pandas-plots 0.11.17__py3-none-any.whl → 0.11.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pandas_plots/pls.py CHANGED
@@ -786,7 +786,13 @@ def plot_box(
786
786
  ser = df_to_series(ser)
787
787
  if ser is None:
788
788
  return
789
+
790
+ # * drop na to keep scipy sane
791
+ n_ = len(ser)
792
+ ser.dropna(inplace=True)
793
+ n = len(ser)
789
794
 
795
+ # hack
790
796
  median = ser.median()
791
797
  mean = ser.mean()
792
798
  q25 = ser.quantile(0.25)
@@ -811,7 +817,7 @@ def plot_box(
811
817
  "width": width,
812
818
  "points": points,
813
819
  # 'box':True,
814
- "title": f"{caption}[{ser.name}], n = {len(ser):_}" if not title else title,
820
+ "title": f"{caption}[{ser.name}], n = {n_:_}({n:_})" if not title else title,
815
821
  }
816
822
 
817
823
  fig = px.violin(**{**dict, "box": True}) if violin else px.box(**dict)
pandas_plots/tbl.py CHANGED
@@ -142,6 +142,10 @@ def describe_df(
142
142
 
143
143
  # ! *** PLOTS ***
144
144
  if use_plot:
145
+ # * fix bug(?) in plotly/choreographer - datetime columns are not plotted, set these to str
146
+ datetime_cols = df.select_dtypes(include=['datetime64']).columns
147
+ df[datetime_cols] = df[datetime_cols].astype(str)
148
+
145
149
  # * reduce column names len if selected
146
150
  if top_n_chars_in_columns > 0:
147
151
  # * minumum 10 chars, or display is cluttered
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pandas-plots
3
- Version: 0.11.17
3
+ Version: 0.11.19
4
4
  Summary: A collection of helper for table handling and vizualization
5
5
  Home-page: https://github.com/smeisegeier/pandas-plots
6
6
  Author: smeisegeier
@@ -0,0 +1,10 @@
1
+ pandas_plots/hlp.py,sha256=wrvy36rnSdg1I4uQjIzzwGmjcN0gvSfKylRf_7GKpXs,12001
2
+ pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
+ pandas_plots/pls.py,sha256=C-EUvt9u7aXd6va7BGamf6HSODOnvbERwxu2Gb8PgbQ,35449
4
+ pandas_plots/tbl.py,sha256=iHaheCl4ZCh1NflzmNTR3zGHJJkY9ui_2Q5odCFw4v8,27261
5
+ pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
+ pandas_plots-0.11.19.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
+ pandas_plots-0.11.19.dist-info/METADATA,sha256=DxRdBZ5oAChkvypXpvgYpOo12_0LxtYjQa5R9sHPa_c,7083
8
+ pandas_plots-0.11.19.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
9
+ pandas_plots-0.11.19.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
+ pandas_plots-0.11.19.dist-info/RECORD,,
@@ -1,10 +0,0 @@
1
- pandas_plots/hlp.py,sha256=wrvy36rnSdg1I4uQjIzzwGmjcN0gvSfKylRf_7GKpXs,12001
2
- pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
- pandas_plots/pls.py,sha256=Ja-z0RbLbzJHaaSLPNpmJFibl3dmAaMmdUvCht84hOc,35333
4
- pandas_plots/tbl.py,sha256=Zlta8pPFcY_NcEhXgp0NkAWT4D-yymX4LSNEH8bBM9Q,27029
5
- pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
- pandas_plots-0.11.17.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
- pandas_plots-0.11.17.dist-info/METADATA,sha256=KXUMjXAZmqzYqU2dn3OM9L3ozcPSC0EbMCENcjboytw,7083
8
- pandas_plots-0.11.17.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
9
- pandas_plots-0.11.17.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
- pandas_plots-0.11.17.dist-info/RECORD,,