pandas-plots 0.11.21__py3-none-any.whl → 0.11.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pandas_plots/tbl.py CHANGED
@@ -123,10 +123,13 @@ def describe_df(
123
123
  print(f"🟣 shape: ({df.shape[0]:_}, {df.shape[1]}) columns: {np.array(df.columns)} ")
124
124
  # print(f"🟣 shape: ({df.shape[0]:_}, {df.shape[1]}) columns: {df.columns.tolist()} ")
125
125
  print(f"🟣 duplicates: {df.duplicated().sum():_}")
126
- print(f"🟣 uniques: { {col: f'{df[col].nunique():_}' for col in df} }")
126
+ print(f"🟣 uniques: {wrap_text(str({col: f'{df[col].nunique():_}' for col in df})) }")
127
+ # print(f"🟣 uniques: { {col: f'{df[col].nunique():_}' for col in df} }")
127
128
  # print(f"🟣 uniques: {{ {', '.join(f'{col}: {df[col].nunique():_}' for col in df)} }}")
128
- print(f"🟣 missings: { {col: f'{df[col].isna().sum():_}' for col in df} }")
129
+ print(f"🟣 missings: {wrap_text(str({col: f'{df[col].isna().sum():_}' for col in df})) }")
130
+ # print(f"🟣 missings: { {col: f'{df[col].isna().sum():_}' for col in df} }")
129
131
  # print(f"🟣 missings: {dict(df.isna().sum())}")
132
+
130
133
 
131
134
  def get_uniques_header(col: str):
132
135
  # * sorting has issues when col is of mixed type (object)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pandas-plots
3
- Version: 0.11.21
3
+ Version: 0.11.22
4
4
  Summary: A collection of helper for table handling and vizualization
5
5
  Home-page: https://github.com/smeisegeier/pandas-plots
6
6
  Author: smeisegeier
@@ -0,0 +1,10 @@
1
+ pandas_plots/hlp.py,sha256=wrvy36rnSdg1I4uQjIzzwGmjcN0gvSfKylRf_7GKpXs,12001
2
+ pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
+ pandas_plots/pls.py,sha256=C-EUvt9u7aXd6va7BGamf6HSODOnvbERwxu2Gb8PgbQ,35449
4
+ pandas_plots/tbl.py,sha256=A1SqvssDA4ofI_WJ-sdWIb9Bo5X-sELD8pley22Y4X4,28380
5
+ pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
+ pandas_plots-0.11.22.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
+ pandas_plots-0.11.22.dist-info/METADATA,sha256=YgJjD4QfPZkLutuYg4_5orNjoVwNH2jx9nTsSwYqIlk,7071
8
+ pandas_plots-0.11.22.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
9
+ pandas_plots-0.11.22.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
+ pandas_plots-0.11.22.dist-info/RECORD,,
@@ -1,10 +0,0 @@
1
- pandas_plots/hlp.py,sha256=wrvy36rnSdg1I4uQjIzzwGmjcN0gvSfKylRf_7GKpXs,12001
2
- pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
- pandas_plots/pls.py,sha256=C-EUvt9u7aXd6va7BGamf6HSODOnvbERwxu2Gb8PgbQ,35449
4
- pandas_plots/tbl.py,sha256=EH7fkNcc9ZDUionnrPYm6isq4AwTvUjC3qb9NMj_hXY,28181
5
- pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
- pandas_plots-0.11.21.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
- pandas_plots-0.11.21.dist-info/METADATA,sha256=E5yHO2tYJ9Jl6GfYA3XERhFKIYPSMx9Ne0bjsWqw7tk,7071
8
- pandas_plots-0.11.21.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
9
- pandas_plots-0.11.21.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
- pandas_plots-0.11.21.dist-info/RECORD,,