pandas-market-calendars 4.5.1__py3-none-any.whl → 4.6.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.2
2
2
  Name: pandas_market_calendars
3
- Version: 4.5.1
3
+ Version: 4.6.1
4
4
  Summary: Market and exchange trading calendars for pandas
5
5
  Author-email: Ryan Sheftel <rsheftel@alumni.upenn.edu>
6
6
  License: MIT
@@ -19,7 +19,7 @@ Classifier: Programming Language :: Python :: 3.10
19
19
  Classifier: Programming Language :: Python :: 3.11
20
20
  Classifier: Programming Language :: Python :: 3.12
21
21
  Classifier: Programming Language :: Python :: 3.13
22
- Requires-Python: >=3.8
22
+ Requires-Python: >=3.9
23
23
  Description-Content-Type: text/x-rst
24
24
  License-File: LICENSE
25
25
  License-File: NOTICE
@@ -31,6 +31,7 @@ Provides-Extra: dev
31
31
  Requires-Dist: pytest; extra == "dev"
32
32
  Requires-Dist: black; extra == "dev"
33
33
  Requires-Dist: pre-commit; extra == "dev"
34
+ Requires-Dist: build; extra == "dev"
34
35
 
35
36
  pandas_market_calendars
36
37
  =======================
@@ -197,4 +198,6 @@ Sponsor
197
198
  :target: https://www.tradinghours.com/data
198
199
  :alt: TradingHours.com
199
200
 
200
- `TradingHours.com <https://www.tradinghours.com>`_ provides the most accurate and comprehensive coverage of market holidays and trading hours data available. They cover over 900 markets around the world. Their data is continually monitored for changes and updated daily. `Learn more <https://www.tradinghours.com/data>`_
201
+ `TradingHours.com <https://www.tradinghours.com?utm_source=github&utm_medium=sponsor&utm_campaign=panda>`_ provides the most accurate and comprehensive coverage of market holidays and trading hours data available. They cover over 1,100 markets worldwide, with extensive historical data and full coverage of all global trading venues, including the CME, ICE, Eurex, and more.
202
+
203
+ Their data is continuously monitored for changes and updated daily. If there's a market you need that they don't currently cover, they'll add it. For when accurate, reliable data matters most, choose TradingHours.com. `Learn more <https://www.tradinghours.com/data?utm_source=github&utm_medium=sponsor&utm_campaign=panda>`_
@@ -1,8 +1,8 @@
1
- pandas_market_calendars/__init__.py,sha256=prBpkD2f2mShZjZePVa0L3_Cf-Tv48r6q-J_mFNFFuY,1323
1
+ pandas_market_calendars/__init__.py,sha256=9nFwO1i8mOeM9V75vRmbHCz4pcjSjfXHl8CBvrM-_2s,1357
2
2
  pandas_market_calendars/calendar_registry.py,sha256=9ecKkERkztiwVaOXVsWfUcEvaT5_SwwpD5VaUAJhR1Y,2495
3
- pandas_market_calendars/calendar_utils.py,sha256=6yBqT_FBBicSVurudGgCGpKakomnXfYORxnWLYVH2l8,11629
3
+ pandas_market_calendars/calendar_utils.py,sha256=f63aNk3Y1RdZhgMhESaCZkCxsOFxJHyq8Hn8C9IrD1w,52360
4
4
  pandas_market_calendars/class_registry.py,sha256=lpRSp1E_1vcY73a--daCIOsJpoxpJVuhlurRGDVUqlc,3868
5
- pandas_market_calendars/market_calendar.py,sha256=Dh_ojZG9XLUoW6J3DcJ_e0dKzxJnnf4IMQxbekWnJK0,35734
5
+ pandas_market_calendars/market_calendar.py,sha256=8h1EamEX0byTNSOZLotg_DboJkwxESghd5J1yMdKLlU,41134
6
6
  pandas_market_calendars/calendars/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
7
  pandas_market_calendars/calendars/asx.py,sha256=tocL_VXzbPNx89mmtXmSw7FKHy2Hzlj5HxcYjfJSn6w,1789
8
8
  pandas_market_calendars/calendars/bmf.py,sha256=eyCFpG-ziuI862V5E41PFQw5cD3cOvmgnlAqcYuk9r4,5939
@@ -20,31 +20,31 @@ pandas_market_calendars/calendars/eurex.py,sha256=h9K0kvLggc50MKjGb61gfepuiyKovD
20
20
  pandas_market_calendars/calendars/eurex_fixed_income.py,sha256=irtSJvCRsn_N2AjjYe5jMvuxblgOx1BTQW2C34RGFlg,2132
21
21
  pandas_market_calendars/calendars/hkex.py,sha256=dQj4roWPLxcxcMaYC9WBaFaHcqsXPdozTufF4ByZN-A,13996
22
22
  pandas_market_calendars/calendars/ice.py,sha256=CnlbD3g7L6goukKZtSm-deuCdlB4ZcILTkYbol43TPQ,2159
23
- pandas_market_calendars/calendars/iex.py,sha256=e85oEuqbyxLUkm7ZtvRw2A1RLNZj3F-v17MOFuLbCZY,3027
24
- pandas_market_calendars/calendars/jpx.py,sha256=ZovoMt-d-J4MXdvM8Hijer7Jr3TYB9lSB9rWvx9HMjc,3932
23
+ pandas_market_calendars/calendars/iex.py,sha256=xBqnv_H4GZ0qceSv-yVmKRZRT3F-_UJhIFJBwM1FNO0,4383
24
+ pandas_market_calendars/calendars/jpx.py,sha256=uiAtxgXGZAzxM3lxGvVOoIwKvd4gsZTYupTIKoLzn0k,3819
25
25
  pandas_market_calendars/calendars/lse.py,sha256=qltdB1TdQ3F8jqx4oykzy_cZvqHlHwnsrpRXzBsovVc,3114
26
26
  pandas_market_calendars/calendars/mirror.py,sha256=Oq9jRXYpKmPv6PfoKDVVLyIG7hqcuFFC7fPLcCIhl7k,4555
27
- pandas_market_calendars/calendars/nyse.py,sha256=E1up3Gg-tnl_ugFNjll50NwSU3-iP8q9fyMCyUcS9OM,61695
27
+ pandas_market_calendars/calendars/nyse.py,sha256=7-Yfdi-2aSQbIJn8TozkXfK8XsQtVreA-ko0Dr2Wips,66181
28
28
  pandas_market_calendars/calendars/ose.py,sha256=AfF11QxKYwozaaEc2PvuP3IPvVj5D70mIl0zyp5OogE,2938
29
29
  pandas_market_calendars/calendars/sifma.py,sha256=RgOX1yhT8-b6w029ILkOhU-delPCeX6uNWoWDm1Z0eE,9960
30
30
  pandas_market_calendars/calendars/six.py,sha256=RYShBBuHg6O5QrMnTmdboInh0Wy5bBNRC9dR-QH9PO8,2610
31
- pandas_market_calendars/calendars/sse.py,sha256=4l9fqzvStQgWQ8MmHrH01l1IywkdJ_6p2liWtvlbqrE,11218
32
- pandas_market_calendars/calendars/tase.py,sha256=JQdnuU7qfG_XVBBNfki3Kf3zNZ8Svo3VKOEE037EdVI,7836
31
+ pandas_market_calendars/calendars/sse.py,sha256=o8YUElUPWcqcoMshHMF0mpIaa4GGF2GissrAP47_tbk,10907
32
+ pandas_market_calendars/calendars/tase.py,sha256=G0kb-JKgkzwqDLpvUiCgeAXPANETnp3h1U4Vm-9Kj9k,8671
33
33
  pandas_market_calendars/calendars/tsx.py,sha256=3zQwdU9LkiJjZRF1fgLGHYYcJMC-443QITVS9hn4kOc,4014
34
34
  pandas_market_calendars/holidays/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
35
35
  pandas_market_calendars/holidays/cme.py,sha256=TrxR8xA6cgy0YcUfImaKI2QjRmqlwv6pW5KjMKsE1Rg,9089
36
36
  pandas_market_calendars/holidays/cme_globex.py,sha256=0SPVGABO7K66eRitDsDgxRU52aPX8SRGgtUVyB_-LYk,5090
37
- pandas_market_calendars/holidays/cn.py,sha256=n-BjfoGQkouQnB21nVQZvkP-6OO1rCAlLKJFUNKb_UA,48943
37
+ pandas_market_calendars/holidays/cn.py,sha256=-45lLLaGDJZnHMKhOf-RXuHAo7TDBDWdeQ0hRkeMovg,47467
38
38
  pandas_market_calendars/holidays/jp.py,sha256=rqobVw837Uxb-4D1Zq_PyBLoeyhImYW7DBwyJupJIp8,9216
39
39
  pandas_market_calendars/holidays/jpx_equinox.py,sha256=KWbJqWsnkdyzG3fD2gJTXRLQOF3YTWSn9O6sYRL9Dnk,8070
40
- pandas_market_calendars/holidays/nyse.py,sha256=6F9e2zSPS2RVrJK5fhC4GnCXW6t8fpfPemFsgsVqxLM,41367
40
+ pandas_market_calendars/holidays/nyse.py,sha256=jwcz3Xp7NNL0rnwrQG8vuuBuXg7YTSBcg733nmFw-uM,39831
41
41
  pandas_market_calendars/holidays/oz.py,sha256=P77pWe7ZQj4o-731w6fW_Vzmo41PRxh94QpclI3ZyFM,1042
42
42
  pandas_market_calendars/holidays/sifma.py,sha256=gELES9-NeV3QNGE4JpsVfmcs1-jtYQrLxjnG4B-4RmM,8754
43
43
  pandas_market_calendars/holidays/uk.py,sha256=dt5TNONlDMXPw8wjyyPBYNnLO5Yz6Mht8VrPUrNqy-M,4719
44
44
  pandas_market_calendars/holidays/us.py,sha256=OBBMMKTRzghD-b9CmPRe5zBh7zQYjWl4-9SogT6ZnBo,11515
45
- pandas_market_calendars-4.5.1.dist-info/LICENSE,sha256=qW51_A-I7YutlB-s8VSKeOP-aL83T-Lb8LqqU1x1ilw,1065
46
- pandas_market_calendars-4.5.1.dist-info/METADATA,sha256=HUDIRaxLfbHQ2f5Gz92LiBcyl3II_dN2wAsffOnnFSU,9058
47
- pandas_market_calendars-4.5.1.dist-info/NOTICE,sha256=mmH7c9aF5FsELh1OHXloXw1TajLD_mWDKO4dsVf43_E,11693
48
- pandas_market_calendars-4.5.1.dist-info/WHEEL,sha256=PZUExdf71Ui_so67QXpySuHtCi3-J3wvF4ORK6k_S8U,91
49
- pandas_market_calendars-4.5.1.dist-info/top_level.txt,sha256=_4cUEFr07SuEAzZMT-5p0lJGXxO9imVbEK9_5oqcopQ,24
50
- pandas_market_calendars-4.5.1.dist-info/RECORD,,
45
+ pandas_market_calendars-4.6.1.dist-info/LICENSE,sha256=qW51_A-I7YutlB-s8VSKeOP-aL83T-Lb8LqqU1x1ilw,1065
46
+ pandas_market_calendars-4.6.1.dist-info/METADATA,sha256=4xcQyj-mUDdl65hv9fmfGcs-dCBvoutznUFV2X-5jDc,9477
47
+ pandas_market_calendars-4.6.1.dist-info/NOTICE,sha256=mmH7c9aF5FsELh1OHXloXw1TajLD_mWDKO4dsVf43_E,11693
48
+ pandas_market_calendars-4.6.1.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
49
+ pandas_market_calendars-4.6.1.dist-info/top_level.txt,sha256=_4cUEFr07SuEAzZMT-5p0lJGXxO9imVbEK9_5oqcopQ,24
50
+ pandas_market_calendars-4.6.1.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (75.6.0)
2
+ Generator: setuptools (75.8.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5