s = string_sigoff(Curvedata_isogeny_class(self.x, verbose))
|
|
491
|
+
return eval(s)
|
|
492
|
+
|
|
493
|
+
|
|
494
|
+
############# _mw #################
|
|
495
|
+
|
|
496
|
+
def parse_point_list(s):
|
|
497
|
+
r"""
|
|
498
|
+
Parse a string representing a list of points.
|
|
499
|
+
|
|
500
|
+
INPUT:
|
|
501
|
+
|
|
502
|
+
- ``s`` -- string representation of a list of points; for
|
|
503
|
+
example '[]', '[[1:2:3]]', or '[[1:2:3],[4:5:6]]'
|
|
504
|
+
|
|
505
|
+
OUTPUT: list of triples of integers, for example [], [[1,2,3]],
|
|
506
|
+
[[1,2,3],[4,5,6]]
|
|
507
|
+
|
|
508
|
+
EXAMPLES::
|
|
509
|
+
|
|
510
|
+
sage: from sage.libs.eclib.mwrank import parse_point_list
|
|
511
|
+
sage: parse_point_list('[]')
|
|
512
|
+
[]
|
|
513
|
+
sage: parse_point_list('[[1:2:3]]')
|
|
514
|
+
[[1, 2, 3]]
|
|
515
|
+
sage: parse_point_list('[[1:2:3],[4:5:6]]')
|
|
516
|
+
[[1, 2, 3], [4, 5, 6]]
|
|
517
|
+
"""
|
|
518
|
+
s = s.replace(":", ",").replace(" ", "")
|
|
519
|
+
if s == '[]':
|
|
520
|
+
return []
|
|
521
|
+
pts = s[2:-2].split('],[')
|
|
522
|
+
return [[Integer(x) for x in pt.split(",")] for pt in pts]
|
|
523
|
+
|
|
524
|
+
|
|
525
|
+
cdef class _mw:
|
|
526
|
+
"""
|
|
527
|
+
Cython class wrapping eclib's mw class.
|
|
528
|
+
"""
|
|
529
|
+
cdef mw* x
|
|
530
|
+
cdef Curvedata* curve
|
|
531
|
+
cdef int verb
|
|
532
|
+
|
|
533
|
+
def __init__(self, _Curvedata curve, verb=False, pp=1, maxr=999):
|
|
534
|
+
r"""
|
|
535
|
+
Constructor for mw class.
|
|
536
|
+
|
|
537
|
+
INPUT:
|
|
538
|
+
|
|
539
|
+
- ``curve`` -- _Curvedata; an elliptic curve
|
|
540
|
+
|
|
541
|
+
- ``verb`` -- boolean (default: ``False``); verbosity flag (controls
|
|
542
|
+
amount of output produced in point searches)
|
|
543
|
+
|
|
544
|
+
- ``pp`` -- integer (default: 1); process points flag (if nonzero,
|
|
545
|
+
the points found are processed, so that at all times only a
|
|
546
|
+
`\ZZ`-basis for the subgroup generated by the points found
|
|
547
|
+
so far is stored. If zero, no processing is done and all
|
|
548
|
+
points found are stored).
|
|
549
|
+
|
|
550
|
+
- ``maxr`` -- integer (default: 999); maximum rank (quit point
|
|
551
|
+
searching once the points found generate a subgroup of this
|
|
552
|
+
rank. Useful if an upper bound for the rank is already known).
|
|
553
|
+
|
|
554
|
+
EXAMPLES::
|
|
555
|
+
|
|
556
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
557
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
558
|
+
sage: E = _Curvedata(1,0,1,4,-6)
|
|
559
|
+
sage: EQ = _mw(E)
|
|
560
|
+
sage: EQ
|
|
561
|
+
[]
|
|
562
|
+
sage: type(EQ)
|
|
563
|
+
<class 'sage.libs.eclib.mwrank._mw'>
|
|
564
|
+
|
|
565
|
+
sage: E = _Curvedata(0,0,1,-7,6)
|
|
566
|
+
sage: EQ = _mw(E)
|
|
567
|
+
sage: EQ.search(2)
|
|
568
|
+
sage: EQ
|
|
569
|
+
[[1:-1:1], [-2:3:1], [-14:25:8]]
|
|
570
|
+
|
|
571
|
+
Example to illustrate the verbose parameter::
|
|
572
|
+
|
|
573
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
574
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
575
|
+
sage: E = _Curvedata(0,0,1,-7,6)
|
|
576
|
+
sage: EQ = _mw(E, verb=False)
|
|
577
|
+
sage: EQ.search(1)
|
|
578
|
+
sage: EQ = _mw(E, verb=True)
|
|
579
|
+
sage: EQ.search(1)
|
|
580
|
+
P1 = [0:1:0] is torsion point, order 1
|
|
581
|
+
P1 = [-3:0:1] is generator number 1
|
|
582
|
+
saturating up to 20...Saturation index bound (for points of good reduction) = 3
|
|
583
|
+
Reducing saturation bound from given value 20 to computed index bound 3
|
|
584
|
+
Tamagawa index primes are [ 2 ]...
|
|
585
|
+
Checking saturation at [ 2 3 ]
|
|
586
|
+
Checking 2-saturation
|
|
587
|
+
Points were proved 2-saturated (max q used = 7)
|
|
588
|
+
Checking 3-saturation
|
|
589
|
+
Points were proved 3-saturated (max q used = 7)
|
|
590
|
+
done
|
|
591
|
+
P2 = [-2:3:1] is generator number 2
|
|
592
|
+
saturating up to 20...Saturation index bound (for points of good reduction) = 4
|
|
593
|
+
Reducing saturation bound from given value 20 to computed index bound 4
|
|
594
|
+
Tamagawa index primes are [ 2 ]...
|
|
595
|
+
Checking saturation at [ 2 3 ]
|
|
596
|
+
Checking 2-saturation
|
|
597
|
+
possible kernel vector = [1,1]
|
|
598
|
+
This point may be in 2E(Q): [14:-52:1]
|
|
599
|
+
...and it is!
|
|
600
|
+
Replacing old generator #1 with new generator [1:-1:1]
|
|
601
|
+
Reducing index bound from 4 to 2
|
|
602
|
+
Points have successfully been 2-saturated (max q used = 7)
|
|
603
|
+
Index gain = 2^1
|
|
604
|
+
done, index = 2.
|
|
605
|
+
Gained index 2, new generators = [ [1:-1:1] [-2:3:1] ]
|
|
606
|
+
P3 = [-14:25:8] is generator number 3
|
|
607
|
+
saturating up to 20...Saturation index bound (for points of good reduction) = 3
|
|
608
|
+
Reducing saturation bound from given value 20 to computed index bound 3
|
|
609
|
+
Tamagawa index primes are [ 2 ]...
|
|
610
|
+
Checking saturation at [ 2 3 ]
|
|
611
|
+
Checking 2-saturation
|
|
612
|
+
Points were proved 2-saturated (max q used = 11)
|
|
613
|
+
Checking 3-saturation
|
|
614
|
+
Points were proved 3-saturated (max q used = 13)
|
|
615
|
+
done, index = 1.
|
|
616
|
+
P4 = [-1:3:1] = -1*P1 + -1*P2 + -1*P3 (mod torsion)
|
|
617
|
+
P4 = [0:2:1] = 2*P1 + 0*P2 + 1*P3 (mod torsion)
|
|
618
|
+
P4 = [2:13:8] = -3*P1 + 1*P2 + -1*P3 (mod torsion)
|
|
619
|
+
P4 = [1:0:1] = -1*P1 + 0*P2 + 0*P3 (mod torsion)
|
|
620
|
+
P4 = [2:0:1] = -1*P1 + 1*P2 + 0*P3 (mod torsion)
|
|
621
|
+
P4 = [18:7:8] = -2*P1 + -1*P2 + -1*P3 (mod torsion)
|
|
622
|
+
P4 = [3:3:1] = 1*P1 + 0*P2 + 1*P3 (mod torsion)
|
|
623
|
+
P4 = [4:6:1] = 0*P1 + -1*P2 + -1*P3 (mod torsion)
|
|
624
|
+
P4 = [36:69:64] = 1*P1 + -2*P2 + 0*P3 (mod torsion)
|
|
625
|
+
P4 = [68:-25:64] = -2*P1 + -1*P2 + -2*P3 (mod torsion)
|
|
626
|
+
P4 = [12:35:27] = 1*P1 + -1*P2 + -1*P3 (mod torsion)
|
|
627
|
+
sage: EQ
|
|
628
|
+
[[1:-1:1], [-2:3:1], [-14:25:8]]
|
|
629
|
+
|
|
630
|
+
Example to illustrate the process points ``pp`` parameter::
|
|
631
|
+
|
|
632
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
633
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
634
|
+
sage: E = _Curvedata(0,0,1,-7,6)
|
|
635
|
+
sage: EQ = _mw(E, pp=1)
|
|
636
|
+
sage: EQ.search(1); EQ
|
|
637
|
+
[[1:-1:1], [-2:3:1], [-14:25:8]]
|
|
638
|
+
sage: EQ = _mw(E, pp=0)
|
|
639
|
+
sage: EQ.search(1); EQ
|
|
640
|
+
[[-3:0:1], [-2:3:1], [-14:25:8], [-1:3:1], [0:2:1], [2:13:8], [1:0:1], [2:0:1], [18:7:8], [3:3:1], [4:6:1], [36:69:64], [68:-25:64], [12:35:27]]
|
|
641
|
+
"""
|
|
642
|
+
self.curve = curve.x
|
|
643
|
+
self.x = new mw(curve.x, verb, pp, maxr)
|
|
644
|
+
self.verb = verb
|
|
645
|
+
|
|
646
|
+
def __dealloc__(self):
|
|
647
|
+
"""
|
|
648
|
+
Destructor for mw class.
|
|
649
|
+
"""
|
|
650
|
+
del self.x
|
|
651
|
+
|
|
652
|
+
def __repr__(self):
|
|
653
|
+
"""
|
|
654
|
+
String representation of the current basis of this mw group.
|
|
655
|
+
|
|
656
|
+
OUTPUT:
|
|
657
|
+
|
|
658
|
+
(string) the current basis of this mw as a string
|
|
659
|
+
|
|
660
|
+
EXAMPLES::
|
|
661
|
+
|
|
662
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
663
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
664
|
+
sage: E = _Curvedata(0,0,1,-7,6)
|
|
665
|
+
sage: EQ = _mw(E)
|
|
666
|
+
sage: EQ # indirect doctest
|
|
667
|
+
[]
|
|
668
|
+
sage: EQ.search(2)
|
|
669
|
+
sage: EQ
|
|
670
|
+
[[1:-1:1], [-2:3:1], [-14:25:8]]
|
|
671
|
+
"""
|
|
672
|
+
sig_on()
|
|
673
|
+
return string_sigoff(mw_getbasis(self.x))
|
|
674
|
+
|
|
675
|
+
def process(self, point, saturation_bound=0):
|
|
676
|
+
"""
|
|
677
|
+
Processes the given point, adding it to the mw group.
|
|
678
|
+
|
|
679
|
+
INPUT:
|
|
680
|
+
|
|
681
|
+
- ``point`` -- tuple or list of 3 integers; an :exc:`ArithmeticError` is
|
|
682
|
+
raised if the point is not on the curve
|
|
683
|
+
|
|
684
|
+
- ``saturation_bound`` -- integer (default: 0); saturate at primes up
|
|
685
|
+
to ``saturation_bound``. No saturation is done if
|
|
686
|
+
``saturation_bound=0``. If ``saturation_bound=-1`` then
|
|
687
|
+
saturation is done at all primes, by computing a bound on
|
|
688
|
+
the saturation index. Note that it is more efficient to add
|
|
689
|
+
several points at once and then saturate just once at the end.
|
|
690
|
+
|
|
691
|
+
.. NOTE::
|
|
692
|
+
|
|
693
|
+
The eclib function which implements this only carries out
|
|
694
|
+
any saturation if the rank of the points increases upon
|
|
695
|
+
adding the new point. This is because it is assumed that
|
|
696
|
+
one saturates as ones goes along.
|
|
697
|
+
|
|
698
|
+
EXAMPLES::
|
|
699
|
+
|
|
700
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
701
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
702
|
+
sage: E = _Curvedata(0,1,1,-2,0)
|
|
703
|
+
sage: EQ = _mw(E)
|
|
704
|
+
|
|
705
|
+
Initially the list of gens is empty::
|
|
706
|
+
|
|
707
|
+
sage: EQ
|
|
708
|
+
[]
|
|
709
|
+
|
|
710
|
+
We process a point of infinite order::
|
|
711
|
+
|
|
712
|
+
sage: EQ.process([-1,1,1])
|
|
713
|
+
sage: EQ
|
|
714
|
+
[[-1:1:1]]
|
|
715
|
+
|
|
716
|
+
And another independent one::
|
|
717
|
+
|
|
718
|
+
sage: EQ.process([0,-1,1])
|
|
719
|
+
sage: EQ
|
|
720
|
+
[[-1:1:1], [0:-1:1]]
|
|
721
|
+
|
|
722
|
+
Processing a point dependent on the current basis will not
|
|
723
|
+
change the basis::
|
|
724
|
+
|
|
725
|
+
sage: EQ.process([4,8,1])
|
|
726
|
+
sage: EQ
|
|
727
|
+
[[-1:1:1], [0:-1:1]]
|
|
728
|
+
"""
|
|
729
|
+
if not isinstance(point, (tuple, list)) and len(point) == 3:
|
|
730
|
+
raise TypeError("point must be a list or tuple of length 3.")
|
|
731
|
+
cdef _bigint x,y,z
|
|
732
|
+
sig_on()
|
|
733
|
+
x,y,z = _bigint(point[0]), _bigint(point[1]), _bigint(point[2])
|
|
734
|
+
r = mw_process(self.curve, self.x, x.x, y.x, z.x, saturation_bound)
|
|
735
|
+
sig_off()
|
|
736
|
+
if r != 0:
|
|
737
|
+
raise ArithmeticError("point (=%s) not on curve." % point)
|
|
738
|
+
|
|
739
|
+
def getbasis(self):
|
|
740
|
+
"""
|
|
741
|
+
Return the current basis of the mw structure.
|
|
742
|
+
|
|
743
|
+
OUTPUT:
|
|
744
|
+
|
|
745
|
+
(list) list of integer triples giving the projective
|
|
746
|
+
coordinates of the points in the basis.
|
|
747
|
+
|
|
748
|
+
EXAMPLES::
|
|
749
|
+
|
|
750
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
751
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
752
|
+
sage: E = _Curvedata(0,1,1,-2,0)
|
|
753
|
+
sage: EQ = _mw(E)
|
|
754
|
+
sage: EQ.search(3)
|
|
755
|
+
sage: EQ.getbasis()
|
|
756
|
+
[[0, -1, 1], [-1, 1, 1]]
|
|
757
|
+
sage: EQ.rank()
|
|
758
|
+
2
|
|
759
|
+
"""
|
|
760
|
+
sig_on()
|
|
761
|
+
s = string_sigoff(mw_getbasis(self.x))
|
|
762
|
+
return parse_point_list(s)
|
|
763
|
+
|
|
764
|
+
def regulator(self):
|
|
765
|
+
"""
|
|
766
|
+
Return the regulator of the current basis of the mw group.
|
|
767
|
+
|
|
768
|
+
OUTPUT:
|
|
769
|
+
|
|
770
|
+
(double) The current regulator.
|
|
771
|
+
|
|
772
|
+
.. TODO::
|
|
773
|
+
|
|
774
|
+
``eclib`` computes the regulator to arbitrary precision, and
|
|
775
|
+
the full precision value should be returned.
|
|
776
|
+
|
|
777
|
+
EXAMPLES::
|
|
778
|
+
|
|
779
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
780
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
781
|
+
sage: E = _Curvedata(0,1,1,-2,0)
|
|
782
|
+
sage: EQ = _mw(E)
|
|
783
|
+
sage: EQ.search(3)
|
|
784
|
+
sage: EQ.getbasis()
|
|
785
|
+
[[0, -1, 1], [-1, 1, 1]]
|
|
786
|
+
sage: EQ.rank()
|
|
787
|
+
2
|
|
788
|
+
sage: EQ.regulator()
|
|
789
|
+
0.15246017794314376
|
|
790
|
+
"""
|
|
791
|
+
sig_on()
|
|
792
|
+
f = mw_regulator(self.x)
|
|
793
|
+
sig_off()
|
|
794
|
+
return f
|
|
795
|
+
|
|
796
|
+
def rank(self):
|
|
797
|
+
"""
|
|
798
|
+
Return the rank of the current basis of the mw group.
|
|
799
|
+
|
|
800
|
+
OUTPUT:
|
|
801
|
+
|
|
802
|
+
(Integer) The current rank.
|
|
803
|
+
|
|
804
|
+
EXAMPLES::
|
|
805
|
+
|
|
806
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
807
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
808
|
+
sage: E = _Curvedata(0,1,1,-2,0)
|
|
809
|
+
sage: EQ = _mw(E)
|
|
810
|
+
sage: EQ.search(3)
|
|
811
|
+
sage: EQ.getbasis()
|
|
812
|
+
[[0, -1, 1], [-1, 1, 1]]
|
|
813
|
+
sage: EQ.rank()
|
|
814
|
+
2
|
|
815
|
+
"""
|
|
816
|
+
sig_on()
|
|
817
|
+
r = mw_rank(self.x)
|
|
818
|
+
sig_off()
|
|
819
|
+
return Integer(r)
|
|
820
|
+
|
|
821
|
+
def saturate(self, int sat_bd=-1, int sat_low_bd=2):
|
|
822
|
+
"""
|
|
823
|
+
Saturates the current subgroup of the mw group.
|
|
824
|
+
|
|
825
|
+
INPUT:
|
|
826
|
+
|
|
827
|
+
- ``sat_bnd`` -- integer (default: -1); upper bound on primes at
|
|
828
|
+
which to saturate. If -1 (default), compute a bound for the
|
|
829
|
+
primes which may not be saturated, and use that. Otherwise,
|
|
830
|
+
the bound used is the minimum of the value of ``sat_bnd``
|
|
831
|
+
and the computed bound.
|
|
832
|
+
|
|
833
|
+
- ``sat_low_bd`` -- integer (default: 2); only do saturation at
|
|
834
|
+
prime not less than this. For example, if the points have
|
|
835
|
+
been found via 2-descent they should already be 2-saturated,
|
|
836
|
+
and ``sat_low_bd=3`` is appropriate.
|
|
837
|
+
|
|
838
|
+
OUTPUT:
|
|
839
|
+
|
|
840
|
+
(tuple) (success flag, index, list) The success flag will be 1
|
|
841
|
+
unless something failed (usually an indication that the points
|
|
842
|
+
were not saturated but eclib was not able to divide out
|
|
843
|
+
successfully). The index is the index of the mw group before
|
|
844
|
+
saturation in the mw group after. The list is a string
|
|
845
|
+
representation of the primes at which saturation was not
|
|
846
|
+
proved or achieved.
|
|
847
|
+
|
|
848
|
+
.. NOTE::
|
|
849
|
+
|
|
850
|
+
``eclib`` will compute a bound on the saturation index. If
|
|
851
|
+
the computed saturation bound is very large and ``sat_bnd`` is
|
|
852
|
+
-1, ``eclib`` may output a warning, but will still attempt to
|
|
853
|
+
saturate up to the computed bound. If a positive value of
|
|
854
|
+
``sat_bnd`` is given which is greater than the computed bound,
|
|
855
|
+
`p`-saturation will only be carried out for primes up to the
|
|
856
|
+
compated bound. Setting ``sat_low_bnd`` to a value greater
|
|
857
|
+
than 2 allows for saturation to be done incrementally, or for
|
|
858
|
+
exactly one prime `p` by setting both ``sat_bd`` and
|
|
859
|
+
``sat_low_bd`` to `p`.
|
|
860
|
+
|
|
861
|
+
EXAMPLES::
|
|
862
|
+
|
|
863
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
864
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
865
|
+
sage: E = _Curvedata(0,1,1,-2,0)
|
|
866
|
+
sage: EQ = _mw(E)
|
|
867
|
+
sage: EQ.process([494, -5720, 6859]) # 3 times another point
|
|
868
|
+
sage: EQ
|
|
869
|
+
[[494:-5720:6859]]
|
|
870
|
+
sage: EQ.saturate()
|
|
871
|
+
(1, 3, '[ ]')
|
|
872
|
+
sage: EQ
|
|
873
|
+
[[-1:1:1]]
|
|
874
|
+
|
|
875
|
+
If we set the saturation bound at 2, then saturation will not
|
|
876
|
+
enlarge the basis, but the success flag is still 1 (True)
|
|
877
|
+
since we did not ask to check 3-saturation::
|
|
878
|
+
|
|
879
|
+
sage: EQ = _mw(E)
|
|
880
|
+
sage: EQ.process([494, -5720, 6859]) # 3 times another point
|
|
881
|
+
sage: EQ.saturate(sat_bd=2)
|
|
882
|
+
(1, 1, '[ ]')
|
|
883
|
+
sage: EQ
|
|
884
|
+
[[494:-5720:6859]]
|
|
885
|
+
"""
|
|
886
|
+
cdef long index
|
|
887
|
+
cdef char* s
|
|
888
|
+
cdef int ok
|
|
889
|
+
sig_on()
|
|
890
|
+
ok = mw_saturate(self.x, &index, &s, sat_bd, sat_low_bd)
|
|
891
|
+
unsat = string_sigoff(s)
|
|
892
|
+
return ok, index, unsat
|
|
893
|
+
|
|
894
|
+
def search(self, h_lim, int moduli_option=0, int verb=0):
|
|
895
|
+
r"""
|
|
896
|
+
Search for points in the mw group.
|
|
897
|
+
|
|
898
|
+
INPUT:
|
|
899
|
+
|
|
900
|
+
- ``h_lim`` -- integer; bound on logarithmic naive height of points
|
|
901
|
+
|
|
902
|
+
- ``moduli_option`` -- integer (default: 0); option for sieving
|
|
903
|
+
strategy. The default (0) uses an adapted version of
|
|
904
|
+
Stoll's ratpoints code and is recommended.
|
|
905
|
+
|
|
906
|
+
- ``verb`` -- integer (default: 0); level of verbosity. If 0, no
|
|
907
|
+
output. If positive, the points are output as found and
|
|
908
|
+
some details of the processing, finding linear relations,
|
|
909
|
+
and partial saturation are output.
|
|
910
|
+
|
|
911
|
+
.. NOTE::
|
|
912
|
+
|
|
913
|
+
The effect of the search is also governed by the class
|
|
914
|
+
options, notably whether the points found are processed:
|
|
915
|
+
meaning that linear relations are found and saturation is
|
|
916
|
+
carried out, with the result that the list of generators
|
|
917
|
+
will always contain a `\ZZ`-span of the saturation of the
|
|
918
|
+
points found, modulo torsion.
|
|
919
|
+
|
|
920
|
+
OUTPUT: none; the effect of the search is to update the list of generators
|
|
921
|
+
|
|
922
|
+
EXAMPLES::
|
|
923
|
+
|
|
924
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
925
|
+
sage: from sage.libs.eclib.mwrank import _mw
|
|
926
|
+
sage: E = _Curvedata(0,0,1,-19569,-4064513) # 873c1
|
|
927
|
+
sage: EQ = _mw(E)
|
|
928
|
+
sage: EQ = _mw(E)
|
|
929
|
+
sage: for i in [1..11]:
|
|
930
|
+
....: print("{} {} {}".format(i, EQ.search(i), EQ))
|
|
931
|
+
1 None []
|
|
932
|
+
2 None []
|
|
933
|
+
3 None []
|
|
934
|
+
4 None []
|
|
935
|
+
5 None []
|
|
936
|
+
6 None []
|
|
937
|
+
7 None []
|
|
938
|
+
8 None []
|
|
939
|
+
9 None []
|
|
940
|
+
10 None []
|
|
941
|
+
11 None [[3639568:106817593:4096]]
|
|
942
|
+
"""
|
|
943
|
+
|
|
944
|
+
h_lim = str_to_bytes(str(h_lim))
|
|
945
|
+
|
|
946
|
+
sig_on()
|
|
947
|
+
mw_search(self.x, h_lim, moduli_option, verb)
|
|
948
|
+
sig_off()
|
|
949
|
+
|
|
950
|
+
|
|
951
|
+
############# two_descent #################
|
|
952
|
+
cdef class _two_descent:
|
|
953
|
+
"""
|
|
954
|
+
Cython class wrapping eclib's two_descent class.
|
|
955
|
+
"""
|
|
956
|
+
cdef two_descent* x
|
|
957
|
+
|
|
958
|
+
def __init__(self):
|
|
959
|
+
"""
|
|
960
|
+
Constructor for two_descent class.
|
|
961
|
+
|
|
962
|
+
EXAMPLES::
|
|
963
|
+
|
|
964
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
965
|
+
sage: D2 = _two_descent()
|
|
966
|
+
"""
|
|
967
|
+
self.x = <two_descent*> 0
|
|
968
|
+
|
|
969
|
+
def __dealloc__(self):
|
|
970
|
+
"""
|
|
971
|
+
Destructor for two_descent class.
|
|
972
|
+
"""
|
|
973
|
+
del self.x
|
|
974
|
+
|
|
975
|
+
def do_descent(self, _Curvedata curve,
|
|
976
|
+
int verb = 1,
|
|
977
|
+
int sel = 0,
|
|
978
|
+
int firstlim = 20,
|
|
979
|
+
int secondlim = 8,
|
|
980
|
+
int n_aux = -1,
|
|
981
|
+
int second_descent = 1):
|
|
982
|
+
"""
|
|
983
|
+
Carry out a 2-descent.
|
|
984
|
+
|
|
985
|
+
INPUT:
|
|
986
|
+
|
|
987
|
+
- ``curvedata`` -- _Curvedata; the curve on which to do descent
|
|
988
|
+
|
|
989
|
+
- ``verb`` -- integer (default: 1); verbosity level
|
|
990
|
+
|
|
991
|
+
- ``sel`` -- integer (default: 0); Selmer-only flag. If 1, only
|
|
992
|
+
the 2-Selmer group will be computed, with no rational
|
|
993
|
+
points. Useful as a faster way of getting an upper bound on
|
|
994
|
+
the rank.
|
|
995
|
+
|
|
996
|
+
- ``firstlim``, ``secondlim``, ``n_aux``, ``second_descent`` --
|
|
997
|
+
see ``first_limit``, ``second_limit``, ``n_aux``, ``second_descent``
|
|
998
|
+
respectively in :meth:`~sage.libs.eclib.interface.mwrank_EllipticCurve.two_descent`
|
|
999
|
+
(although ``second_descent`` here is ``1`` or ``0`` instead of ``True`` or ``False``
|
|
1000
|
+
respectively)
|
|
1001
|
+
|
|
1002
|
+
OUTPUT: none
|
|
1003
|
+
|
|
1004
|
+
EXAMPLES::
|
|
1005
|
+
|
|
1006
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1007
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1008
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1009
|
+
sage: D2 = _two_descent()
|
|
1010
|
+
sage: D2.do_descent(CD)
|
|
1011
|
+
Basic pair: I=336, J=-10800
|
|
1012
|
+
disc=35092224
|
|
1013
|
+
...
|
|
1014
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1015
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1016
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1017
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1018
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1019
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1020
|
+
sage: D2.getrank()
|
|
1021
|
+
3
|
|
1022
|
+
sage: D2.getcertain()
|
|
1023
|
+
1
|
|
1024
|
+
sage: D2.ok()
|
|
1025
|
+
1
|
|
1026
|
+
"""
|
|
1027
|
+
sig_on()
|
|
1028
|
+
self.x = new two_descent(curve.x, verb, sel, firstlim, secondlim, n_aux, second_descent)
|
|
1029
|
+
sig_off()
|
|
1030
|
+
|
|
1031
|
+
def getrank(self):
|
|
1032
|
+
"""
|
|
1033
|
+
Return the rank (after doing a 2-descent).
|
|
1034
|
+
|
|
1035
|
+
OUTPUT:
|
|
1036
|
+
|
|
1037
|
+
(Integer) the rank (or an upper bound).
|
|
1038
|
+
|
|
1039
|
+
EXAMPLES::
|
|
1040
|
+
|
|
1041
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1042
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1043
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1044
|
+
sage: D2 = _two_descent()
|
|
1045
|
+
sage: D2.do_descent(CD)
|
|
1046
|
+
Basic pair: I=336, J=-10800
|
|
1047
|
+
disc=35092224
|
|
1048
|
+
...
|
|
1049
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1050
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1051
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1052
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1053
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1054
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1055
|
+
sage: D2.getrank()
|
|
1056
|
+
3
|
|
1057
|
+
"""
|
|
1058
|
+
cdef int r
|
|
1059
|
+
sig_on()
|
|
1060
|
+
r = two_descent_get_rank(self.x)
|
|
1061
|
+
sig_off()
|
|
1062
|
+
return Integer(r)
|
|
1063
|
+
|
|
1064
|
+
def getrankbound(self):
|
|
1065
|
+
"""
|
|
1066
|
+
Return the rank upper bound (after doing a 2-descent).
|
|
1067
|
+
|
|
1068
|
+
OUTPUT:
|
|
1069
|
+
|
|
1070
|
+
(Integer) an upper bound on the rank.
|
|
1071
|
+
|
|
1072
|
+
EXAMPLES::
|
|
1073
|
+
|
|
1074
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1075
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1076
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1077
|
+
sage: D2 = _two_descent()
|
|
1078
|
+
sage: D2.do_descent(CD)
|
|
1079
|
+
Basic pair: I=336, J=-10800
|
|
1080
|
+
disc=35092224
|
|
1081
|
+
...
|
|
1082
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1083
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1084
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1085
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1086
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1087
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1088
|
+
sage: D2.getrankbound()
|
|
1089
|
+
3
|
|
1090
|
+
"""
|
|
1091
|
+
cdef int r
|
|
1092
|
+
sig_on()
|
|
1093
|
+
r = two_descent_get_rank_bound(self.x)
|
|
1094
|
+
sig_off()
|
|
1095
|
+
return Integer(r)
|
|
1096
|
+
|
|
1097
|
+
def getselmer(self):
|
|
1098
|
+
"""
|
|
1099
|
+
Return the 2-Selmer rank (after doing a 2-descent).
|
|
1100
|
+
|
|
1101
|
+
OUTPUT:
|
|
1102
|
+
|
|
1103
|
+
(Integer) The 2-Selmer rank.
|
|
1104
|
+
|
|
1105
|
+
EXAMPLES::
|
|
1106
|
+
|
|
1107
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1108
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1109
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1110
|
+
sage: D2 = _two_descent()
|
|
1111
|
+
sage: D2.do_descent(CD)
|
|
1112
|
+
Basic pair: I=336, J=-10800
|
|
1113
|
+
disc=35092224
|
|
1114
|
+
...
|
|
1115
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1116
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1117
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1118
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1119
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1120
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1121
|
+
sage: D2.getselmer()
|
|
1122
|
+
3
|
|
1123
|
+
"""
|
|
1124
|
+
sig_on()
|
|
1125
|
+
r = two_descent_get_selmer_rank(self.x)
|
|
1126
|
+
sig_off()
|
|
1127
|
+
return Integer(r)
|
|
1128
|
+
|
|
1129
|
+
def ok(self):
|
|
1130
|
+
"""
|
|
1131
|
+
Return the success flag (after doing a 2-descent).
|
|
1132
|
+
|
|
1133
|
+
OUTPUT: boolean flag indicating whether or not 2-descent was successful
|
|
1134
|
+
|
|
1135
|
+
EXAMPLES::
|
|
1136
|
+
|
|
1137
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1138
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1139
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1140
|
+
sage: D2 = _two_descent()
|
|
1141
|
+
sage: D2.do_descent(CD)
|
|
1142
|
+
Basic pair: I=336, J=-10800
|
|
1143
|
+
disc=35092224
|
|
1144
|
+
...
|
|
1145
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1146
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1147
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1148
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1149
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1150
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1151
|
+
sage: D2.ok()
|
|
1152
|
+
1
|
|
1153
|
+
"""
|
|
1154
|
+
return two_descent_ok(self.x)
|
|
1155
|
+
|
|
1156
|
+
def getcertain(self):
|
|
1157
|
+
"""
|
|
1158
|
+
Return the certainty flag (after doing a 2-descent).
|
|
1159
|
+
|
|
1160
|
+
OUTPUT: boolean; ``True`` if the rank upper and lower bounds are equal
|
|
1161
|
+
|
|
1162
|
+
EXAMPLES::
|
|
1163
|
+
|
|
1164
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1165
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1166
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1167
|
+
sage: D2 = _two_descent()
|
|
1168
|
+
sage: D2.do_descent(CD)
|
|
1169
|
+
Basic pair: I=336, J=-10800
|
|
1170
|
+
disc=35092224
|
|
1171
|
+
...
|
|
1172
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1173
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1174
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1175
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1176
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1177
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1178
|
+
sage: D2.getcertain()
|
|
1179
|
+
1
|
|
1180
|
+
"""
|
|
1181
|
+
return two_descent_get_certain(self.x)
|
|
1182
|
+
|
|
1183
|
+
def saturate(self, saturation_bound=0, lower=3):
|
|
1184
|
+
"""
|
|
1185
|
+
Carries out saturation of the points found by a 2-descent.
|
|
1186
|
+
|
|
1187
|
+
INPUT:
|
|
1188
|
+
|
|
1189
|
+
- ``saturation_bound`` -- integer; an upper bound on the primes
|
|
1190
|
+
`p` at which `p`-saturation will be carried out, or -1, in
|
|
1191
|
+
which case ``eclib`` will compute an upper bound on the
|
|
1192
|
+
saturation index.
|
|
1193
|
+
|
|
1194
|
+
- ``lower`` -- integer (default: 3); do no `p`-saturation for `p`
|
|
1195
|
+
less than this. The default is 3 since the points found
|
|
1196
|
+
during 2-descent will be 2-saturated.
|
|
1197
|
+
|
|
1198
|
+
OUTPUT: none
|
|
1199
|
+
|
|
1200
|
+
EXAMPLES::
|
|
1201
|
+
|
|
1202
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1203
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1204
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1205
|
+
sage: D2 = _two_descent()
|
|
1206
|
+
sage: D2.do_descent(CD)
|
|
1207
|
+
Basic pair: I=336, J=-10800
|
|
1208
|
+
disc=35092224
|
|
1209
|
+
...
|
|
1210
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1211
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1212
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1213
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1214
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1215
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1216
|
+
sage: D2.saturate()
|
|
1217
|
+
Searching for points (bound = 8)...done:
|
|
1218
|
+
found points which generate a subgroup of rank 3
|
|
1219
|
+
and regulator 0.417...
|
|
1220
|
+
Processing points found during 2-descent...done:
|
|
1221
|
+
now regulator = 0.417...
|
|
1222
|
+
No saturation being done
|
|
1223
|
+
sage: D2.getbasis()
|
|
1224
|
+
'[[1:-1:1], [-2:3:1], [-14:25:8]]'
|
|
1225
|
+
"""
|
|
1226
|
+
sig_on()
|
|
1227
|
+
two_descent_saturate(self.x, saturation_bound, 3)
|
|
1228
|
+
sig_off()
|
|
1229
|
+
|
|
1230
|
+
def getbasis(self):
|
|
1231
|
+
r"""
|
|
1232
|
+
Return the basis of points found by doing a 2-descent.
|
|
1233
|
+
|
|
1234
|
+
If the success and certain flags are 1, this will be a
|
|
1235
|
+
`\ZZ/2\ZZ`-basis for `E(\QQ)/2E(\QQ)` (modulo torsion),
|
|
1236
|
+
otherwise possibly only for a proper subgroup.
|
|
1237
|
+
|
|
1238
|
+
.. NOTE::
|
|
1239
|
+
|
|
1240
|
+
You must call ``saturate()`` first, or a :exc:`RunTimeError`
|
|
1241
|
+
will be raised.
|
|
1242
|
+
|
|
1243
|
+
OUTPUT:
|
|
1244
|
+
|
|
1245
|
+
(string) String representation of the list of points after
|
|
1246
|
+
saturation.
|
|
1247
|
+
|
|
1248
|
+
EXAMPLES::
|
|
1249
|
+
|
|
1250
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1251
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1252
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1253
|
+
sage: D2 = _two_descent()
|
|
1254
|
+
sage: D2.do_descent(CD)
|
|
1255
|
+
Basic pair: I=336, J=-10800
|
|
1256
|
+
disc=35092224
|
|
1257
|
+
...
|
|
1258
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1259
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1260
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1261
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1262
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1263
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1264
|
+
sage: D2.saturate()
|
|
1265
|
+
Searching for points (bound = 8)...done:
|
|
1266
|
+
found points which generate a subgroup of rank 3
|
|
1267
|
+
and regulator 0.417...
|
|
1268
|
+
Processing points found during 2-descent...done:
|
|
1269
|
+
now regulator = 0.417...
|
|
1270
|
+
No saturation being done
|
|
1271
|
+
sage: D2.getbasis()
|
|
1272
|
+
'[[1:-1:1], [-2:3:1], [-14:25:8]]'
|
|
1273
|
+
"""
|
|
1274
|
+
sig_on()
|
|
1275
|
+
return string_sigoff(two_descent_get_basis(self.x))
|
|
1276
|
+
|
|
1277
|
+
def regulator(self):
|
|
1278
|
+
"""
|
|
1279
|
+
Return the regulator of the points found by doing a 2-descent.
|
|
1280
|
+
|
|
1281
|
+
OUTPUT:
|
|
1282
|
+
|
|
1283
|
+
(double) The regulator (of the subgroup found by 2-descent).
|
|
1284
|
+
|
|
1285
|
+
EXAMPLES::
|
|
1286
|
+
|
|
1287
|
+
sage: from sage.libs.eclib.mwrank import _Curvedata
|
|
1288
|
+
sage: CD = _Curvedata(0,0,1,-7,6)
|
|
1289
|
+
sage: from sage.libs.eclib.mwrank import _two_descent
|
|
1290
|
+
sage: D2 = _two_descent()
|
|
1291
|
+
sage: D2.do_descent(CD)
|
|
1292
|
+
Basic pair: I=336, J=-10800
|
|
1293
|
+
disc=35092224
|
|
1294
|
+
...
|
|
1295
|
+
Mordell rank contribution from B=im(eps) = 3
|
|
1296
|
+
Selmer rank contribution from B=im(eps) = 3
|
|
1297
|
+
Sha rank contribution from B=im(eps) = 0
|
|
1298
|
+
Mordell rank contribution from A=ker(eps) = 0
|
|
1299
|
+
Selmer rank contribution from A=ker(eps) = 0
|
|
1300
|
+
Sha rank contribution from A=ker(eps) = 0
|
|
1301
|
+
|
|
1302
|
+
If called before calling ``saturate()``, a bogus value of 1.0
|
|
1303
|
+
is returned::
|
|
1304
|
+
|
|
1305
|
+
sage: D2.regulator()
|
|
1306
|
+
1.0
|
|
1307
|
+
|
|
1308
|
+
After saturation, both ``getbasis()`` and ``regulator()``
|
|
1309
|
+
return the basis and regulator of the subgroup found by
|
|
1310
|
+
2-descent::
|
|
1311
|
+
|
|
1312
|
+
sage: D2.saturate()
|
|
1313
|
+
Searching for points (bound = 8)...done:
|
|
1314
|
+
found points which generate a subgroup of rank 3
|
|
1315
|
+
and regulator 0.417...
|
|
1316
|
+
Processing points found during 2-descent...done:
|
|
1317
|
+
now regulator = 0.417...
|
|
1318
|
+
No saturation being done
|
|
1319
|
+
sage: D2.getbasis()
|
|
1320
|
+
'[[1:-1:1], [-2:3:1], [-14:25:8]]'
|
|
1321
|
+
sage: D2.regulator()
|
|
1322
|
+
0.417143558758384
|
|
1323
|
+
"""
|
|
1324
|
+
sig_on()
|
|
1325
|
+
reg = two_descent_regulator(self.x)
|
|
1326
|
+
sig_off()
|
|
1327
|
+
return reg
|