pandas-plots 0.0.1__py3-none-any.whl → 0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,7 @@
1
+ Copyright 2024 smeisegeier
2
+
3
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
4
+
5
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
6
+
7
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
@@ -0,0 +1,75 @@
1
+ Metadata-Version: 2.1
2
+ Name: pandas-plots
3
+ Version: 0.0.3
4
+ Summary: A collection of helper for pandas n plots
5
+ Author-email: smeisegeier <dsexterDSDo@googlemail.com>
6
+ License: Copyright 2024 smeisegeier
7
+
8
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
9
+
10
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
11
+
12
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
13
+
14
+ Project-URL: Homepage, https://github.com/smeisegeier/pandas-plots
15
+ Keywords: tables,pivot,plotly
16
+ Classifier: License :: OSI Approved :: MIT License
17
+ Classifier: Programming Language :: Python :: 3
18
+ Requires-Python: >=3.10
19
+ Description-Content-Type: text/markdown
20
+ License-File: LICENSE
21
+ Requires-Dist: pandas >=2.0.0
22
+ Requires-Dist: plotly
23
+ Requires-Dist: matplotlib
24
+ Requires-Dist: seaborn
25
+
26
+ # pandas-plots
27
+
28
+ <!-- [![GitHub release](https://img.shields.io/github/release/Naereen/StrapDown.js.svg)](https://GitHub.com/Naereen/StrapDown.js/releases/) -->
29
+ <!-- [![GitHub latest commit](https://badgen.net/github/last-commit/Naereen/Strapdown.js)](https://GitHub.com/Naereen/StrapDown.js/commit/) -->
30
+
31
+ ![py3.10](https://img.shields.io/badge/python-3.10-blue.svg?logo=)
32
+
33
+ ## quickstart
34
+
35
+ install / update package
36
+
37
+ ```bash
38
+ pip install pandas-plots -U
39
+ ```
40
+
41
+ include in python
42
+
43
+ ```python
44
+ from pandas_plots import tbl, viz
45
+ ```
46
+
47
+ example
48
+
49
+ ```python
50
+ # load sample dataset from seaborn
51
+ import seaborn as sb
52
+ df = sb.load_dataset('taxis')
53
+
54
+ viz.plot_box(df['fare'], height=400, violin=True)
55
+ ```
56
+ ![plot_box](img/2024-02-13-00-40-27.png)
57
+
58
+ ## why use pandas-plots
59
+
60
+ `pandas-plots` is a package to help you examine and visualize data that are organized in a pandas DataFrame. It provides a high level api to pandas / plotly with some selected functions.
61
+
62
+ It is subdivided into:
63
+
64
+ - `tbl` utilities for table descriptions
65
+ - `describe_df()` an alternative version of pandas `describe()` function
66
+ - `pivot_df()` gets a pivot table of a 3 column dataframe
67
+
68
+ - `viz` utilities for plotly visualizations
69
+ - `plot_box()` auto annotated boxplot w/ violin option
70
+ - `plot_boxes()` multiple boxplots _(annotation is experimental)_
71
+ - `plots_bars()` a standardized bar plot
72
+ - `plot_stacked_bars()` shortcut to stacked bars 😄
73
+ - `plot_quadrants()` quickly show a 2x2 heatmap
74
+
75
+ ## dependencies
@@ -0,0 +1,8 @@
1
+ pandas_plots/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
+ pandas_plots/tbl.py,sha256=7_o-Mu2nrniZd25zAtb_7IUdi7ZUnjcn9OFpBwFcVno,11500
3
+ pandas_plots/viz.py,sha256=eCDth3aFSU0_8Cj5Tax-FWM9TmPrmmNEiFuoVOB63ss,23207
4
+ pandas_plots-0.0.3.dist-info/LICENSE,sha256=6KQ5KVAAhRaB-JJKpX4cefKvRZRgI7GUPc92_2d31XY,1051
5
+ pandas_plots-0.0.3.dist-info/METADATA,sha256=CxfXjnDBAnALI1yDqMIi9SRh6hfOfJPWGmw7e2p4bt0,4379
6
+ pandas_plots-0.0.3.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
7
+ pandas_plots-0.0.3.dist-info/top_level.txt,sha256=XnaNuIHBqMmCeh_U7nKOYTwFue_SIA0wxuDgdPmnnSk,13
8
+ pandas_plots-0.0.3.dist-info/RECORD,,
pandas_plots/legacy.py DELETED
@@ -1,276 +0,0 @@
1
- import warnings
2
- warnings.filterwarnings('ignore')
3
-
4
- from scipy import stats
5
- import numpy as np
6
- import pandas as pd
7
- import matplotlib.pyplot as plt
8
- import pandas as pd
9
- import seaborn as sb
10
-
11
- def my_show_info(df, hasPlot=False):
12
- """show info about given dataframe
13
-
14
- Args:
15
- df (DataFrame): dataframe
16
- hasPlot (bool): display plot or not
17
-
18
- Returns:
19
- DataFrame: self
20
- """
21
-
22
- df_ = df.copy()
23
- import io
24
- # .info(): cleanse whitespaces in column names!
25
- df_.columns = df_.columns.str.replace(' ', '_')
26
- buffer = io.StringIO()
27
- df_.info(buf=buffer)
28
-
29
- df_n = df_.select_dtypes(np.number) # store numeric columns for later
30
- lines = buffer.getvalue().splitlines()
31
- df = (pd.DataFrame([x.split() for x in lines[5:-2]], columns=lines[3].split())
32
- )
33
-
34
-
35
- #* .nunique
36
- uni = df_.nunique().reset_index(drop=True).rename('Uni_Count')
37
-
38
-
39
- #* .isnull
40
- nulls = df_.isnull().sum().reset_index(drop=True).rename('Nulls')
41
- df = df.join(uni).join(nulls)
42
-
43
-
44
- #* .value_count
45
- mylist = []
46
- for col in df_.columns:
47
- # only append if count_values yields a result
48
- if len(df_[col].value_counts()) > 0:
49
- line = (
50
- str(df_[col].value_counts().reset_index().iat[0, 0]) +
51
- ' | ' +
52
- str(df_[col].value_counts().reset_index().iat[0, 1])
53
- )
54
- mylist.append(line)
55
- mylist = pd.Series(mylist, name='Most_Frequent')
56
- df = df.join(mylist)
57
-
58
-
59
- #* skew and kurto
60
- skew = stats.skew(df_n, axis=0, bias=True).round(3)
61
- skew_t = np.stack((df_n.columns.tolist(),skew), axis=0).T # stack arrays to have corresponding columns
62
- skew_tp = pd.DataFrame(skew_t, columns=['var', 'skew']) # convert to dataframe, assign column names
63
- kurto = stats.kurtosis(df_n, axis=0, bias=True).round(3)
64
- kurto_t = np.stack((df_n.columns.tolist(),kurto), axis=0).T
65
- kurto_tp = pd.DataFrame(kurto_t, columns=['var', 'kurto'])
66
- df = df.merge(skew_tp, how='outer', left_on='Column', right_on='var').drop('var', axis=1) # merge w/ column names
67
- df = df.merge(kurto_tp, how='outer', left_on='Column', right_on='var').drop('var', axis=1)
68
-
69
-
70
- #* .describe
71
- desc = df_.describe().T.drop(axis=1, columns='count')
72
- # left outer join on l.Column = r.index
73
- df = df.merge(desc, how='outer', left_on='Column', right_index=True)
74
-
75
-
76
- #* plot
77
- if hasPlot:
78
- # PLOT
79
- # get num columns as list (only to_list() outputs clean strings)
80
- cols = df.select_dtypes(np.number).columns.to_list()
81
- # 'Columns' is crucial for the plot - but not numeric :)
82
- cols.append(df.Column.name)
83
-
84
- # transorm to kvpairs -> auto generate: 'variable' + 'value'
85
- df_kval = pd.melt(df[cols], id_vars=['Column'])
86
- # set up facets
87
- g = sb.FacetGrid(data=df_kval, col_wrap=5,
88
- col='variable', sharex=False)
89
- # x, y may not be named as such ...
90
- _ = g.map(sb.barplot, 'value', 'Column')
91
-
92
- return df
93
-
94
-
95
- def my_show_skew_kurto(df, hasPlot = False):
96
- """return values for skew and kurtosis
97
-
98
- Args:
99
- df (DataFrame): dataframe
100
- hasPlot (bool): True if you want to plot the data
101
-
102
- Returns:
103
- list: list of values for skew and kurtosis
104
- """
105
-
106
- df_ = df.copy()
107
- df_ = df_.select_dtypes(np.number)
108
- _skew = stats.skew(df_, axis=0, bias=True)
109
- _kurto = stats.kurtosis(df_, axis=0, bias=True)
110
-
111
- # get axis: column-names + skw/kurto columns
112
- _cols = np.array(df_.columns)
113
- # stack these into array, then transpose
114
- _array = np.array([_cols, _skew, _kurto]).T
115
- # into dataframe, assigen names for new columns
116
- list_skews = pd.DataFrame(data=_array, columns=[
117
- 'col', 'skewness', 'kurtosis'])
118
-
119
- # PLOT
120
- if hasPlot:
121
- _fig, _axs = plt.subplots(1, 2, squeeze=False, figsize=(5, 3))
122
- _ = sb.barplot(y='col', x='skewness', data=list_skews,
123
- orient='horizontal', ax=_axs[0, 0])
124
- _ = sb.barplot(y='col', x='kurtosis', data=list_skews,
125
- orient='horizontal', ax=_axs[0, 1])
126
- return list_skews
127
-
128
-
129
-
130
- # def describe_df_LEGACY(
131
- # df: pd.DataFrame,
132
- # caption: str,
133
- # use_plot: bool = True,
134
- # use_columns: bool = True,
135
- # renderer: Literal["png", "svg", None] = "png",
136
- # template: str = os.getenv("THEME_PLOTLY") or "plotly",
137
- # fig_cols: int = 3,
138
- # fig_offset: int = None,
139
- # fig_rowheight: int = 300,
140
- # sort_mode: Literal["value", "index"] = "value",
141
- # ):
142
- # """
143
- # This function takes a pandas DataFrame and a caption as input parameters and prints out the caption as a styled header, followed by the shape of the DataFrame and the list of column names. For each column, it prints out the column name, the number of unique values, and the column data type. If the column is a numeric column with more than 100 unique values, it also prints out the minimum, mean, maximum, and sum values. Otherwise, it prints out the first 100 unique values of the column.
144
-
145
- # Args:
146
- # df (DataFrame): dataframe
147
- # caption (str): caption to describe dataframe
148
- # use_plot (bool): display plot?
149
- # use_columns (bool): display columns values?
150
- # renderer (Literal["png", "svg", None]): renderer for plot
151
- # template (str): template for plotly (see https://plotly.com/python/templates/), default: os.getenv("THEME_PLOTLY") or "plotly"
152
- # fig_cols (int): number of columns in plot
153
- # fig_offset (int): offset for plots as iloc Argument. None = no offset, -1 = omit last plot
154
- # fig_rowheight (int): row height for plot (default 300)
155
- # sort_mode (Literal["value", "index"]): sort by value or index
156
-
157
- # usage:
158
- # describe_df(
159
- # df=df,
160
- # caption="dataframe",
161
- # use_plot=True,
162
- # renderer="png",
163
- # template="plotly",
164
- # fig_cols=3,
165
- # fig_offset=None,
166
- # sort_mode="value",
167
- # )
168
-
169
- # hint: skewness may not properly work if the columns is float and/or has only 1 value
170
- # """
171
- # # * check if df is empty
172
- # if len(df) == 0:
173
- # print(f"{Style.bold}{Fore.red}DataFrame is empty!{Style.reset}")
174
- # return
175
-
176
- # print(f"{Style.bold}{Fore.red}{'*'*3} {caption} {'*'*3}{Style.reset}")
177
- # print(f"{Fore.blue}shape: {Style.reset}({df.shape[0]:_}, {df.shape[1]}) {Fore.blue}columns: {Style.reset}{df.columns.tolist()} ")
178
- # print(f"{Fore.blue}duplicates: {Style.reset}{df.duplicated().sum():_}")
179
-
180
- # # ! old version here
181
- # # for col in df.columns[:]:
182
- # # # * get unique values
183
- # # unis = df[col].sort_values().unique()
184
- # # header = f"{Fore.yellow}{col}({len(unis):_}|{df[col].dtype}){Style.reset}"
185
- # # # * check if num col w/ too many values
186
- # # if (df[col].dtype.kind in "biufc") and (len(unis) > 100):
187
- # # print(
188
- # # f"{header} {Fore.magenta}min:{Style.reset} {df[col].min():_} | {Fore.magenta}median:{Style.reset} {df[col].median().round(2):_} | {Fore.magenta}mean:{Style.reset} {df[col].mean().round(2):_} | {Fore.magenta}std:{Style.reset} {df[col].std().round(2):_} | {Fore.magenta}cv:{Style.reset} {(df[col].std() / df[col].mean()).round(2):_} | {Fore.magenta}max:{Style.reset} {df[col].max():_} | {Fore.magenta}sum:{Style.reset} {df[col].sum():_}"
189
- # # )
190
- # # else:
191
- # # # * limit output to 100 items
192
- # # print(f"{header} {unis[:100]}")
193
-
194
- # def get_uniques_header(col: str):
195
- # # * get unique values
196
- # unis = df[col].sort_values().unique()
197
- # # * get header
198
- # header = f"{Fore.green}{col}({len(unis):_}|{df[col].dtype}){Style.reset}"
199
- # return unis, header
200
-
201
- # # * show all columns
202
- # for col in df.columns[:]:
203
- # _u, _h = get_uniques_header(col)
204
- # if use_columns:
205
- # # * limit output to 100 items
206
- # print(f"{_h} {_u[:100]}")
207
- # else:
208
- # print(f"{_h}")
209
-
210
- # print(f"{'*'*3}")
211
- # # * only show numerics
212
- # for col in df.select_dtypes('number').columns:
213
- # _u, _h = get_uniques_header(col)
214
-
215
- # print(
216
- # f"{_h} {Fore.magenta}min:{Style.reset} {round(df[col].min(),3):_} | {Fore.magenta}max:{Style.reset} {round(df[col].max(),3):_} | {Fore.magenta}median:{Style.reset} {round(df[col].median(),3):_} | {Fore.magenta}mean:{Style.reset} {round(df[col].mean(),3):_} | {Fore.magenta}std:{Style.reset} {round(df[col].std(),3):_} | {Fore.magenta}cv:{Style.reset} {df[col].std() / round(df[col].mean(),3):_} | {Fore.magenta}sum:{Style.reset} {round(df[col].sum(),3):_} | {Fore.magenta}skew:{Style.reset} {round(stats.skew(df[col]),3)} | {Fore.magenta}kurto:{Style.reset} {round(stats.kurtosis(df[col]),3)}"
217
- # )
218
-
219
- # # * show missings
220
- # print(f"{Fore.cyan}missings: {Style.reset}{dict(df.isna().sum())}")
221
-
222
- # # * show first 3 rows
223
- # display(df[:3])
224
-
225
- # # ! *** PLOTS ***
226
- # if not use_plot:
227
- # return
228
-
229
- # # * set template
230
- # pio.templates.default = template
231
-
232
- # # * respect fig_offset to exclude unwanted plots from maintanance columns
233
- # cols = df.iloc[:, :fig_offset].columns
234
- # cols_num = df.select_dtypes(np.number).columns.tolist()
235
- # # cols_str = list(set(df.columns) - set(cols_num))
236
-
237
- # # * set constant column count, calc rows
238
- # fig_rows = math.ceil(len(cols) / fig_cols)
239
-
240
- # fig = make_subplots(
241
- # rows=fig_rows,
242
- # cols=fig_cols,
243
- # shared_xaxes=False,
244
- # shared_yaxes=False,
245
- # subplot_titles=cols,
246
- # )
247
- # # * layout settings
248
- # fig.layout.height = fig_rowheight * fig_rows
249
- # fig.layout.width = 400 * fig_cols
250
-
251
- # # * construct subplots
252
- # for i, col in enumerate(cols):
253
- # # * get unique values as sorted list
254
- # if sort_mode == "value":
255
- # span = df[col].value_counts().sort_values(ascending=False)
256
- # else:
257
- # span = df[col].value_counts().sort_index()
258
-
259
- # # * check if num col w/ too many values (disabled)
260
- # if col in cols_num and len(span) > 100 and False:
261
- # figsub = px.box(df, x=col, points="outliers")
262
- # else:
263
- # # * only respect 100 items
264
- # figsub = px.bar(
265
- # x=span.iloc[:100].index,
266
- # y=span.iloc[:100].values,
267
- # )
268
- # # * grid position
269
- # _row = math.floor((i) / fig_cols) + 1
270
- # _col = i % fig_cols + 1
271
-
272
- # # * add trace to fig, only data not layout, only 1 series
273
- # fig.add_trace(figsub["data"][0], row=_row, col=_col)
274
-
275
- # fig.show(renderer)
276
-