pandas-plots 0.11.12__py3-none-any.whl → 0.11.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
pandas_plots/hlp.py CHANGED
@@ -311,7 +311,8 @@ def show_package_version(
311
311
  items.append(f"📦 {item}: {version}")
312
312
  except md.PackageNotFoundError:
313
313
  items.append(f"❌ {item}: Not found")
314
- print('\n',sep.join(items))
314
+ out = sep.join(items).strip()
315
+ print(out)
315
316
  return
316
317
 
317
318
  class OperatingSystem(Enum):
@@ -320,7 +321,7 @@ class OperatingSystem(Enum):
320
321
  MAC = auto()
321
322
 
322
323
 
323
- def get_os(desired_os: OperatingSystem = None) -> bool:
324
+ def get_os(desired_os: OperatingSystem = None, verbose: bool = False) -> bool | str:
324
325
  """
325
326
  A function that checks the operating system and returns a boolean value based on the desired operating system.
326
327
 
@@ -334,12 +335,13 @@ def get_os(desired_os: OperatingSystem = None) -> bool:
334
335
  Returns:
335
336
  bool: True if the desired operating system matches the current operating system, False otherwise. Returns None if desired_os is None.
336
337
  """
337
- print(
338
- f"💻 os: {os.name} | 🎯 system: {platform.system()} | 💽 release: {platform.release()}"
339
- )
338
+ if verbose:
339
+ print(
340
+ f"💻 os: {os.name} | 🎯 system: {platform.system()} | 💽 release: {platform.release()}"
341
+ )
340
342
 
341
343
  if desired_os is None:
342
- return None
344
+ return platform.system()
343
345
 
344
346
  if desired_os == OperatingSystem.WINDOWS and platform.system() == "Windows":
345
347
  return True
pandas_plots/tbl.py CHANGED
@@ -96,7 +96,8 @@ def describe_df(
96
96
  df[col] = df[col].astype(str)
97
97
 
98
98
  print(f"🔵 {'*'*3} df: {caption} {'*'*3}")
99
- print(f"🟣 shape: ({df.shape[0]:_}, {df.shape[1]}) columns: {df.columns.tolist()} ")
99
+ print(f"🟣 shape: ({df.shape[0]:_}, {df.shape[1]}) columns: {np.array(df.columns)} ")
100
+ # print(f"🟣 shape: ({df.shape[0]:_}, {df.shape[1]}) columns: {df.columns.tolist()} ")
100
101
  print(f"🟣 duplicates: {df.duplicated().sum():_}")
101
102
  print(f"🟣 missings: {dict(df.isna().sum())}")
102
103
  print("--- column uniques (all)")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: pandas-plots
3
- Version: 0.11.12
3
+ Version: 0.11.13
4
4
  Summary: A collection of helper for table handling and vizualization
5
5
  Home-page: https://github.com/smeisegeier/pandas-plots
6
6
  Author: smeisegeier
@@ -29,6 +29,8 @@ Requires-Dist: requests >=2.32.0
29
29
  Requires-Dist: numpy <2.0.0
30
30
  Requires-Dist: missingno >=0.5.2
31
31
  Requires-Dist: duckdb >=1.0.0
32
+ Requires-Dist: kaleido >=0.2.1
33
+ Requires-Dist: nbformat >=4.2.0
32
34
 
33
35
  # pandas-plots
34
36
 
@@ -0,0 +1,10 @@
1
+ pandas_plots/hlp.py,sha256=E7Ehz4y-q-wd-5Vx0esI41xPzdY0IqqSNA9YMae0iUM,11985
2
+ pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
+ pandas_plots/pls.py,sha256=BzZge7TnECjCs47MZ7P63_y2WU23P9sLaMl7SKB5h1Q,35043
4
+ pandas_plots/tbl.py,sha256=s6Fy6q9RVDzUV7pZfJZDcFu1jFf1MmEf6C322n3-kUg,24569
5
+ pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
+ pandas_plots-0.11.13.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
+ pandas_plots-0.11.13.dist-info/METADATA,sha256=tKqiDpOguqk-JKQQaQsAgE4fYAIiEZBfiVTO18JV1tk,7011
8
+ pandas_plots-0.11.13.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
9
+ pandas_plots-0.11.13.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
+ pandas_plots-0.11.13.dist-info/RECORD,,
@@ -1,10 +0,0 @@
1
- pandas_plots/hlp.py,sha256=Ug3RGok3Bn_FiPjfmd-_gNskSfzfVplQKR1XQFeykHA,11898
2
- pandas_plots/pii.py,sha256=2WKE-W9s285jPdsTqCgt1uxuW4lj1PYCVOYB2fYDNwQ,2195
3
- pandas_plots/pls.py,sha256=BzZge7TnECjCs47MZ7P63_y2WU23P9sLaMl7SKB5h1Q,35043
4
- pandas_plots/tbl.py,sha256=NU-kN5tBa1o49J7HApU4jy7YJeC5O5ROG7B3b3WaYZ8,24475
5
- pandas_plots/ven.py,sha256=2x3ACo2vSfO3q6fv-UdDQ0h1SJyt8WChBGgE5SDCdCk,11673
6
- pandas_plots-0.11.12.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
7
- pandas_plots-0.11.12.dist-info/METADATA,sha256=2RirsfBKN4SyGIcRs9SJXlDhyZh3rF0ojZFPOaDFeEc,6948
8
- pandas_plots-0.11.12.dist-info/WHEEL,sha256=cVxcB9AmuTcXqmwrtPhNK88dr7IR_b6qagTj0UvIEbY,91
9
- pandas_plots-0.11.12.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
10
- pandas_plots-0.11.12.dist-info/RECORD,,