pandas-plots 0.11.16__py3-none-any.whl → 0.11.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pandas_plots/pls.py CHANGED
@@ -786,7 +786,13 @@ def plot_box(
786
786
  ser = df_to_series(ser)
787
787
  if ser is None:
788
788
  return
789
+
790
+ # * drop na to keep scipy sane
791
+ n_ = len(ser)
792
+ ser.dropna(inplace=True)
793
+ n = len(ser)
789
794
 
795
+ # hack
790
796
  median = ser.median()
791
797
  mean = ser.mean()
792
798
  q25 = ser.quantile(0.25)
@@ -811,7 +817,7 @@ def plot_box(
811
817
  "width": width,
812
818
  "points": points,
813
819
  # 'box':True,
814
- "title": f"{caption}[{ser.name}], n = {len(ser):_}" if not title else title,
820
+ "title": f"{caption}[{ser.name}], n = {n_:_}({n:_})" if not title else title,
815
821
  }
816
822
 
817
823
  fig = px.violin(**{**dict, "box": True}) if violin else px.box(**dict)
pandas_plots/tbl.py CHANGED
@@ -643,6 +643,9 @@ def print_summary(df: pd.DataFrame | pd.Series, name: str="🟠 "):
643
643
  # Calculate IQR and pass `rng=(25, 75)` to get the interquartile range
644
644
  iqr_value = stats.iqr(ser)
645
645
 
646
+ # * drop NA to keep scipy sane
647
+ ser.dropna(inplace=True)
648
+
646
649
  # Using the iqr function, we still calculate the bounds manually
647
650
  q1 = stats.scoreatpercentile(ser, 25)
648
651
  q3 = stats.scoreatpercentile(ser, 75)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pandas-plots
3
- Version: 0.11.16
3
+ Version: 0.11.18
4
4
  Summary: A collection of helper for table handling and vizualization
5
5
  Home-page: https://github.com/smeisegeier/pandas-plots
6
6
  Author: smeisegeier
@@ -0,0 +1,10 @@
1
+ pandas_plots/hlp.py,sha256=wrvy36rnSdg1I4uQjIzzwGmjcN0gvSfKylRf_7GKpXs,12001
2
+ pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
+ pandas_plots/pls.py,sha256=C-EUvt9u7aXd6va7BGamf6HSODOnvbERwxu2Gb8PgbQ,35449
4
+ pandas_plots/tbl.py,sha256=Zlta8pPFcY_NcEhXgp0NkAWT4D-yymX4LSNEH8bBM9Q,27029
5
+ pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
+ pandas_plots-0.11.18.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
+ pandas_plots-0.11.18.dist-info/METADATA,sha256=nfWgEnKQELhH7r5gpPLFrziJ7tPMhaGWGKLzNG-JXVo,7083
8
+ pandas_plots-0.11.18.dist-info/WHEEL,sha256=R06PA3UVYHThwHvxuRWMqaGcr-PuniXahwjmQRFMEkY,91
9
+ pandas_plots-0.11.18.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
+ pandas_plots-0.11.18.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.2.0)
2
+ Generator: setuptools (75.5.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5
 
@@ -1,10 +0,0 @@
1
- pandas_plots/hlp.py,sha256=wrvy36rnSdg1I4uQjIzzwGmjcN0gvSfKylRf_7GKpXs,12001
2
- pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
- pandas_plots/pls.py,sha256=Ja-z0RbLbzJHaaSLPNpmJFibl3dmAaMmdUvCht84hOc,35333
4
- pandas_plots/tbl.py,sha256=Z3G7r1bMRHcY3n_zV0r5OFf9xPtb6Qiaz4ucJ8xezgE,26956
5
- pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
- pandas_plots-0.11.16.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
- pandas_plots-0.11.16.dist-info/METADATA,sha256=tqC9QRTTxaZg5gcedsvglP6jkcgaGVVP2MTPLyWVTq4,7083
8
- pandas_plots-0.11.16.dist-info/WHEEL,sha256=OVMc5UfuAQiSplgO0_WdW7vXVGAt9Hdd6qtN4HotdyA,91
9
- pandas_plots-0.11.16.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
- pandas_plots-0.11.16.dist-info/RECORD,,