passagemath-combinat 10.6.1rc3__cp311-cp311-win_amd64.whl → 10.6.44__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (79) hide show
  1. passagemath_combinat/__init__.py +3 -0
  2. passagemath_combinat-10.6.44.dist-info/DELVEWHEEL +2 -0
  3. {passagemath_combinat-10.6.1rc3.dist-info → passagemath_combinat-10.6.44.dist-info}/METADATA +30 -23
  4. {passagemath_combinat-10.6.1rc3.dist-info → passagemath_combinat-10.6.44.dist-info}/RECORD +76 -75
  5. passagemath_combinat-10.6.44.dist-info/top_level.txt +3 -0
  6. passagemath_combinat.libs/libgmp-10-20eff6468ebffd10e3a6f0c3780fee4e.dll +0 -0
  7. passagemath_combinat.libs/{libsymmetrica-3-1e2c5e20489b005650f13ca8d6065d77.dll → libsymmetrica-3-fa8ae274cd9618eec4c7c5aca1f11bc7.dll} +0 -0
  8. sage/algebras/all.py +0 -1
  9. sage/algebras/nil_coxeter_algebra.py +1 -1
  10. sage/all__sagemath_combinat.py +3 -3
  11. sage/combinat/chas/fsym.py +2 -2
  12. sage/combinat/cluster_complex.py +1 -1
  13. sage/combinat/colored_permutations.py +1 -1
  14. sage/combinat/crystals/letters.cp311-win_amd64.pyd +0 -0
  15. sage/combinat/crystals/pbw_datum.cp311-win_amd64.pyd +0 -0
  16. sage/combinat/crystals/spins.cp311-win_amd64.pyd +0 -0
  17. sage/combinat/crystals/tensor_product_element.cp311-win_amd64.pyd +0 -0
  18. sage/combinat/debruijn_sequence.cp311-win_amd64.pyd +0 -0
  19. sage/combinat/degree_sequences.cp311-win_amd64.pyd +0 -0
  20. sage/combinat/degree_sequences.pyx +2 -2
  21. sage/combinat/diagram_algebras.py +1 -1
  22. sage/combinat/expnums.cp311-win_amd64.pyd +0 -0
  23. sage/combinat/fast_vector_partitions.cp311-win_amd64.pyd +0 -0
  24. sage/combinat/gelfand_tsetlin_patterns.py +1 -1
  25. sage/combinat/growth.py +4 -4
  26. sage/combinat/matrices/hadamard_matrix.py +15 -11
  27. sage/combinat/ncsf_qsym/ncsf.py +8 -8
  28. sage/combinat/parallelogram_polyomino.py +14 -14
  29. sage/combinat/partition_algebra.py +18 -16
  30. sage/combinat/path_tableaux/dyck_path.py +1 -1
  31. sage/combinat/path_tableaux/semistandard.py +1 -1
  32. sage/combinat/plane_partition.py +1 -1
  33. sage/combinat/q_bernoulli.cp311-win_amd64.pyd +0 -0
  34. sage/combinat/quickref.py +1 -1
  35. sage/combinat/ribbon_shaped_tableau.py +1 -1
  36. sage/combinat/rigged_configurations/rigged_partition.cp311-win_amd64.pyd +0 -0
  37. sage/combinat/set_partition_iterator.cp311-win_amd64.pyd +0 -0
  38. sage/combinat/sf/character.py +7 -7
  39. sage/combinat/sf/classical.py +1 -1
  40. sage/combinat/sf/dual.py +2 -2
  41. sage/combinat/sf/hall_littlewood.py +6 -6
  42. sage/combinat/sf/hecke.py +1 -1
  43. sage/combinat/sf/jack.py +5 -5
  44. sage/combinat/sf/k_dual.py +25 -12
  45. sage/combinat/sf/llt.py +28 -10
  46. sage/combinat/sf/monomial.py +1 -1
  47. sage/combinat/sf/orthogonal.py +1 -1
  48. sage/combinat/sf/orthotriang.py +2 -2
  49. sage/combinat/sf/schur.py +14 -7
  50. sage/combinat/sf/sf.py +22 -15
  51. sage/combinat/sf/symplectic.py +1 -1
  52. sage/combinat/skew_partition.py +2 -2
  53. sage/combinat/sloane_functions.py +5 -3
  54. sage/combinat/species/cycle_species.py +2 -2
  55. sage/combinat/subword_complex_c.cp311-win_amd64.pyd +0 -0
  56. sage/combinat/symmetric_group_algebra.py +1 -1
  57. sage/combinat/symmetric_group_representations.py +16 -4
  58. sage/combinat/tableau.py +1 -1
  59. sage/combinat/tiling.py +19 -19
  60. sage/combinat/triangles_FHM.py +1 -0
  61. sage/combinat/tutorial.py +5 -5
  62. sage/combinat/words/finite_word.py +5 -4
  63. sage/combinat/words/word.py +24 -16
  64. sage/combinat/words/word_char.cp311-win_amd64.pyd +0 -0
  65. sage/combinat/words/word_datatypes.cp311-win_amd64.pyd +0 -0
  66. sage/combinat/words/word_generators.py +1 -1
  67. sage/databases/findstat.py +1 -1
  68. sage/games/sudoku_backtrack.cp311-win_amd64.pyd +0 -0
  69. sage/libs/symmetrica/symmetrica.cp311-win_amd64.pyd +0 -0
  70. sage/libs/symmetrica/symmetrica.pxi +1 -0
  71. sage/monoids/free_abelian_monoid_element.cp311-win_amd64.pyd +0 -0
  72. sage/monoids/string_monoid.py +8 -0
  73. sage/monoids/string_monoid_element.py +9 -2
  74. sage/monoids/string_ops.py +1 -1
  75. sage/sat/solvers/satsolver.cp311-win_amd64.pyd +0 -0
  76. passagemath_combinat-10.6.1rc3.dist-info/DELVEWHEEL +0 -2
  77. passagemath_combinat-10.6.1rc3.dist-info/top_level.txt +0 -2
  78. passagemath_combinat.libs/libgmp-10-bc1853bff119db9ebb9e2560702badbf.dll +0 -0
  79. {passagemath_combinat-10.6.1rc3.dist-info → passagemath_combinat-10.6.44.dist-info}/WHEEL +0 -0
sage/combinat/sf/dual.py CHANGED
@@ -93,8 +93,8 @@ class SymmetricFunctionAlgebra_dual(classical.SymmetricFunctionAlgebra_classical
93
93
  sage: e = SymmetricFunctions(QQ).e()
94
94
  sage: f = e.dual_basis(prefix='m', basis_name="Forgotten symmetric functions"); f
95
95
  Symmetric Functions over Rational Field in the Forgotten symmetric functions basis
96
- sage: TestSuite(f).run(elements=[f[1,1]+2*f[2], f[1]+3*f[1,1]]) # needs lrcalc
97
- sage: TestSuite(f).run() # long time (11s on sage.math, 2011) # needs lrcalc
96
+ sage: TestSuite(f).run(elements=[f[1,1]+2*f[2], f[1]+3*f[1,1]]) # needs lrcalc_python
97
+ sage: TestSuite(f).run() # long time (11s on sage.math, 2011) # needs lrcalc_python
98
98
 
99
99
  This class defines canonical coercions between ``self`` and
100
100
  ``self^*``, as follow:
@@ -228,7 +228,7 @@ class HallLittlewood(UniqueRepresentation):
228
228
  The method :meth:`sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.hl_creation_operator`
229
229
  is a creation operator for the `Q` basis::
230
230
 
231
- sage: HLQp[1].hl_creation_operator([3]).hl_creation_operator([3]) # needs lrcalc
231
+ sage: HLQp[1].hl_creation_operator([3]).hl_creation_operator([3]) # needs lrcalc_python
232
232
  HLQp[3, 3, 1]
233
233
 
234
234
  Transitions between bases with the parameter `t` specialized::
@@ -293,7 +293,7 @@ class HallLittlewood(UniqueRepresentation):
293
293
  1/45*p[1, 1, 1, 1, 1, 1] - 1/9*p[3, 1, 1, 1] - 1/9*p[3, 3] + 1/5*p[5, 1]
294
294
  sage: SP(p[3,3])
295
295
  -4*HLP[3, 2, 1] + 2*HLP[4, 2] - 2*HLP[5, 1] + HLP[6]
296
- sage: SQ( SQ[1]*SQ[3] -2*(1-q)*SQ[4] )
296
+ sage: SQ( SQ[1]*SQ[3] -2*(1-q)*SQ[4] ) # needs lrcalc_python
297
297
  HLQ[3, 1] + 2*q*HLQ[4]
298
298
 
299
299
  TESTS::
@@ -534,15 +534,15 @@ class HallLittlewood_generic(sfa.SymmetricFunctionAlgebra_generic):
534
534
 
535
535
  sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
536
536
  sage: HLP = Sym.hall_littlewood().P()
537
- sage: HLP([2])^2 # indirect doctest # needs lrcalc
537
+ sage: HLP([2])^2 # indirect doctest # needs lrcalc_python
538
538
  (t+1)*HLP[2, 2] + (-t+1)*HLP[3, 1] + HLP[4]
539
539
 
540
540
  sage: HLQ = Sym.hall_littlewood().Q()
541
- sage: HLQ([2])^2 # indirect doctest # needs lrcalc
541
+ sage: HLQ([2])^2 # indirect doctest # needs lrcalc_python
542
542
  HLQ[2, 2] + (-t+1)*HLQ[3, 1] + (-t+1)*HLQ[4]
543
543
 
544
544
  sage: HLQp = Sym.hall_littlewood().Qp()
545
- sage: HLQp([2])^2 # indirect doctest # needs lrcalc
545
+ sage: HLQp([2])^2 # indirect doctest # needs lrcalc_python
546
546
  HLQp[2, 2] + (-t+1)*HLQp[3, 1] + (-t+1)*HLQp[4]
547
547
  """
548
548
  return self(self._s(left) * self._s(right))
@@ -714,7 +714,7 @@ class HallLittlewood_p(HallLittlewood_generic):
714
714
 
715
715
  EXAMPLES::
716
716
 
717
- sage: # needs lrcalc
717
+ sage: # needs lrcalc_python
718
718
  sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
719
719
  sage: P = Sym.hall_littlewood().P()
720
720
  sage: TestSuite(P).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
sage/combinat/sf/hecke.py CHANGED
@@ -170,7 +170,7 @@ class HeckeCharacter(SymmetricFunctionAlgebra_multiplicative):
170
170
  ....: for m in range(1, r+1))
171
171
  ....: for r in mu)
172
172
  sage: phi = qbar.module_morphism(to_schur, codomain=s)
173
- sage: all(phi(qbar[mu]) == s(qbar[mu]) for n in range(6) # needs lrcalc
173
+ sage: all(phi(qbar[mu]) == s(qbar[mu]) for n in range(6) # needs lrcalc_python
174
174
  ....: for mu in Partitions(n))
175
175
  True
176
176
  """
sage/combinat/sf/jack.py CHANGED
@@ -778,7 +778,7 @@ class JackPolynomials_generic(sfa.SymmetricFunctionAlgebra_generic):
778
778
  EXAMPLES::
779
779
 
780
780
  sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
781
- sage: Sym.jack().P()[2,2].coproduct() # indirect doctest # needs lrcalc
781
+ sage: Sym.jack().P()[2,2].coproduct() # indirect doctest # needs lrcalc_python
782
782
  JackP[] # JackP[2, 2] + (2/(t+1))*JackP[1] # JackP[2, 1] + ((8*t+4)/(t^3+4*t^2+5*t+2))*JackP[1, 1] # JackP[1, 1] + JackP[2] # JackP[2] + (2/(t+1))*JackP[2, 1] # JackP[1] + JackP[2, 2] # JackP[]
783
783
  """
784
784
  from sage.categories.tensor import tensor
@@ -867,7 +867,7 @@ class JackPolynomials_p(JackPolynomials_generic):
867
867
 
868
868
  EXAMPLES::
869
869
 
870
- sage: # needs lrcalc
870
+ sage: # needs lrcalc_python
871
871
  sage: P = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
872
872
  sage: TestSuite(P).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
873
873
  sage: TestSuite(P).run(elements = [P.t*P[1,1]+P[2], P[1]+(1+P.t)*P[1,1]])
@@ -1071,7 +1071,7 @@ class JackPolynomials_j(JackPolynomials_generic):
1071
1071
 
1072
1072
  EXAMPLES::
1073
1073
 
1074
- sage: # needs lrcalc
1074
+ sage: # needs lrcalc_python
1075
1075
  sage: J = SymmetricFunctions(FractionField(QQ['t'])).jack().J()
1076
1076
  sage: TestSuite(J).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
1077
1077
  sage: TestSuite(J).run(elements = [J.t*J[1,1]+J[2], J[1]+(1+J.t)*J[1,1]]) # long time (3s on sage.math, 2012)
@@ -1108,7 +1108,7 @@ class JackPolynomials_q(JackPolynomials_generic):
1108
1108
 
1109
1109
  EXAMPLES::
1110
1110
 
1111
- sage: # needs lrcalc
1111
+ sage: # needs lrcalc_python
1112
1112
  sage: Q = SymmetricFunctions(FractionField(QQ['t'])).jack().Q()
1113
1113
  sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
1114
1114
  sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) # long time (3s on sage.math, 2012)
@@ -1338,7 +1338,7 @@ class SymmetricFunctionAlgebra_zonal(sfa.SymmetricFunctionAlgebra_generic):
1338
1338
 
1339
1339
  EXAMPLES::
1340
1340
 
1341
- sage: # needs lrcalc
1341
+ sage: # needs lrcalc_python
1342
1342
  sage: Z = SymmetricFunctions(QQ).zonal()
1343
1343
  sage: Z([2])^2
1344
1344
  64/45*Z[2, 2] + 16/21*Z[3, 1] + Z[4]
@@ -76,13 +76,13 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
76
76
  sage: km
77
77
  3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded monomial basis
78
78
  sage: F = Q.affineSchur()
79
- sage: F(km(F[3,1,1])) == F[3,1,1]
79
+ sage: F(km(F[3,1,1])) == F[3,1,1] # needs lrcalc_python
80
80
  True
81
- sage: km(F(km([3,2]))) == km[3,2]
81
+ sage: km(F(km([3,2]))) == km[3,2] # needs lrcalc_python
82
82
  True
83
83
  sage: F[3,2].lift()
84
84
  m[1, 1, 1, 1, 1] + m[2, 1, 1, 1] + m[2, 2, 1] + m[3, 1, 1] + m[3, 2]
85
- sage: F[2,1]*F[2,1]
85
+ sage: F[2,1]*F[2,1] # needs lrcalc_python
86
86
  2*F3[1, 1, 1, 1, 1, 1] + 4*F3[2, 1, 1, 1, 1] + 4*F3[2, 2, 1, 1] + 4*F3[2, 2, 2] + 2*F3[3, 1, 1, 1] + 4*F3[3, 2, 1] + 2*F3[3, 3]
87
87
  sage: F[1,2]
88
88
  Traceback (most recent call last):
@@ -95,10 +95,10 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
95
95
  sage: km[2,1]*km[2,1]
96
96
  4*m3[2, 2, 1, 1] + 6*m3[2, 2, 2] + 2*m3[3, 2, 1] + 2*m3[3, 3]
97
97
  sage: HLPk = Q.kHallLittlewoodP()
98
- sage: HLPk[2,1]*HLPk[2,1]
98
+ sage: HLPk[2,1]*HLPk[2,1] # needs lrcalc_python
99
99
  4*HLP3[2, 2, 1, 1] + 6*HLP3[2, 2, 2] + 2*HLP3[3, 2, 1] + 2*HLP3[3, 3]
100
100
  sage: dks = Q.dual_k_Schur()
101
- sage: dks[2,1]*dks[2,1]
101
+ sage: dks[2,1]*dks[2,1] # needs lrcalc_python
102
102
  2*dks3[1, 1, 1, 1, 1, 1] + 4*dks3[2, 1, 1, 1, 1] + 4*dks3[2, 2, 1, 1] + 4*dks3[2, 2, 2] + 2*dks3[3, 1, 1, 1] + 4*dks3[3, 2, 1] + 2*dks3[3, 3]
103
103
 
104
104
  ::
@@ -111,9 +111,9 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
111
111
  sage: Q = Sym.kBoundedQuotient(3)
112
112
  sage: km = Q.km()
113
113
  sage: F = Q.affineSchur()
114
- sage: F(km(F[3,1,1])) == F[3,1,1]
114
+ sage: F(km(F[3,1,1])) == F[3,1,1] # needs lrcalc_python
115
115
  True
116
- sage: km(F(km([3,2]))) == km[3,2]
116
+ sage: km(F(km([3,2]))) == km[3,2] # needs lrcalc_python
117
117
  True
118
118
  sage: dks = Q.dual_k_Schur()
119
119
  sage: HLPk = Q.kHallLittlewoodP()
@@ -121,12 +121,12 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
121
121
  True
122
122
  sage: km(dks(km([3,2]))) == km[3,2]
123
123
  True
124
- sage: dks[2,1]*dks[2,1]
124
+ sage: dks[2,1]*dks[2,1] # needs lrcalc_python
125
125
  (t^3+t^2)*dks3[1, 1, 1, 1, 1, 1] + (2*t^2+2*t)*dks3[2, 1, 1, 1, 1] + (t^2+2*t+1)*dks3[2, 2, 1, 1] + (t^2+2*t+1)*dks3[2, 2, 2] + (t+1)*dks3[3, 1, 1, 1] + (2*t+2)*dks3[3, 2, 1] + (t+1)*dks3[3, 3]
126
126
 
127
127
  TESTS::
128
128
 
129
- sage: TestSuite(Q).run()
129
+ sage: TestSuite(Q).run() # needs lrcalc_python
130
130
  """
131
131
  R = Sym.base_ring()
132
132
  self.k = k
@@ -442,13 +442,13 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
442
442
  sage: kQ.realizations()
443
443
  [3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the 3-bounded monomial basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the 3-bounded Hall-Littlewood P basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the 3-bounded affine Schur basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the dual 3-Schur basis]
444
444
  sage: HLP = kQ.ambient().hall_littlewood().P()
445
- sage: all( rzn(HLP[3,2,1]).lift() == HLP[3,2,1] for rzn in kQ.realizations())
445
+ sage: all( rzn(HLP[3,2,1]).lift() == HLP[3,2,1] for rzn in kQ.realizations()) # needs lrcalc_python
446
446
  True
447
447
  sage: kQ = SymmetricFunctions(QQ).kBoundedQuotient(3,1)
448
448
  sage: kQ.realizations()
449
449
  [3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded monomial basis, 3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded Hall-Littlewood P basis, 3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded affine Schur basis, 3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the dual 3-Schur basis]
450
450
  sage: m = kQ.ambient().m()
451
- sage: all( rzn(m[3,2,1]).lift() == m[3,2,1] for rzn in kQ.realizations())
451
+ sage: all( rzn(m[3,2,1]).lift() == m[3,2,1] for rzn in kQ.realizations()) # needs lrcalc_python
452
452
  True
453
453
  """
454
454
  return [ self.km(), self.kHLP(), self.affineSchur(), self.dual_k_Schur()]
@@ -674,7 +674,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
674
674
  sage: dks.lift([3,1])
675
675
  t^5*HLP[1, 1, 1, 1] + t^2*HLP[2, 1, 1] + t*HLP[2, 2] + HLP[3, 1]
676
676
  sage: dks = Sym.kBoundedQuotient(3,t=1).dual_k_Schur()
677
- sage: dks.lift([3,1])
677
+ sage: dks.lift([3,1]) # needs lrcalc_python
678
678
  m[1, 1, 1, 1] + m[2, 1, 1] + m[2, 2] + m[3, 1]
679
679
  """
680
680
  kmhlp = self.realization_of().a_realization()
@@ -692,6 +692,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
692
692
 
693
693
  EXAMPLES::
694
694
 
695
+ sage: # needs lrcalc_python
695
696
  sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
696
697
  sage: dks3.product(dks3[2,1],dks3[1,1])
697
698
  2*dks3[1, 1, 1, 1, 1] + 2*dks3[2, 1, 1, 1] + 2*dks3[2, 2, 1] + dks3[3, 1, 1] + dks3[3, 2]
@@ -708,6 +709,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
708
709
 
709
710
  ::
710
711
 
712
+ sage: # needs lrcalc_python
711
713
  sage: dks3 = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).dual_k_Schur()
712
714
  sage: dks3.product(dks3[2,1],dks3[1,1])
713
715
  (t^2+t)*dks3[1, 1, 1, 1, 1] + (t+1)*dks3[2, 1, 1, 1] + (t+1)*dks3[2, 2, 1] + dks3[3, 1, 1] + dks3[3, 2]
@@ -720,6 +722,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
720
722
 
721
723
  ::
722
724
 
725
+ sage: # needs lrcalc_python
723
726
  sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
724
727
  sage: F.product(F[2,1],F[1,1])
725
728
  2*F3[1, 1, 1, 1, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2, 1] + F3[3, 1, 1] + F3[3, 2]
@@ -736,6 +739,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
736
739
 
737
740
  ::
738
741
 
742
+ sage: # needs lrcalc_python
739
743
  sage: F = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).affineSchur()
740
744
  sage: F.product(F[2,1],F[1,1])
741
745
  2*F3[1, 1, 1, 1, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2, 1] + F3[3, 1, 1] + F3[3, 2]
@@ -750,6 +754,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
750
754
 
751
755
  ::
752
756
 
757
+ sage: # needs lrcalc_python
753
758
  sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
754
759
  sage: km.product(km[2,1],km[2,1])
755
760
  4*m3[2, 2, 1, 1] + 6*m3[2, 2, 2] + 2*m3[3, 2, 1] + 2*m3[3, 3]
@@ -775,6 +780,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
775
780
 
776
781
  EXAMPLES::
777
782
 
783
+ sage: # needs lrcalc_python
778
784
  sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
779
785
  sage: dks3[3,2].antipode()
780
786
  -dks3[1, 1, 1, 1, 1]
@@ -789,6 +795,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
789
795
 
790
796
  ::
791
797
 
798
+ sage: # needs lrcalc_python
792
799
  sage: km = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3).km()
793
800
  sage: km[1,1,1,1].antipode()
794
801
  (t^3-3*t^2+3*t)*m3[1, 1, 1, 1] + (-t^2+2*t)*m3[2, 1, 1] + t*m3[2, 2] + t*m3[3, 1]
@@ -819,6 +826,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
819
826
 
820
827
  EXAMPLES::
821
828
 
829
+ sage: # needs lrcalc_python
822
830
  sage: Q3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
823
831
  sage: km = Q3.km()
824
832
  sage: km[3,2].coproduct()
@@ -829,6 +837,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
829
837
 
830
838
  ::
831
839
 
840
+ sage: # needs lrcalc_python
832
841
  sage: Q3t = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3)
833
842
  sage: km = Q3t.km()
834
843
  sage: km[3,2].coproduct()
@@ -1279,6 +1288,7 @@ class DualkSchurFunctions(KBoundedQuotientBasis):
1279
1288
 
1280
1289
  EXAMPLES::
1281
1290
 
1291
+ sage: # needs lrcalc_python
1282
1292
  sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
1283
1293
  sage: dks3._dks_to_khlp_on_basis(Partition([2,1]))
1284
1294
  2*HLP3[1, 1, 1] + HLP3[2, 1]
@@ -1309,6 +1319,7 @@ class DualkSchurFunctions(KBoundedQuotientBasis):
1309
1319
 
1310
1320
  EXAMPLES::
1311
1321
 
1322
+ sage: # needs lrcalc_python
1312
1323
  sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
1313
1324
  sage: dks3._khlp_to_dks_on_basis(Partition([2,1]))
1314
1325
  -2*dks3[1, 1, 1] + dks3[2, 1]
@@ -1321,6 +1332,7 @@ class DualkSchurFunctions(KBoundedQuotientBasis):
1321
1332
 
1322
1333
  ::
1323
1334
 
1335
+ sage: # needs lrcalc_python
1324
1336
  sage: dks3 = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).dual_k_Schur()
1325
1337
  sage: dks3._khlp_to_dks_on_basis(Partition([2,1]))
1326
1338
  (-t^2-t)*dks3[1, 1, 1] + dks3[2, 1]
@@ -1426,6 +1438,7 @@ class AffineSchurFunctions(KBoundedQuotientBasis):
1426
1438
 
1427
1439
  EXAMPLES::
1428
1440
 
1441
+ sage: # needs lrcalc_python
1429
1442
  sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
1430
1443
  sage: F._m_to_F_on_basis(Partition([2,1]))
1431
1444
  -2*F3[1, 1, 1] + F3[2, 1]
sage/combinat/sf/llt.py CHANGED
@@ -73,6 +73,7 @@ class LLT_class(UniqueRepresentation):
73
73
 
74
74
  We require that the parameter `t` must be in the base ring::
75
75
 
76
+ sage: # needs sage.symbolic
76
77
  sage: Symxt = SymmetricFunctions(QQ['x','t'].fraction_field())
77
78
  sage: (x,t) = Symxt.base_ring().gens()
78
79
  sage: LLT3x = Symxt.llt(3,t=x)
@@ -371,7 +372,9 @@ class LLT_class(UniqueRepresentation):
371
372
 
372
373
  sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
373
374
  sage: HCosp3 = Sym.llt(3).hcospin(); HCosp3
374
- Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the level 3 LLT cospin basis
375
+ Symmetric Functions
376
+ over Fraction Field of Univariate Polynomial Ring in t over Rational Field
377
+ in the level 3 LLT cospin basis
375
378
  sage: HCosp3([1])^2
376
379
  1/t*HCosp3[1, 1] + ((t-1)/t)*HCosp3[2]
377
380
 
@@ -400,11 +403,14 @@ class LLT_class(UniqueRepresentation):
400
403
  EXAMPLES::
401
404
 
402
405
  sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
406
+
407
+ sage: # needs sage.symbolic
403
408
  sage: HSp3 = Sym.llt(3).hspin(); HSp3
404
- Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the level 3 LLT spin basis
409
+ Symmetric Functions
410
+ over Fraction Field of Univariate Polynomial Ring in t over Rational Field
411
+ in the level 3 LLT spin basis
405
412
  sage: HSp3([1])^2
406
413
  HSp3[1, 1] + (-t+1)*HSp3[2]
407
-
408
414
  sage: s = Sym.schur()
409
415
  sage: HSp3(s([2]))
410
416
  HSp3[2]
@@ -431,12 +437,16 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
431
437
  EXAMPLES::
432
438
 
433
439
  sage: SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
434
- Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the level 3 LLT spin basis
440
+ Symmetric Functions
441
+ over Fraction Field of Univariate Polynomial Ring in t over Rational Field
442
+ in the level 3 LLT spin basis
435
443
  sage: SymmetricFunctions(QQ).llt(3,t=2).hspin()
436
444
  Symmetric Functions over Rational Field in the level 3 LLT spin with t=2 basis
437
445
  sage: QQz = FractionField(QQ['z']); z = QQz.gen()
438
446
  sage: SymmetricFunctions(QQz).llt(3,t=z).hspin()
439
- Symmetric Functions over Fraction Field of Univariate Polynomial Ring in z over Rational Field in the level 3 LLT spin with t=z basis
447
+ Symmetric Functions
448
+ over Fraction Field of Univariate Polynomial Ring in z over Rational Field
449
+ in the level 3 LLT spin with t=z basis
440
450
  """
441
451
  s = self.__class__.__name__[4:]
442
452
  sfa.SymmetricFunctionAlgebra_generic.__init__(
@@ -490,6 +500,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
490
500
 
491
501
  EXAMPLES::
492
502
 
503
+ sage: # needs sage.symbolic
493
504
  sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
494
505
  sage: HSp3 = Sym.llt(3).hspin()
495
506
  sage: m = Sym.monomial()
@@ -498,7 +509,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
498
509
 
499
510
  This is for internal use only. Please use instead::
500
511
 
501
- sage: HSp3(m[2,1])
512
+ sage: HSp3(m[2,1]) # needs sage.symbolic
502
513
  -2*HSp3[1, 1, 1] + (2*t^2+2*t+1)*HSp3[2, 1] + (-2*t^2-t)*HSp3[3]
503
514
  """
504
515
  return self._from_cache(x, self._m_cache, self._m_to_self_cache,
@@ -517,6 +528,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
517
528
 
518
529
  EXAMPLES::
519
530
 
531
+ sage: # needs sage.symbolic
520
532
  sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
521
533
  sage: HSp3 = Sym.llt(3).hspin()
522
534
  sage: m = Sym.monomial()
@@ -525,7 +537,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
525
537
 
526
538
  This is for internal use only. Please use instead::
527
539
 
528
- sage: m(HSp3[2,1])
540
+ sage: m(HSp3[2,1]) # needs sage.symbolic
529
541
  (t+2)*m[1, 1, 1] + (t+1)*m[2, 1] + t*m[3]
530
542
  """
531
543
  return self._m._from_cache(x, self._m_cache, self._self_to_m_cache,
@@ -563,7 +575,8 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
563
575
 
564
576
  sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
565
577
  sage: HSp3.llt_family()
566
- level 3 LLT polynomials over Fraction Field of Univariate Polynomial Ring in t over Rational Field
578
+ level 3 LLT polynomials
579
+ over Fraction Field of Univariate Polynomial Ring in t over Rational Field
567
580
  """
568
581
  return self._llt
569
582
 
@@ -581,6 +594,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
581
594
 
582
595
  EXAMPLES::
583
596
 
597
+ sage: # needs sage.symbolic
584
598
  sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
585
599
  sage: HSp3.product(HSp3([1]), HSp3([2]))
586
600
  HSp3[2, 1] + (-t+1)*HSp3[3]
@@ -602,6 +616,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
602
616
 
603
617
  EXAMPLES::
604
618
 
619
+ sage: # needs sage.symbolic
605
620
  sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
606
621
  sage: HSp3._m_cache(2)
607
622
  sage: l = lambda c: [ (i[0],[j for j in sorted(i[1].items())]) for i in sorted(c.items())]
@@ -651,7 +666,8 @@ class LLT_spin(LLT_generic):
651
666
 
652
667
  ::
653
668
 
654
- sage: HS3x = SymmetricFunctions(FractionField(QQ['x'])).llt(3,t=x).hspin()
669
+ sage: R.<x> = QQ[]
670
+ sage: HS3x = SymmetricFunctions(FractionField(R)).llt(3, t=x).hspin()
655
671
  sage: TestSuite(HS3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (4s on sage.math, 2012)
656
672
  sage: TestSuite(HS3x).run(elements = [HS3x.t*HS3x[1,1]+HS3x.t*HS3x[2], HS3x[1]+(1+HS3x.t)*HS3x[1,1]]) # long time (depends on previous)
657
673
  """
@@ -681,6 +697,7 @@ class LLT_spin(LLT_generic):
681
697
 
682
698
  EXAMPLES::
683
699
 
700
+ sage: # needs sage.symbolic
684
701
  sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
685
702
  sage: f21 = HSp3._to_m(Partition([2,1]))
686
703
  sage: [f21(p) for p in Partitions(3)]
@@ -720,7 +737,8 @@ class LLT_cospin(LLT_generic):
720
737
 
721
738
  ::
722
739
 
723
- sage: HC3x = SymmetricFunctions(FractionField(QQ['x'])).llt(3,t=x).hcospin()
740
+ sage: R.<x> = QQ[]
741
+ sage: HC3x = SymmetricFunctions(FractionField(R)).llt(3, t=x).hcospin()
724
742
  sage: TestSuite(HC3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (5s on sage.math, 2012)
725
743
  sage: TestSuite(HC3x).run(elements = [HC3x.t*HC3x[1,1]+HC3x.t*HC3x[2], HC3x[1]+(1+HC3x.t)*HC3x[1,1]]) # long time (depends on previous)
726
744
  """
@@ -43,7 +43,7 @@ class SymmetricFunctionAlgebra_monomial(classical.SymmetricFunctionAlgebra_class
43
43
 
44
44
  TESTS::
45
45
 
46
- sage: # needs lrcalc
46
+ sage: # needs lrcalc_python
47
47
  sage: m = SymmetricFunctions(QQ).m()
48
48
  sage: m == loads(dumps(m))
49
49
  True
@@ -1,5 +1,5 @@
1
1
  # sage_setup: distribution = sagemath-combinat
2
- # sage.doctest: needs lrcalc sage.combinat sage.modules
2
+ # sage.doctest: needs lrcalc_python sage.combinat sage.modules
3
3
  """
4
4
  Orthogonal symmetric functions
5
5
 
@@ -22,7 +22,7 @@ functions from this definition.
22
22
  ::
23
23
 
24
24
  sage: s2 = SymmetricFunctions(QQ).s()
25
- sage: s2([2,1])^2 # needs lrcalc
25
+ sage: s2([2,1])^2 # needs lrcalc_python
26
26
  s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]
27
27
  """
28
28
  # ****************************************************************************
@@ -104,7 +104,7 @@ class SymmetricFunctionAlgebra_orthotriang(sfa.SymmetricFunctionAlgebra_generic)
104
104
 
105
105
  TESTS::
106
106
 
107
- sage: # needs lrcalc
107
+ sage: # needs lrcalc_python
108
108
  sage: TestSuite(s).run(elements=[s[1,1]+2*s[2], s[1]+3*s[1,1]])
109
109
  sage: TestSuite(s).run(skip=["_test_associativity", "_test_prod"]) # long time (7s on sage.math, 2011)
110
110
 
sage/combinat/sf/schur.py CHANGED
@@ -47,8 +47,8 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
47
47
  sage: s = SymmetricFunctions(QQ).s()
48
48
  sage: s == loads(dumps(s))
49
49
  True
50
- sage: TestSuite(s).run(skip=['_test_associativity', '_test_distributivity', '_test_prod'])
51
- sage: TestSuite(s).run(elements = [s[1,1]+s[2], s[1]+2*s[1,1]])
50
+ sage: TestSuite(s).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # needs lrcalc_python
51
+ sage: TestSuite(s).run(elements=[s[1,1]+s[2], s[1]+2*s[1,1]]) # needs lrcalc_python
52
52
  """
53
53
  classical.SymmetricFunctionAlgebra_classical.__init__(self, Sym, "Schur", 's')
54
54
 
@@ -92,6 +92,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
92
92
 
93
93
  TESTS::
94
94
 
95
+ sage: # needs lrcalc_python
95
96
  sage: s = SymmetricFunctions(QQ).s()
96
97
  sage: a = s([2,1]) + 1; a
97
98
  s[] + s[2, 1]
@@ -101,6 +102,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
101
102
 
102
103
  Examples failing with three different messages in symmetrica::
103
104
 
105
+ sage: # needs lrcalc_python
104
106
  sage: s[123,1]*s[1,1]
105
107
  s[123, 1, 1, 1] + s[123, 2, 1] + s[124, 1, 1] + s[124, 2]
106
108
  sage: s[123]*s[2,1]
@@ -110,6 +112,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
110
112
 
111
113
  ::
112
114
 
115
+ sage: # needs lrcalc_python
113
116
  sage: QQx.<x> = QQ[]
114
117
  sage: s = SymmetricFunctions(QQx).s()
115
118
  sage: a = x^2*s([2,1]) + 2*x; a
@@ -121,11 +124,12 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
121
124
 
122
125
  ::
123
126
 
124
- sage: 0*s([2,1])
127
+ sage: 0*s([2,1]) # needs lrcalc_python
125
128
  0
126
129
 
127
130
  Example over a field with positive characteristic::
128
131
 
132
+ sage: # needs lrcalc_python
129
133
  sage: s[2,1]^2
130
134
  s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1]
131
135
  + s[3, 3] + s[4, 1, 1] + s[4, 2]
@@ -155,6 +159,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
155
159
 
156
160
  EXAMPLES::
157
161
 
162
+ sage: # needs lrcalc_python
158
163
  sage: Sym = SymmetricFunctions(QQ)
159
164
  sage: s = Sym.schur()
160
165
  sage: s.coproduct_on_basis([2])
@@ -162,8 +167,8 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
162
167
 
163
168
  TESTS::
164
169
 
165
- sage: s = SymmetricFunctions(QQ['t']).s()
166
- sage: s[2].coproduct() / 2
170
+ sage: s = SymmetricFunctions(QQ['t']).s() # needs lrcalc_python
171
+ sage: s[2].coproduct() / 2 # needs lrcalc_python
167
172
  1/2*s[] # s[2] + 1/2*s[1] # s[1] + 1/2*s[2] # s[]
168
173
  """
169
174
  T = self.tensor_square()
@@ -177,9 +182,9 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
177
182
  TESTS::
178
183
 
179
184
  sage: s = SymmetricFunctions(QQ).s()
180
- sage: s([[2,1],[1]])
185
+ sage: s([[2,1],[1]]) # needs lrcalc_python
181
186
  s[1, 1] + s[2]
182
- sage: s([[],[]])
187
+ sage: s([[],[]]) # needs lrcalc_python
183
188
  s[]
184
189
  """
185
190
  ###################
@@ -486,6 +491,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
486
491
 
487
492
  EXAMPLES::
488
493
 
494
+ sage: # needs lrcalc_python
489
495
  sage: Sym = SymmetricFunctions(ZZ)
490
496
  sage: s = Sym.s()
491
497
  sage: s[5].verschiebung(2)
@@ -509,6 +515,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
509
515
  same result as the implementation in sfa.py on the monomial
510
516
  basis::
511
517
 
518
+ sage: # needs lrcalc_python
512
519
  sage: Sym = SymmetricFunctions(QQ)
513
520
  sage: s = Sym.s(); h = Sym.h()
514
521
  sage: all( h(s(lam)).verschiebung(3) == h(s(lam).verschiebung(3))