passagemath-combinat 10.6.1rc3__cp311-cp311-win_amd64.whl → 10.6.44__cp311-cp311-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- passagemath_combinat/__init__.py +3 -0
- passagemath_combinat-10.6.44.dist-info/DELVEWHEEL +2 -0
- {passagemath_combinat-10.6.1rc3.dist-info → passagemath_combinat-10.6.44.dist-info}/METADATA +30 -23
- {passagemath_combinat-10.6.1rc3.dist-info → passagemath_combinat-10.6.44.dist-info}/RECORD +76 -75
- passagemath_combinat-10.6.44.dist-info/top_level.txt +3 -0
- passagemath_combinat.libs/libgmp-10-20eff6468ebffd10e3a6f0c3780fee4e.dll +0 -0
- passagemath_combinat.libs/{libsymmetrica-3-1e2c5e20489b005650f13ca8d6065d77.dll → libsymmetrica-3-fa8ae274cd9618eec4c7c5aca1f11bc7.dll} +0 -0
- sage/algebras/all.py +0 -1
- sage/algebras/nil_coxeter_algebra.py +1 -1
- sage/all__sagemath_combinat.py +3 -3
- sage/combinat/chas/fsym.py +2 -2
- sage/combinat/cluster_complex.py +1 -1
- sage/combinat/colored_permutations.py +1 -1
- sage/combinat/crystals/letters.cp311-win_amd64.pyd +0 -0
- sage/combinat/crystals/pbw_datum.cp311-win_amd64.pyd +0 -0
- sage/combinat/crystals/spins.cp311-win_amd64.pyd +0 -0
- sage/combinat/crystals/tensor_product_element.cp311-win_amd64.pyd +0 -0
- sage/combinat/debruijn_sequence.cp311-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.cp311-win_amd64.pyd +0 -0
- sage/combinat/degree_sequences.pyx +2 -2
- sage/combinat/diagram_algebras.py +1 -1
- sage/combinat/expnums.cp311-win_amd64.pyd +0 -0
- sage/combinat/fast_vector_partitions.cp311-win_amd64.pyd +0 -0
- sage/combinat/gelfand_tsetlin_patterns.py +1 -1
- sage/combinat/growth.py +4 -4
- sage/combinat/matrices/hadamard_matrix.py +15 -11
- sage/combinat/ncsf_qsym/ncsf.py +8 -8
- sage/combinat/parallelogram_polyomino.py +14 -14
- sage/combinat/partition_algebra.py +18 -16
- sage/combinat/path_tableaux/dyck_path.py +1 -1
- sage/combinat/path_tableaux/semistandard.py +1 -1
- sage/combinat/plane_partition.py +1 -1
- sage/combinat/q_bernoulli.cp311-win_amd64.pyd +0 -0
- sage/combinat/quickref.py +1 -1
- sage/combinat/ribbon_shaped_tableau.py +1 -1
- sage/combinat/rigged_configurations/rigged_partition.cp311-win_amd64.pyd +0 -0
- sage/combinat/set_partition_iterator.cp311-win_amd64.pyd +0 -0
- sage/combinat/sf/character.py +7 -7
- sage/combinat/sf/classical.py +1 -1
- sage/combinat/sf/dual.py +2 -2
- sage/combinat/sf/hall_littlewood.py +6 -6
- sage/combinat/sf/hecke.py +1 -1
- sage/combinat/sf/jack.py +5 -5
- sage/combinat/sf/k_dual.py +25 -12
- sage/combinat/sf/llt.py +28 -10
- sage/combinat/sf/monomial.py +1 -1
- sage/combinat/sf/orthogonal.py +1 -1
- sage/combinat/sf/orthotriang.py +2 -2
- sage/combinat/sf/schur.py +14 -7
- sage/combinat/sf/sf.py +22 -15
- sage/combinat/sf/symplectic.py +1 -1
- sage/combinat/skew_partition.py +2 -2
- sage/combinat/sloane_functions.py +5 -3
- sage/combinat/species/cycle_species.py +2 -2
- sage/combinat/subword_complex_c.cp311-win_amd64.pyd +0 -0
- sage/combinat/symmetric_group_algebra.py +1 -1
- sage/combinat/symmetric_group_representations.py +16 -4
- sage/combinat/tableau.py +1 -1
- sage/combinat/tiling.py +19 -19
- sage/combinat/triangles_FHM.py +1 -0
- sage/combinat/tutorial.py +5 -5
- sage/combinat/words/finite_word.py +5 -4
- sage/combinat/words/word.py +24 -16
- sage/combinat/words/word_char.cp311-win_amd64.pyd +0 -0
- sage/combinat/words/word_datatypes.cp311-win_amd64.pyd +0 -0
- sage/combinat/words/word_generators.py +1 -1
- sage/databases/findstat.py +1 -1
- sage/games/sudoku_backtrack.cp311-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.cp311-win_amd64.pyd +0 -0
- sage/libs/symmetrica/symmetrica.pxi +1 -0
- sage/monoids/free_abelian_monoid_element.cp311-win_amd64.pyd +0 -0
- sage/monoids/string_monoid.py +8 -0
- sage/monoids/string_monoid_element.py +9 -2
- sage/monoids/string_ops.py +1 -1
- sage/sat/solvers/satsolver.cp311-win_amd64.pyd +0 -0
- passagemath_combinat-10.6.1rc3.dist-info/DELVEWHEEL +0 -2
- passagemath_combinat-10.6.1rc3.dist-info/top_level.txt +0 -2
- passagemath_combinat.libs/libgmp-10-bc1853bff119db9ebb9e2560702badbf.dll +0 -0
- {passagemath_combinat-10.6.1rc3.dist-info → passagemath_combinat-10.6.44.dist-info}/WHEEL +0 -0
sage/combinat/sf/dual.py
CHANGED
|
@@ -93,8 +93,8 @@ class SymmetricFunctionAlgebra_dual(classical.SymmetricFunctionAlgebra_classical
|
|
|
93
93
|
sage: e = SymmetricFunctions(QQ).e()
|
|
94
94
|
sage: f = e.dual_basis(prefix='m', basis_name="Forgotten symmetric functions"); f
|
|
95
95
|
Symmetric Functions over Rational Field in the Forgotten symmetric functions basis
|
|
96
|
-
sage: TestSuite(f).run(elements=[f[1,1]+2*f[2], f[1]+3*f[1,1]]) # needs
|
|
97
|
-
sage: TestSuite(f).run() # long time (11s on sage.math, 2011) # needs
|
|
96
|
+
sage: TestSuite(f).run(elements=[f[1,1]+2*f[2], f[1]+3*f[1,1]]) # needs lrcalc_python
|
|
97
|
+
sage: TestSuite(f).run() # long time (11s on sage.math, 2011) # needs lrcalc_python
|
|
98
98
|
|
|
99
99
|
This class defines canonical coercions between ``self`` and
|
|
100
100
|
``self^*``, as follow:
|
|
@@ -228,7 +228,7 @@ class HallLittlewood(UniqueRepresentation):
|
|
|
228
228
|
The method :meth:`sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.hl_creation_operator`
|
|
229
229
|
is a creation operator for the `Q` basis::
|
|
230
230
|
|
|
231
|
-
sage: HLQp[1].hl_creation_operator([3]).hl_creation_operator([3]) # needs
|
|
231
|
+
sage: HLQp[1].hl_creation_operator([3]).hl_creation_operator([3]) # needs lrcalc_python
|
|
232
232
|
HLQp[3, 3, 1]
|
|
233
233
|
|
|
234
234
|
Transitions between bases with the parameter `t` specialized::
|
|
@@ -293,7 +293,7 @@ class HallLittlewood(UniqueRepresentation):
|
|
|
293
293
|
1/45*p[1, 1, 1, 1, 1, 1] - 1/9*p[3, 1, 1, 1] - 1/9*p[3, 3] + 1/5*p[5, 1]
|
|
294
294
|
sage: SP(p[3,3])
|
|
295
295
|
-4*HLP[3, 2, 1] + 2*HLP[4, 2] - 2*HLP[5, 1] + HLP[6]
|
|
296
|
-
sage: SQ( SQ[1]*SQ[3] -2*(1-q)*SQ[4] )
|
|
296
|
+
sage: SQ( SQ[1]*SQ[3] -2*(1-q)*SQ[4] ) # needs lrcalc_python
|
|
297
297
|
HLQ[3, 1] + 2*q*HLQ[4]
|
|
298
298
|
|
|
299
299
|
TESTS::
|
|
@@ -534,15 +534,15 @@ class HallLittlewood_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
534
534
|
|
|
535
535
|
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
|
536
536
|
sage: HLP = Sym.hall_littlewood().P()
|
|
537
|
-
sage: HLP([2])^2 # indirect doctest # needs
|
|
537
|
+
sage: HLP([2])^2 # indirect doctest # needs lrcalc_python
|
|
538
538
|
(t+1)*HLP[2, 2] + (-t+1)*HLP[3, 1] + HLP[4]
|
|
539
539
|
|
|
540
540
|
sage: HLQ = Sym.hall_littlewood().Q()
|
|
541
|
-
sage: HLQ([2])^2 # indirect doctest # needs
|
|
541
|
+
sage: HLQ([2])^2 # indirect doctest # needs lrcalc_python
|
|
542
542
|
HLQ[2, 2] + (-t+1)*HLQ[3, 1] + (-t+1)*HLQ[4]
|
|
543
543
|
|
|
544
544
|
sage: HLQp = Sym.hall_littlewood().Qp()
|
|
545
|
-
sage: HLQp([2])^2 # indirect doctest # needs
|
|
545
|
+
sage: HLQp([2])^2 # indirect doctest # needs lrcalc_python
|
|
546
546
|
HLQp[2, 2] + (-t+1)*HLQp[3, 1] + (-t+1)*HLQp[4]
|
|
547
547
|
"""
|
|
548
548
|
return self(self._s(left) * self._s(right))
|
|
@@ -714,7 +714,7 @@ class HallLittlewood_p(HallLittlewood_generic):
|
|
|
714
714
|
|
|
715
715
|
EXAMPLES::
|
|
716
716
|
|
|
717
|
-
sage: # needs
|
|
717
|
+
sage: # needs lrcalc_python
|
|
718
718
|
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
|
719
719
|
sage: P = Sym.hall_littlewood().P()
|
|
720
720
|
sage: TestSuite(P).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
|
sage/combinat/sf/hecke.py
CHANGED
|
@@ -170,7 +170,7 @@ class HeckeCharacter(SymmetricFunctionAlgebra_multiplicative):
|
|
|
170
170
|
....: for m in range(1, r+1))
|
|
171
171
|
....: for r in mu)
|
|
172
172
|
sage: phi = qbar.module_morphism(to_schur, codomain=s)
|
|
173
|
-
sage: all(phi(qbar[mu]) == s(qbar[mu]) for n in range(6) # needs
|
|
173
|
+
sage: all(phi(qbar[mu]) == s(qbar[mu]) for n in range(6) # needs lrcalc_python
|
|
174
174
|
....: for mu in Partitions(n))
|
|
175
175
|
True
|
|
176
176
|
"""
|
sage/combinat/sf/jack.py
CHANGED
|
@@ -778,7 +778,7 @@ class JackPolynomials_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
778
778
|
EXAMPLES::
|
|
779
779
|
|
|
780
780
|
sage: Sym = SymmetricFunctions(QQ['t'].fraction_field())
|
|
781
|
-
sage: Sym.jack().P()[2,2].coproduct() # indirect doctest # needs
|
|
781
|
+
sage: Sym.jack().P()[2,2].coproduct() # indirect doctest # needs lrcalc_python
|
|
782
782
|
JackP[] # JackP[2, 2] + (2/(t+1))*JackP[1] # JackP[2, 1] + ((8*t+4)/(t^3+4*t^2+5*t+2))*JackP[1, 1] # JackP[1, 1] + JackP[2] # JackP[2] + (2/(t+1))*JackP[2, 1] # JackP[1] + JackP[2, 2] # JackP[]
|
|
783
783
|
"""
|
|
784
784
|
from sage.categories.tensor import tensor
|
|
@@ -867,7 +867,7 @@ class JackPolynomials_p(JackPolynomials_generic):
|
|
|
867
867
|
|
|
868
868
|
EXAMPLES::
|
|
869
869
|
|
|
870
|
-
sage: # needs
|
|
870
|
+
sage: # needs lrcalc_python
|
|
871
871
|
sage: P = SymmetricFunctions(FractionField(QQ['t'])).jack().P()
|
|
872
872
|
sage: TestSuite(P).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
|
|
873
873
|
sage: TestSuite(P).run(elements = [P.t*P[1,1]+P[2], P[1]+(1+P.t)*P[1,1]])
|
|
@@ -1071,7 +1071,7 @@ class JackPolynomials_j(JackPolynomials_generic):
|
|
|
1071
1071
|
|
|
1072
1072
|
EXAMPLES::
|
|
1073
1073
|
|
|
1074
|
-
sage: # needs
|
|
1074
|
+
sage: # needs lrcalc_python
|
|
1075
1075
|
sage: J = SymmetricFunctions(FractionField(QQ['t'])).jack().J()
|
|
1076
1076
|
sage: TestSuite(J).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
|
|
1077
1077
|
sage: TestSuite(J).run(elements = [J.t*J[1,1]+J[2], J[1]+(1+J.t)*J[1,1]]) # long time (3s on sage.math, 2012)
|
|
@@ -1108,7 +1108,7 @@ class JackPolynomials_q(JackPolynomials_generic):
|
|
|
1108
1108
|
|
|
1109
1109
|
EXAMPLES::
|
|
1110
1110
|
|
|
1111
|
-
sage: # needs
|
|
1111
|
+
sage: # needs lrcalc_python
|
|
1112
1112
|
sage: Q = SymmetricFunctions(FractionField(QQ['t'])).jack().Q()
|
|
1113
1113
|
sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive
|
|
1114
1114
|
sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]]) # long time (3s on sage.math, 2012)
|
|
@@ -1338,7 +1338,7 @@ class SymmetricFunctionAlgebra_zonal(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
1338
1338
|
|
|
1339
1339
|
EXAMPLES::
|
|
1340
1340
|
|
|
1341
|
-
sage: # needs
|
|
1341
|
+
sage: # needs lrcalc_python
|
|
1342
1342
|
sage: Z = SymmetricFunctions(QQ).zonal()
|
|
1343
1343
|
sage: Z([2])^2
|
|
1344
1344
|
64/45*Z[2, 2] + 16/21*Z[3, 1] + Z[4]
|
sage/combinat/sf/k_dual.py
CHANGED
|
@@ -76,13 +76,13 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
|
|
|
76
76
|
sage: km
|
|
77
77
|
3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded monomial basis
|
|
78
78
|
sage: F = Q.affineSchur()
|
|
79
|
-
sage: F(km(F[3,1,1])) == F[3,1,1]
|
|
79
|
+
sage: F(km(F[3,1,1])) == F[3,1,1] # needs lrcalc_python
|
|
80
80
|
True
|
|
81
|
-
sage: km(F(km([3,2]))) == km[3,2]
|
|
81
|
+
sage: km(F(km([3,2]))) == km[3,2] # needs lrcalc_python
|
|
82
82
|
True
|
|
83
83
|
sage: F[3,2].lift()
|
|
84
84
|
m[1, 1, 1, 1, 1] + m[2, 1, 1, 1] + m[2, 2, 1] + m[3, 1, 1] + m[3, 2]
|
|
85
|
-
sage: F[2,1]*F[2,1]
|
|
85
|
+
sage: F[2,1]*F[2,1] # needs lrcalc_python
|
|
86
86
|
2*F3[1, 1, 1, 1, 1, 1] + 4*F3[2, 1, 1, 1, 1] + 4*F3[2, 2, 1, 1] + 4*F3[2, 2, 2] + 2*F3[3, 1, 1, 1] + 4*F3[3, 2, 1] + 2*F3[3, 3]
|
|
87
87
|
sage: F[1,2]
|
|
88
88
|
Traceback (most recent call last):
|
|
@@ -95,10 +95,10 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
|
|
|
95
95
|
sage: km[2,1]*km[2,1]
|
|
96
96
|
4*m3[2, 2, 1, 1] + 6*m3[2, 2, 2] + 2*m3[3, 2, 1] + 2*m3[3, 3]
|
|
97
97
|
sage: HLPk = Q.kHallLittlewoodP()
|
|
98
|
-
sage: HLPk[2,1]*HLPk[2,1]
|
|
98
|
+
sage: HLPk[2,1]*HLPk[2,1] # needs lrcalc_python
|
|
99
99
|
4*HLP3[2, 2, 1, 1] + 6*HLP3[2, 2, 2] + 2*HLP3[3, 2, 1] + 2*HLP3[3, 3]
|
|
100
100
|
sage: dks = Q.dual_k_Schur()
|
|
101
|
-
sage: dks[2,1]*dks[2,1]
|
|
101
|
+
sage: dks[2,1]*dks[2,1] # needs lrcalc_python
|
|
102
102
|
2*dks3[1, 1, 1, 1, 1, 1] + 4*dks3[2, 1, 1, 1, 1] + 4*dks3[2, 2, 1, 1] + 4*dks3[2, 2, 2] + 2*dks3[3, 1, 1, 1] + 4*dks3[3, 2, 1] + 2*dks3[3, 3]
|
|
103
103
|
|
|
104
104
|
::
|
|
@@ -111,9 +111,9 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
|
|
|
111
111
|
sage: Q = Sym.kBoundedQuotient(3)
|
|
112
112
|
sage: km = Q.km()
|
|
113
113
|
sage: F = Q.affineSchur()
|
|
114
|
-
sage: F(km(F[3,1,1])) == F[3,1,1]
|
|
114
|
+
sage: F(km(F[3,1,1])) == F[3,1,1] # needs lrcalc_python
|
|
115
115
|
True
|
|
116
|
-
sage: km(F(km([3,2]))) == km[3,2]
|
|
116
|
+
sage: km(F(km([3,2]))) == km[3,2] # needs lrcalc_python
|
|
117
117
|
True
|
|
118
118
|
sage: dks = Q.dual_k_Schur()
|
|
119
119
|
sage: HLPk = Q.kHallLittlewoodP()
|
|
@@ -121,12 +121,12 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
|
|
|
121
121
|
True
|
|
122
122
|
sage: km(dks(km([3,2]))) == km[3,2]
|
|
123
123
|
True
|
|
124
|
-
sage: dks[2,1]*dks[2,1]
|
|
124
|
+
sage: dks[2,1]*dks[2,1] # needs lrcalc_python
|
|
125
125
|
(t^3+t^2)*dks3[1, 1, 1, 1, 1, 1] + (2*t^2+2*t)*dks3[2, 1, 1, 1, 1] + (t^2+2*t+1)*dks3[2, 2, 1, 1] + (t^2+2*t+1)*dks3[2, 2, 2] + (t+1)*dks3[3, 1, 1, 1] + (2*t+2)*dks3[3, 2, 1] + (t+1)*dks3[3, 3]
|
|
126
126
|
|
|
127
127
|
TESTS::
|
|
128
128
|
|
|
129
|
-
sage: TestSuite(Q).run()
|
|
129
|
+
sage: TestSuite(Q).run() # needs lrcalc_python
|
|
130
130
|
"""
|
|
131
131
|
R = Sym.base_ring()
|
|
132
132
|
self.k = k
|
|
@@ -442,13 +442,13 @@ class KBoundedQuotient(UniqueRepresentation, Parent):
|
|
|
442
442
|
sage: kQ.realizations()
|
|
443
443
|
[3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the 3-bounded monomial basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the 3-bounded Hall-Littlewood P basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the 3-bounded affine Schur basis, 3-Bounded Quotient of Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the dual 3-Schur basis]
|
|
444
444
|
sage: HLP = kQ.ambient().hall_littlewood().P()
|
|
445
|
-
sage: all( rzn(HLP[3,2,1]).lift() == HLP[3,2,1] for rzn in kQ.realizations())
|
|
445
|
+
sage: all( rzn(HLP[3,2,1]).lift() == HLP[3,2,1] for rzn in kQ.realizations()) # needs lrcalc_python
|
|
446
446
|
True
|
|
447
447
|
sage: kQ = SymmetricFunctions(QQ).kBoundedQuotient(3,1)
|
|
448
448
|
sage: kQ.realizations()
|
|
449
449
|
[3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded monomial basis, 3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded Hall-Littlewood P basis, 3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the 3-bounded affine Schur basis, 3-Bounded Quotient of Symmetric Functions over Rational Field with t=1 in the dual 3-Schur basis]
|
|
450
450
|
sage: m = kQ.ambient().m()
|
|
451
|
-
sage: all( rzn(m[3,2,1]).lift() == m[3,2,1] for rzn in kQ.realizations())
|
|
451
|
+
sage: all( rzn(m[3,2,1]).lift() == m[3,2,1] for rzn in kQ.realizations()) # needs lrcalc_python
|
|
452
452
|
True
|
|
453
453
|
"""
|
|
454
454
|
return [ self.km(), self.kHLP(), self.affineSchur(), self.dual_k_Schur()]
|
|
@@ -674,7 +674,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
674
674
|
sage: dks.lift([3,1])
|
|
675
675
|
t^5*HLP[1, 1, 1, 1] + t^2*HLP[2, 1, 1] + t*HLP[2, 2] + HLP[3, 1]
|
|
676
676
|
sage: dks = Sym.kBoundedQuotient(3,t=1).dual_k_Schur()
|
|
677
|
-
sage: dks.lift([3,1])
|
|
677
|
+
sage: dks.lift([3,1]) # needs lrcalc_python
|
|
678
678
|
m[1, 1, 1, 1] + m[2, 1, 1] + m[2, 2] + m[3, 1]
|
|
679
679
|
"""
|
|
680
680
|
kmhlp = self.realization_of().a_realization()
|
|
@@ -692,6 +692,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
692
692
|
|
|
693
693
|
EXAMPLES::
|
|
694
694
|
|
|
695
|
+
sage: # needs lrcalc_python
|
|
695
696
|
sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
|
|
696
697
|
sage: dks3.product(dks3[2,1],dks3[1,1])
|
|
697
698
|
2*dks3[1, 1, 1, 1, 1] + 2*dks3[2, 1, 1, 1] + 2*dks3[2, 2, 1] + dks3[3, 1, 1] + dks3[3, 2]
|
|
@@ -708,6 +709,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
708
709
|
|
|
709
710
|
::
|
|
710
711
|
|
|
712
|
+
sage: # needs lrcalc_python
|
|
711
713
|
sage: dks3 = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).dual_k_Schur()
|
|
712
714
|
sage: dks3.product(dks3[2,1],dks3[1,1])
|
|
713
715
|
(t^2+t)*dks3[1, 1, 1, 1, 1] + (t+1)*dks3[2, 1, 1, 1] + (t+1)*dks3[2, 2, 1] + dks3[3, 1, 1] + dks3[3, 2]
|
|
@@ -720,6 +722,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
720
722
|
|
|
721
723
|
::
|
|
722
724
|
|
|
725
|
+
sage: # needs lrcalc_python
|
|
723
726
|
sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
|
|
724
727
|
sage: F.product(F[2,1],F[1,1])
|
|
725
728
|
2*F3[1, 1, 1, 1, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2, 1] + F3[3, 1, 1] + F3[3, 2]
|
|
@@ -736,6 +739,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
736
739
|
|
|
737
740
|
::
|
|
738
741
|
|
|
742
|
+
sage: # needs lrcalc_python
|
|
739
743
|
sage: F = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).affineSchur()
|
|
740
744
|
sage: F.product(F[2,1],F[1,1])
|
|
741
745
|
2*F3[1, 1, 1, 1, 1] + 2*F3[2, 1, 1, 1] + 2*F3[2, 2, 1] + F3[3, 1, 1] + F3[3, 2]
|
|
@@ -750,6 +754,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
750
754
|
|
|
751
755
|
::
|
|
752
756
|
|
|
757
|
+
sage: # needs lrcalc_python
|
|
753
758
|
sage: km = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).km()
|
|
754
759
|
sage: km.product(km[2,1],km[2,1])
|
|
755
760
|
4*m3[2, 2, 1, 1] + 6*m3[2, 2, 2] + 2*m3[3, 2, 1] + 2*m3[3, 3]
|
|
@@ -775,6 +780,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
775
780
|
|
|
776
781
|
EXAMPLES::
|
|
777
782
|
|
|
783
|
+
sage: # needs lrcalc_python
|
|
778
784
|
sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
|
|
779
785
|
sage: dks3[3,2].antipode()
|
|
780
786
|
-dks3[1, 1, 1, 1, 1]
|
|
@@ -789,6 +795,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
789
795
|
|
|
790
796
|
::
|
|
791
797
|
|
|
798
|
+
sage: # needs lrcalc_python
|
|
792
799
|
sage: km = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3).km()
|
|
793
800
|
sage: km[1,1,1,1].antipode()
|
|
794
801
|
(t^3-3*t^2+3*t)*m3[1, 1, 1, 1] + (-t^2+2*t)*m3[2, 1, 1] + t*m3[2, 2] + t*m3[3, 1]
|
|
@@ -819,6 +826,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
819
826
|
|
|
820
827
|
EXAMPLES::
|
|
821
828
|
|
|
829
|
+
sage: # needs lrcalc_python
|
|
822
830
|
sage: Q3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1)
|
|
823
831
|
sage: km = Q3.km()
|
|
824
832
|
sage: km[3,2].coproduct()
|
|
@@ -829,6 +837,7 @@ class KBoundedQuotientBases(Category_realization_of_parent):
|
|
|
829
837
|
|
|
830
838
|
::
|
|
831
839
|
|
|
840
|
+
sage: # needs lrcalc_python
|
|
832
841
|
sage: Q3t = SymmetricFunctions(FractionField(QQ['t'])).kBoundedQuotient(3)
|
|
833
842
|
sage: km = Q3t.km()
|
|
834
843
|
sage: km[3,2].coproduct()
|
|
@@ -1279,6 +1288,7 @@ class DualkSchurFunctions(KBoundedQuotientBasis):
|
|
|
1279
1288
|
|
|
1280
1289
|
EXAMPLES::
|
|
1281
1290
|
|
|
1291
|
+
sage: # needs lrcalc_python
|
|
1282
1292
|
sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
|
|
1283
1293
|
sage: dks3._dks_to_khlp_on_basis(Partition([2,1]))
|
|
1284
1294
|
2*HLP3[1, 1, 1] + HLP3[2, 1]
|
|
@@ -1309,6 +1319,7 @@ class DualkSchurFunctions(KBoundedQuotientBasis):
|
|
|
1309
1319
|
|
|
1310
1320
|
EXAMPLES::
|
|
1311
1321
|
|
|
1322
|
+
sage: # needs lrcalc_python
|
|
1312
1323
|
sage: dks3 = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).dual_k_Schur()
|
|
1313
1324
|
sage: dks3._khlp_to_dks_on_basis(Partition([2,1]))
|
|
1314
1325
|
-2*dks3[1, 1, 1] + dks3[2, 1]
|
|
@@ -1321,6 +1332,7 @@ class DualkSchurFunctions(KBoundedQuotientBasis):
|
|
|
1321
1332
|
|
|
1322
1333
|
::
|
|
1323
1334
|
|
|
1335
|
+
sage: # needs lrcalc_python
|
|
1324
1336
|
sage: dks3 = SymmetricFunctions(QQ['t'].fraction_field()).kBoundedQuotient(3).dual_k_Schur()
|
|
1325
1337
|
sage: dks3._khlp_to_dks_on_basis(Partition([2,1]))
|
|
1326
1338
|
(-t^2-t)*dks3[1, 1, 1] + dks3[2, 1]
|
|
@@ -1426,6 +1438,7 @@ class AffineSchurFunctions(KBoundedQuotientBasis):
|
|
|
1426
1438
|
|
|
1427
1439
|
EXAMPLES::
|
|
1428
1440
|
|
|
1441
|
+
sage: # needs lrcalc_python
|
|
1429
1442
|
sage: F = SymmetricFunctions(QQ).kBoundedQuotient(3,t=1).affineSchur()
|
|
1430
1443
|
sage: F._m_to_F_on_basis(Partition([2,1]))
|
|
1431
1444
|
-2*F3[1, 1, 1] + F3[2, 1]
|
sage/combinat/sf/llt.py
CHANGED
|
@@ -73,6 +73,7 @@ class LLT_class(UniqueRepresentation):
|
|
|
73
73
|
|
|
74
74
|
We require that the parameter `t` must be in the base ring::
|
|
75
75
|
|
|
76
|
+
sage: # needs sage.symbolic
|
|
76
77
|
sage: Symxt = SymmetricFunctions(QQ['x','t'].fraction_field())
|
|
77
78
|
sage: (x,t) = Symxt.base_ring().gens()
|
|
78
79
|
sage: LLT3x = Symxt.llt(3,t=x)
|
|
@@ -371,7 +372,9 @@ class LLT_class(UniqueRepresentation):
|
|
|
371
372
|
|
|
372
373
|
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
|
373
374
|
sage: HCosp3 = Sym.llt(3).hcospin(); HCosp3
|
|
374
|
-
Symmetric Functions
|
|
375
|
+
Symmetric Functions
|
|
376
|
+
over Fraction Field of Univariate Polynomial Ring in t over Rational Field
|
|
377
|
+
in the level 3 LLT cospin basis
|
|
375
378
|
sage: HCosp3([1])^2
|
|
376
379
|
1/t*HCosp3[1, 1] + ((t-1)/t)*HCosp3[2]
|
|
377
380
|
|
|
@@ -400,11 +403,14 @@ class LLT_class(UniqueRepresentation):
|
|
|
400
403
|
EXAMPLES::
|
|
401
404
|
|
|
402
405
|
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
|
406
|
+
|
|
407
|
+
sage: # needs sage.symbolic
|
|
403
408
|
sage: HSp3 = Sym.llt(3).hspin(); HSp3
|
|
404
|
-
Symmetric Functions
|
|
409
|
+
Symmetric Functions
|
|
410
|
+
over Fraction Field of Univariate Polynomial Ring in t over Rational Field
|
|
411
|
+
in the level 3 LLT spin basis
|
|
405
412
|
sage: HSp3([1])^2
|
|
406
413
|
HSp3[1, 1] + (-t+1)*HSp3[2]
|
|
407
|
-
|
|
408
414
|
sage: s = Sym.schur()
|
|
409
415
|
sage: HSp3(s([2]))
|
|
410
416
|
HSp3[2]
|
|
@@ -431,12 +437,16 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
431
437
|
EXAMPLES::
|
|
432
438
|
|
|
433
439
|
sage: SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
|
|
434
|
-
Symmetric Functions
|
|
440
|
+
Symmetric Functions
|
|
441
|
+
over Fraction Field of Univariate Polynomial Ring in t over Rational Field
|
|
442
|
+
in the level 3 LLT spin basis
|
|
435
443
|
sage: SymmetricFunctions(QQ).llt(3,t=2).hspin()
|
|
436
444
|
Symmetric Functions over Rational Field in the level 3 LLT spin with t=2 basis
|
|
437
445
|
sage: QQz = FractionField(QQ['z']); z = QQz.gen()
|
|
438
446
|
sage: SymmetricFunctions(QQz).llt(3,t=z).hspin()
|
|
439
|
-
Symmetric Functions
|
|
447
|
+
Symmetric Functions
|
|
448
|
+
over Fraction Field of Univariate Polynomial Ring in z over Rational Field
|
|
449
|
+
in the level 3 LLT spin with t=z basis
|
|
440
450
|
"""
|
|
441
451
|
s = self.__class__.__name__[4:]
|
|
442
452
|
sfa.SymmetricFunctionAlgebra_generic.__init__(
|
|
@@ -490,6 +500,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
490
500
|
|
|
491
501
|
EXAMPLES::
|
|
492
502
|
|
|
503
|
+
sage: # needs sage.symbolic
|
|
493
504
|
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
|
494
505
|
sage: HSp3 = Sym.llt(3).hspin()
|
|
495
506
|
sage: m = Sym.monomial()
|
|
@@ -498,7 +509,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
498
509
|
|
|
499
510
|
This is for internal use only. Please use instead::
|
|
500
511
|
|
|
501
|
-
sage: HSp3(m[2,1])
|
|
512
|
+
sage: HSp3(m[2,1]) # needs sage.symbolic
|
|
502
513
|
-2*HSp3[1, 1, 1] + (2*t^2+2*t+1)*HSp3[2, 1] + (-2*t^2-t)*HSp3[3]
|
|
503
514
|
"""
|
|
504
515
|
return self._from_cache(x, self._m_cache, self._m_to_self_cache,
|
|
@@ -517,6 +528,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
517
528
|
|
|
518
529
|
EXAMPLES::
|
|
519
530
|
|
|
531
|
+
sage: # needs sage.symbolic
|
|
520
532
|
sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
|
|
521
533
|
sage: HSp3 = Sym.llt(3).hspin()
|
|
522
534
|
sage: m = Sym.monomial()
|
|
@@ -525,7 +537,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
525
537
|
|
|
526
538
|
This is for internal use only. Please use instead::
|
|
527
539
|
|
|
528
|
-
sage: m(HSp3[2,1])
|
|
540
|
+
sage: m(HSp3[2,1]) # needs sage.symbolic
|
|
529
541
|
(t+2)*m[1, 1, 1] + (t+1)*m[2, 1] + t*m[3]
|
|
530
542
|
"""
|
|
531
543
|
return self._m._from_cache(x, self._m_cache, self._self_to_m_cache,
|
|
@@ -563,7 +575,8 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
563
575
|
|
|
564
576
|
sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
|
|
565
577
|
sage: HSp3.llt_family()
|
|
566
|
-
level 3 LLT polynomials
|
|
578
|
+
level 3 LLT polynomials
|
|
579
|
+
over Fraction Field of Univariate Polynomial Ring in t over Rational Field
|
|
567
580
|
"""
|
|
568
581
|
return self._llt
|
|
569
582
|
|
|
@@ -581,6 +594,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
581
594
|
|
|
582
595
|
EXAMPLES::
|
|
583
596
|
|
|
597
|
+
sage: # needs sage.symbolic
|
|
584
598
|
sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
|
|
585
599
|
sage: HSp3.product(HSp3([1]), HSp3([2]))
|
|
586
600
|
HSp3[2, 1] + (-t+1)*HSp3[3]
|
|
@@ -602,6 +616,7 @@ class LLT_generic(sfa.SymmetricFunctionAlgebra_generic):
|
|
|
602
616
|
|
|
603
617
|
EXAMPLES::
|
|
604
618
|
|
|
619
|
+
sage: # needs sage.symbolic
|
|
605
620
|
sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
|
|
606
621
|
sage: HSp3._m_cache(2)
|
|
607
622
|
sage: l = lambda c: [ (i[0],[j for j in sorted(i[1].items())]) for i in sorted(c.items())]
|
|
@@ -651,7 +666,8 @@ class LLT_spin(LLT_generic):
|
|
|
651
666
|
|
|
652
667
|
::
|
|
653
668
|
|
|
654
|
-
sage:
|
|
669
|
+
sage: R.<x> = QQ[]
|
|
670
|
+
sage: HS3x = SymmetricFunctions(FractionField(R)).llt(3, t=x).hspin()
|
|
655
671
|
sage: TestSuite(HS3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (4s on sage.math, 2012)
|
|
656
672
|
sage: TestSuite(HS3x).run(elements = [HS3x.t*HS3x[1,1]+HS3x.t*HS3x[2], HS3x[1]+(1+HS3x.t)*HS3x[1,1]]) # long time (depends on previous)
|
|
657
673
|
"""
|
|
@@ -681,6 +697,7 @@ class LLT_spin(LLT_generic):
|
|
|
681
697
|
|
|
682
698
|
EXAMPLES::
|
|
683
699
|
|
|
700
|
+
sage: # needs sage.symbolic
|
|
684
701
|
sage: HSp3 = SymmetricFunctions(FractionField(QQ['t'])).llt(3).hspin()
|
|
685
702
|
sage: f21 = HSp3._to_m(Partition([2,1]))
|
|
686
703
|
sage: [f21(p) for p in Partitions(3)]
|
|
@@ -720,7 +737,8 @@ class LLT_cospin(LLT_generic):
|
|
|
720
737
|
|
|
721
738
|
::
|
|
722
739
|
|
|
723
|
-
sage:
|
|
740
|
+
sage: R.<x> = QQ[]
|
|
741
|
+
sage: HC3x = SymmetricFunctions(FractionField(R)).llt(3, t=x).hcospin()
|
|
724
742
|
sage: TestSuite(HC3x).run(skip = ["_test_associativity", "_test_distributivity", "_test_prod"]) # products are too expensive, long time (5s on sage.math, 2012)
|
|
725
743
|
sage: TestSuite(HC3x).run(elements = [HC3x.t*HC3x[1,1]+HC3x.t*HC3x[2], HC3x[1]+(1+HC3x.t)*HC3x[1,1]]) # long time (depends on previous)
|
|
726
744
|
"""
|
sage/combinat/sf/monomial.py
CHANGED
sage/combinat/sf/orthogonal.py
CHANGED
sage/combinat/sf/orthotriang.py
CHANGED
|
@@ -22,7 +22,7 @@ functions from this definition.
|
|
|
22
22
|
::
|
|
23
23
|
|
|
24
24
|
sage: s2 = SymmetricFunctions(QQ).s()
|
|
25
|
-
sage: s2([2,1])^2 # needs
|
|
25
|
+
sage: s2([2,1])^2 # needs lrcalc_python
|
|
26
26
|
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2]
|
|
27
27
|
"""
|
|
28
28
|
# ****************************************************************************
|
|
@@ -104,7 +104,7 @@ class SymmetricFunctionAlgebra_orthotriang(sfa.SymmetricFunctionAlgebra_generic)
|
|
|
104
104
|
|
|
105
105
|
TESTS::
|
|
106
106
|
|
|
107
|
-
sage: # needs
|
|
107
|
+
sage: # needs lrcalc_python
|
|
108
108
|
sage: TestSuite(s).run(elements=[s[1,1]+2*s[2], s[1]+3*s[1,1]])
|
|
109
109
|
sage: TestSuite(s).run(skip=["_test_associativity", "_test_prod"]) # long time (7s on sage.math, 2011)
|
|
110
110
|
|
sage/combinat/sf/schur.py
CHANGED
|
@@ -47,8 +47,8 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
47
47
|
sage: s = SymmetricFunctions(QQ).s()
|
|
48
48
|
sage: s == loads(dumps(s))
|
|
49
49
|
True
|
|
50
|
-
sage: TestSuite(s).run(skip=['_test_associativity', '_test_distributivity', '_test_prod'])
|
|
51
|
-
sage: TestSuite(s).run(elements
|
|
50
|
+
sage: TestSuite(s).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # needs lrcalc_python
|
|
51
|
+
sage: TestSuite(s).run(elements=[s[1,1]+s[2], s[1]+2*s[1,1]]) # needs lrcalc_python
|
|
52
52
|
"""
|
|
53
53
|
classical.SymmetricFunctionAlgebra_classical.__init__(self, Sym, "Schur", 's')
|
|
54
54
|
|
|
@@ -92,6 +92,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
92
92
|
|
|
93
93
|
TESTS::
|
|
94
94
|
|
|
95
|
+
sage: # needs lrcalc_python
|
|
95
96
|
sage: s = SymmetricFunctions(QQ).s()
|
|
96
97
|
sage: a = s([2,1]) + 1; a
|
|
97
98
|
s[] + s[2, 1]
|
|
@@ -101,6 +102,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
101
102
|
|
|
102
103
|
Examples failing with three different messages in symmetrica::
|
|
103
104
|
|
|
105
|
+
sage: # needs lrcalc_python
|
|
104
106
|
sage: s[123,1]*s[1,1]
|
|
105
107
|
s[123, 1, 1, 1] + s[123, 2, 1] + s[124, 1, 1] + s[124, 2]
|
|
106
108
|
sage: s[123]*s[2,1]
|
|
@@ -110,6 +112,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
110
112
|
|
|
111
113
|
::
|
|
112
114
|
|
|
115
|
+
sage: # needs lrcalc_python
|
|
113
116
|
sage: QQx.<x> = QQ[]
|
|
114
117
|
sage: s = SymmetricFunctions(QQx).s()
|
|
115
118
|
sage: a = x^2*s([2,1]) + 2*x; a
|
|
@@ -121,11 +124,12 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
121
124
|
|
|
122
125
|
::
|
|
123
126
|
|
|
124
|
-
sage: 0*s([2,1])
|
|
127
|
+
sage: 0*s([2,1]) # needs lrcalc_python
|
|
125
128
|
0
|
|
126
129
|
|
|
127
130
|
Example over a field with positive characteristic::
|
|
128
131
|
|
|
132
|
+
sage: # needs lrcalc_python
|
|
129
133
|
sage: s[2,1]^2
|
|
130
134
|
s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1]
|
|
131
135
|
+ s[3, 3] + s[4, 1, 1] + s[4, 2]
|
|
@@ -155,6 +159,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
155
159
|
|
|
156
160
|
EXAMPLES::
|
|
157
161
|
|
|
162
|
+
sage: # needs lrcalc_python
|
|
158
163
|
sage: Sym = SymmetricFunctions(QQ)
|
|
159
164
|
sage: s = Sym.schur()
|
|
160
165
|
sage: s.coproduct_on_basis([2])
|
|
@@ -162,8 +167,8 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
162
167
|
|
|
163
168
|
TESTS::
|
|
164
169
|
|
|
165
|
-
sage: s = SymmetricFunctions(QQ['t']).s()
|
|
166
|
-
sage: s[2].coproduct() / 2
|
|
170
|
+
sage: s = SymmetricFunctions(QQ['t']).s() # needs lrcalc_python
|
|
171
|
+
sage: s[2].coproduct() / 2 # needs lrcalc_python
|
|
167
172
|
1/2*s[] # s[2] + 1/2*s[1] # s[1] + 1/2*s[2] # s[]
|
|
168
173
|
"""
|
|
169
174
|
T = self.tensor_square()
|
|
@@ -177,9 +182,9 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
177
182
|
TESTS::
|
|
178
183
|
|
|
179
184
|
sage: s = SymmetricFunctions(QQ).s()
|
|
180
|
-
sage: s([[2,1],[1]])
|
|
185
|
+
sage: s([[2,1],[1]]) # needs lrcalc_python
|
|
181
186
|
s[1, 1] + s[2]
|
|
182
|
-
sage: s([[],[]])
|
|
187
|
+
sage: s([[],[]]) # needs lrcalc_python
|
|
183
188
|
s[]
|
|
184
189
|
"""
|
|
185
190
|
###################
|
|
@@ -486,6 +491,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
486
491
|
|
|
487
492
|
EXAMPLES::
|
|
488
493
|
|
|
494
|
+
sage: # needs lrcalc_python
|
|
489
495
|
sage: Sym = SymmetricFunctions(ZZ)
|
|
490
496
|
sage: s = Sym.s()
|
|
491
497
|
sage: s[5].verschiebung(2)
|
|
@@ -509,6 +515,7 @@ class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classica
|
|
|
509
515
|
same result as the implementation in sfa.py on the monomial
|
|
510
516
|
basis::
|
|
511
517
|
|
|
518
|
+
sage: # needs lrcalc_python
|
|
512
519
|
sage: Sym = SymmetricFunctions(QQ)
|
|
513
520
|
sage: s = Sym.s(); h = Sym.h()
|
|
514
521
|
sage: all( h(s(lam)).verschiebung(3) == h(s(lam).verschiebung(3))
|