pandas-market-calendars 4.3.3__py3-none-any.whl → 4.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. pandas_market_calendars/__init__.py +39 -38
  2. pandas_market_calendars/calendar_registry.py +57 -53
  3. pandas_market_calendars/calendar_utils.py +1200 -261
  4. pandas_market_calendars/calendars/asx.py +66 -66
  5. pandas_market_calendars/calendars/bmf.py +223 -206
  6. pandas_market_calendars/calendars/bse.py +421 -407
  7. pandas_market_calendars/calendars/cboe.py +145 -145
  8. pandas_market_calendars/calendars/cme.py +405 -402
  9. pandas_market_calendars/calendars/cme_globex_agriculture.py +172 -126
  10. pandas_market_calendars/calendars/cme_globex_base.py +119 -119
  11. pandas_market_calendars/calendars/cme_globex_crypto.py +160 -160
  12. pandas_market_calendars/calendars/cme_globex_energy_and_metals.py +216 -216
  13. pandas_market_calendars/calendars/cme_globex_equities.py +123 -123
  14. pandas_market_calendars/calendars/cme_globex_fixed_income.py +136 -136
  15. pandas_market_calendars/calendars/cme_globex_fx.py +101 -101
  16. pandas_market_calendars/calendars/eurex.py +131 -139
  17. pandas_market_calendars/calendars/eurex_fixed_income.py +98 -98
  18. pandas_market_calendars/calendars/hkex.py +429 -426
  19. pandas_market_calendars/calendars/ice.py +81 -81
  20. pandas_market_calendars/calendars/iex.py +151 -112
  21. pandas_market_calendars/calendars/jpx.py +113 -109
  22. pandas_market_calendars/calendars/lse.py +114 -114
  23. pandas_market_calendars/calendars/mirror.py +149 -130
  24. pandas_market_calendars/calendars/nyse.py +1466 -1324
  25. pandas_market_calendars/calendars/ose.py +116 -116
  26. pandas_market_calendars/calendars/sifma.py +354 -350
  27. pandas_market_calendars/calendars/six.py +132 -132
  28. pandas_market_calendars/calendars/sse.py +311 -311
  29. pandas_market_calendars/calendars/tase.py +220 -197
  30. pandas_market_calendars/calendars/tsx.py +181 -181
  31. pandas_market_calendars/holidays/cme.py +385 -385
  32. pandas_market_calendars/holidays/cme_globex.py +214 -214
  33. pandas_market_calendars/holidays/cn.py +1476 -1455
  34. pandas_market_calendars/holidays/jp.py +401 -398
  35. pandas_market_calendars/holidays/jpx_equinox.py +1 -0
  36. pandas_market_calendars/holidays/nyse.py +1536 -1531
  37. pandas_market_calendars/holidays/oz.py +63 -63
  38. pandas_market_calendars/holidays/sifma.py +350 -338
  39. pandas_market_calendars/holidays/us.py +376 -376
  40. pandas_market_calendars/market_calendar.py +1057 -895
  41. {pandas_market_calendars-4.3.3.dist-info → pandas_market_calendars-4.6.0.dist-info}/METADATA +13 -9
  42. pandas_market_calendars-4.6.0.dist-info/RECORD +50 -0
  43. {pandas_market_calendars-4.3.3.dist-info → pandas_market_calendars-4.6.0.dist-info}/WHEEL +1 -1
  44. pandas_market_calendars-4.3.3.dist-info/RECORD +0 -50
  45. {pandas_market_calendars-4.3.3.dist-info → pandas_market_calendars-4.6.0.dist-info}/LICENSE +0 -0
  46. {pandas_market_calendars-4.3.3.dist-info → pandas_market_calendars-4.6.0.dist-info}/NOTICE +0 -0
  47. {pandas_market_calendars-4.3.3.dist-info → pandas_market_calendars-4.6.0.dist-info}/top_level.txt +0 -0
@@ -1,895 +1,1057 @@
1
- # Fork of zipline from Quantopian. Licensed under MIT, original licence below
2
- #
3
- # Copyright 2016 Quantopian, Inc.
4
- #
5
- # Licensed under the Apache License, Version 2.0 (the "License");
6
- # you may not use this file except in compliance with the License.
7
- # You may obtain a copy of the License at
8
- #
9
- # http://www.apache.org/licenses/LICENSE-2.0
10
- #
11
- # Unless required by applicable law or agreed to in writing, software
12
- # distributed under the License is distributed on an "AS IS" BASIS,
13
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
- # See the License for the specific language governing permissions and
15
- # limitations under the License.
16
- import warnings
17
- from abc import ABCMeta, abstractmethod
18
- from datetime import time
19
-
20
- import pandas as pd
21
- from pandas.tseries.offsets import CustomBusinessDay
22
-
23
- from .class_registry import RegisteryMeta, ProtectedDict
24
-
25
- MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = range(7)
26
-
27
-
28
- class DEFAULT:
29
- pass
30
-
31
-
32
- class MarketCalendarMeta(ABCMeta, RegisteryMeta):
33
- pass
34
-
35
-
36
- class MarketCalendar(metaclass=MarketCalendarMeta):
37
- """
38
- An MarketCalendar represents the timing information of a single market or exchange.
39
- Unless otherwise noted all times are in UTC and use Pandas data structures.
40
- """
41
-
42
- regular_market_times = {
43
- "market_open": ((None, time(0)),),
44
- "market_close": ((None, time(23)),),
45
- }
46
-
47
- open_close_map = {
48
- "market_open": True,
49
- "market_close": False,
50
- "break_start": False,
51
- "break_end": True,
52
- "pre": True,
53
- "post": False,
54
- }
55
-
56
- @staticmethod
57
- def _tdelta(t, day_offset=0):
58
- try:
59
- return pd.Timedelta(
60
- days=day_offset, hours=t.hour, minutes=t.minute, seconds=t.second
61
- )
62
- except AttributeError:
63
- t, day_offset = t
64
- return pd.Timedelta(
65
- days=day_offset, hours=t.hour, minutes=t.minute, seconds=t.second
66
- )
67
-
68
- @staticmethod
69
- def _off(tple):
70
- try:
71
- return tple[2]
72
- except IndexError:
73
- return 0
74
-
75
- @classmethod
76
- def calendar_names(cls):
77
- """All Market Calendar names and aliases that can be used in "factory"
78
- :return: list(str)
79
- """
80
- return [
81
- cal
82
- for cal in cls._regmeta_class_registry.keys()
83
- if cal not in ["MarketCalendar", "TradingCalendar"]
84
- ]
85
-
86
- @classmethod
87
- def factory(
88
- cls, name, *args, **kwargs
89
- ): # Will be set by Meta, keeping it there for tests
90
- """
91
- :param name: The name of the MarketCalendar to be retrieved.
92
- :param *args/**kwargs: passed to requested MarketCalendar.__init__
93
- :return: MarketCalendar of the desired calendar.
94
- """
95
- return
96
-
97
- def __init__(self, open_time=None, close_time=None):
98
- """
99
- :param open_time: Market open time override as datetime.time object. If None then default is used.
100
- :param close_time: Market close time override as datetime.time object. If None then default is used.
101
- """
102
-
103
- self.regular_market_times = self.regular_market_times.copy()
104
- self.open_close_map = self.open_close_map.copy()
105
- self._customized_market_times = []
106
-
107
- if open_time is not None:
108
- self.change_time("market_open", open_time)
109
-
110
- if close_time is not None:
111
- self.change_time("market_close", close_time)
112
-
113
- if not hasattr(self, "_market_times"):
114
- self._prepare_regular_market_times()
115
-
116
- @property
117
- @abstractmethod
118
- def name(self):
119
- """
120
- Name of the market
121
-
122
- :return: string name
123
- """
124
- raise NotImplementedError()
125
-
126
- @property
127
- @abstractmethod
128
- def tz(self):
129
- """
130
- Time zone for the market.
131
-
132
- :return: timezone
133
- """
134
- raise NotImplementedError()
135
-
136
- @property
137
- def market_times(self):
138
- return self._market_times
139
-
140
- def _prepare_regular_market_times(self):
141
- oc_map = self.open_close_map
142
- assert all(
143
- isinstance(x, bool) for x in oc_map.values()
144
- ), "Values in open_close_map need to be True or False"
145
-
146
- regular = self.regular_market_times
147
- discontinued = ProtectedDict()
148
- regular_tds = {}
149
-
150
- for market_time, times in regular.items():
151
- # in case a market_time has been discontinued, extend the last time
152
- # and add it to the discontinued_market_times dictionary
153
- if market_time.startswith("interruption_"):
154
- raise ValueError("'interruption_' prefix is reserved")
155
-
156
- if times[-1][1] is None:
157
- discontinued._set(market_time, times[-1][0])
158
- times = times[:-1]
159
- regular._set(market_time, times)
160
-
161
- regular_tds[market_time] = tuple(
162
- (t[0], self._tdelta(t[1], self._off(t))) for t in times
163
- )
164
-
165
- if discontinued:
166
- warnings.warn(
167
- f"{list(discontinued.keys())} are discontinued, the dictionary"
168
- f" `.discontinued_market_times` has the dates on which these were discontinued."
169
- f" The times as of those dates are incorrect, use .remove_time(market_time)"
170
- f" to ignore a market_time."
171
- )
172
-
173
- self.discontinued_market_times = discontinued
174
- self.regular_market_times = regular
175
-
176
- self._regular_market_timedeltas = regular_tds
177
- self._market_times = sorted(regular.keys(), key=lambda x: regular_tds[x][-1][1])
178
- self._oc_market_times = list(filter(oc_map.__contains__, self._market_times))
179
-
180
- def _set_time(self, market_time, times, opens):
181
- if isinstance(times, (tuple, list)): # passed a tuple
182
- if not isinstance(times[0], (tuple, list)): # doesn't have a tuple inside
183
- if times[0] is None: # seems to be a tuple indicating starting time
184
- times = (times,)
185
- else: # must be a tuple with: (time, offset)
186
- times = ((None, times[0], times[1]),)
187
- else: # should be a datetime.time object
188
- times = ((None, times),)
189
-
190
- ln = len(times)
191
- for i, t in enumerate(times):
192
- try:
193
- assert (
194
- t[0] is None
195
- or isinstance(t[0], str)
196
- or isinstance(t[0], pd.Timestamp)
197
- )
198
- assert isinstance(t[1], time) or (
199
- ln > 1 and i == ln - 1 and t[1] is None
200
- )
201
- assert isinstance(self._off(t), int)
202
- except AssertionError:
203
- raise AssertionError(
204
- "The passed time information is not in the right format, "
205
- "please consult the docs for how to set market times"
206
- )
207
-
208
- if opens is DEFAULT:
209
- opens = self.__class__.open_close_map.get(market_time, None)
210
-
211
- if opens in (True, False):
212
- self.open_close_map._set(market_time, opens)
213
-
214
- elif opens is None: # make sure it's ignored
215
- try:
216
- self.open_close_map._del(market_time)
217
- except KeyError:
218
- pass
219
- else:
220
- raise ValueError(
221
- "when you pass `opens`, it needs to be True, False, or None"
222
- )
223
-
224
- self.regular_market_times._set(market_time, times)
225
-
226
- if not self.is_custom(market_time):
227
- self._customized_market_times.append(market_time)
228
-
229
- self._prepare_regular_market_times()
230
-
231
- def change_time(self, market_time, times, opens=DEFAULT):
232
- """
233
- Changes the specified market time in regular_market_times and makes the necessary adjustments.
234
-
235
- :param market_time: the market_time to change
236
- :param times: new time information
237
- :param opens: whether the market_time is a time that closes or opens the market
238
- this is only needed if the market_time should be respected by .open_at_time
239
- True: opens
240
- False: closes
241
- None: consider it neither opening nor closing, don't add to open_close_map (ignore in .open_at_time)
242
- DEFAULT: same as None, unless the market_time is in self.__class__.open_close_map. Then it will take
243
- the default value as defined by the class.
244
- :return: None
245
- """
246
- assert market_time in self.regular_market_times, (
247
- f"{market_time} is not in regular_market_times:" f"\n{self._market_times}."
248
- )
249
- return self._set_time(market_time, times, opens)
250
-
251
- def add_time(self, market_time, times, opens=DEFAULT):
252
- """
253
- Adds the specified market time to regular_market_times and makes the necessary adjustments.
254
-
255
- :param market_time: the market_time to add
256
- :param times: the time information
257
- :param opens: see .change_time docstring
258
- :return: None
259
- """
260
- assert market_time not in self.regular_market_times, (
261
- f"{market_time} is already in regular_market_times:"
262
- f"\n{self._market_times}"
263
- )
264
-
265
- return self._set_time(market_time, times, opens)
266
-
267
- def remove_time(self, market_time):
268
- """
269
- Removes the specified market time from regular_market_times and makes the necessary adjustments.
270
-
271
- :param market_time: the market_time to remove
272
- :return: None
273
- """
274
-
275
- self.regular_market_times._del(market_time)
276
- try:
277
- self.open_close_map._del(market_time)
278
- except KeyError:
279
- pass
280
-
281
- self._prepare_regular_market_times()
282
- if self.is_custom(market_time):
283
- self._customized_market_times.remove(market_time)
284
-
285
- def is_custom(self, market_time):
286
- return market_time in self._customized_market_times
287
-
288
- @property
289
- def has_custom(self):
290
- return len(self._customized_market_times) > 0
291
-
292
- def is_discontinued(self, market_time):
293
- return market_time in self.discontinued_market_times
294
-
295
- @property
296
- def has_discontinued(self):
297
- return len(self.discontinued_market_times) > 0
298
-
299
- def get_time(self, market_time, all_times=False):
300
- try:
301
- times = self.regular_market_times[market_time]
302
- except KeyError as e:
303
- if "break_start" in market_time or "break_end" in market_time:
304
- return None # in case of no breaks
305
- elif market_time in ["market_open", "market_close"]:
306
- raise NotImplementedError("You need to set market_times")
307
- else:
308
- raise e
309
-
310
- if all_times:
311
- return times
312
- return times[-1][1].replace(tzinfo=self.tz)
313
-
314
- def get_time_on(self, market_time, date):
315
- times = self.get_time(market_time, all_times=True)
316
- if times is None:
317
- return None
318
-
319
- date = pd.Timestamp(date)
320
- for d, t in times[::-1]:
321
- if d is None or pd.Timestamp(d) < date:
322
- return t.replace(tzinfo=self.tz)
323
-
324
- def open_time_on(self, date):
325
- return self.get_time_on("market_open", date)
326
-
327
- def close_time_on(self, date):
328
- return self.get_time_on("market_close", date)
329
-
330
- def break_start_on(self, date):
331
- return self.get_time_on("break_start", date)
332
-
333
- def break_end_on(self, date):
334
- return self.get_time_on("break_end", date)
335
-
336
- @property
337
- def open_time(self):
338
- """
339
- Default open time for the market
340
-
341
- :return: time
342
- """
343
- return self.get_time("market_open")
344
-
345
- @property
346
- def close_time(self):
347
- """
348
- Default close time for the market
349
-
350
- :return: time
351
- """
352
- return self.get_time("market_close")
353
-
354
- @property
355
- def break_start(self):
356
- """
357
- Break time start. If None then there is no break
358
-
359
- :return: time or None
360
- """
361
- return self.get_time("break_start")
362
-
363
- @property
364
- def break_end(self):
365
- """
366
- Break time end. If None then there is no break
367
-
368
- :return: time or None
369
- """
370
- return self.get_time("break_end")
371
-
372
- @property
373
- def regular_holidays(self):
374
- """
375
-
376
- :return: pd.AbstractHolidayCalendar: a calendar containing the regular holidays for this calendar
377
- """
378
- return None
379
-
380
- @property
381
- def adhoc_holidays(self):
382
- """
383
-
384
- :return: list of ad-hoc holidays
385
- """
386
- return []
387
-
388
- @property
389
- def weekmask(self):
390
- return "Mon Tue Wed Thu Fri"
391
-
392
- @property
393
- def special_opens(self):
394
- """
395
- A list of special open times and corresponding AbstractHolidayCalendar.
396
-
397
- :return: List of (time, AbstractHolidayCalendar) tuples
398
- """
399
- return []
400
-
401
- @property
402
- def special_opens_adhoc(self):
403
- """
404
-
405
- :return: List of (time, DatetimeIndex) tuples that represent special opens that cannot be codified into rules.
406
- """
407
- return []
408
-
409
- @property
410
- def special_closes(self):
411
- """
412
- A list of special close times and corresponding HolidayCalendars.
413
-
414
- :return: List of (time, AbstractHolidayCalendar) tuples
415
- """
416
- return []
417
-
418
- @property
419
- def special_closes_adhoc(self):
420
- """
421
-
422
- :return: List of (time, DatetimeIndex) tuples that represent special closes that cannot be codified into rules.
423
- """
424
- return []
425
-
426
- def get_special_times(self, market_time):
427
- return getattr(self, "special_" + market_time, [])
428
-
429
- def get_special_times_adhoc(self, market_time):
430
- return getattr(self, "special_" + market_time + "_adhoc", [])
431
-
432
- def get_offset(self, market_time):
433
- return self._off(self.get_time(market_time, all_times=True)[-1])
434
-
435
- @property
436
- def open_offset(self):
437
- """
438
- :return: open offset
439
- """
440
- return self.get_offset("market_open")
441
-
442
- @property
443
- def close_offset(self):
444
- """
445
- :return: close offset
446
- """
447
- return self.get_offset("market_close")
448
-
449
- @property
450
- def interruptions(self):
451
- """
452
- This needs to be a list with a tuple for each date that had an interruption.
453
- The tuple should have this layout:
454
-
455
- (date, start_time, end_time[, start_time2, end_time2, ...])
456
-
457
- E.g.:
458
- [
459
- ("2002-02-03", (time(11), -1), time(11, 2)),
460
- ("2010-01-11", time(11), (time(11, 1), 1)),
461
- ("2010-01-13", time(9, 59), time(10), time(10, 29), time(10, 30)),
462
- ("2011-01-10", time(11), time(11, 1))
463
- ]
464
-
465
- The date needs to be a string in this format: 'yyyy-mm-dd'.
466
- Times need to be two datetime.time objects for each interruption, indicating start and end.
467
- Optionally these can be wrapped in a tuple, where the
468
- second element needs to be an integer indicating an offset.
469
- On "2010-01-13" in the example, it is shown that there can be multiple interruptions in a day.
470
- """
471
- return []
472
-
473
- def _convert(self, col: pd.Series):
474
- """
475
- col is a series indexed by dates at which interruptions occurred. The values are either the start or end times
476
- of an interruption, represented by either a timedelta or a tuple with a timedelta and day offset of the form
477
- (timedelta, offset). _convert produces a new series where the values are replaced by datetimes equal to the
478
- index of the original series plus the offset if present, at the timedelta.
479
-
480
- E.g.:
481
- >>> self._convert(
482
- pd.Series(
483
- [datetime.time(11, 2), (datetime.time(11, 1), 1), datetime.time(10, 0), None],
484
- index=pd.DatetimeIndex(['2002-02-03', '2010-01-11', '2010-01-13', '2011-01-10'])
485
- )
486
- )
487
- 2002-02-03 2002-02-03 11:02:00+00:00
488
- 2010-01-11 2010-01-12 11:01:00+00:00
489
- 2010-01-13 2010-01-13 10:00:00+00:00
490
- 2011-01-10 NaT
491
- dtype: datetime64[ns, UTC]
492
- """
493
- col = (
494
- col.dropna()
495
- ) # Python 3.8, pandas 2.0.3 cannot create time deltas from NaT
496
- try:
497
- times = col.str[0]
498
- except AttributeError: # no tuples, only offset 0
499
- return (
500
- (
501
- pd.to_timedelta(col.astype("string").fillna(""), errors="coerce")
502
- + col.index
503
- )
504
- .dt.tz_localize(self.tz)
505
- .dt.tz_convert("UTC")
506
- )
507
-
508
- return (
509
- (
510
- pd.to_timedelta(
511
- times.fillna(col).astype("string").fillna(""), errors="coerce"
512
- )
513
- + pd.to_timedelta(col.str[1].fillna(0), unit="D")
514
- + col.index
515
- )
516
- .dt.tz_localize(self.tz)
517
- .dt.tz_convert("UTC")
518
- )
519
-
520
- @staticmethod
521
- def _col_name(n: int):
522
- return (
523
- f"interruption_start_{n // 2 + 1}"
524
- if n % 2 == 1
525
- else f"interruption_end_{n // 2}"
526
- )
527
-
528
- @property
529
- def interruptions_df(self):
530
- """
531
- Will return a pd.DataFrame only containing interruptions.
532
- """
533
- if not self.interruptions:
534
- return pd.DataFrame(index=pd.DatetimeIndex([]))
535
- intr = pd.DataFrame(self.interruptions)
536
- intr.index = pd.to_datetime(intr.pop(0))
537
-
538
- intr.columns = map(self._col_name, intr.columns)
539
- intr.index.name = None
540
-
541
- return intr.apply(self._convert).sort_index()
542
-
543
- def holidays(self):
544
- """
545
- Returns the complete CustomBusinessDay object of holidays that can be used in any Pandas function that take
546
- that input.
547
-
548
- :return: CustomBusinessDay object of holidays
549
- """
550
- try:
551
- return self._holidays
552
- except AttributeError:
553
- self._holidays = CustomBusinessDay(
554
- holidays=self.adhoc_holidays,
555
- calendar=self.regular_holidays,
556
- weekmask=self.weekmask,
557
- )
558
- return self._holidays
559
-
560
- def valid_days(self, start_date, end_date, tz="UTC"):
561
- """
562
- Get a DatetimeIndex of valid open business days.
563
-
564
- :param start_date: start date
565
- :param end_date: end date
566
- :param tz: time zone in either string or pytz.timezone
567
- :return: DatetimeIndex of valid business days
568
- """
569
- return pd.date_range(
570
- start_date, end_date, freq=self.holidays(), normalize=True, tz=tz
571
- )
572
-
573
- def _get_market_times(self, start, end):
574
- mts = self._market_times
575
- return mts[mts.index(start) : mts.index(end) + 1]
576
-
577
- def days_at_time(self, days, market_time, day_offset=0):
578
- """
579
- Create an index of days at time ``t``, interpreted in timezone ``tz``. The returned index is localized to UTC.
580
-
581
- In the example below, the times switch from 13:45 to 12:45 UTC because
582
- March 13th is the daylight savings transition for US/Eastern. All the
583
- times are still 8:45 when interpreted in US/Eastern.
584
-
585
- >>> import pandas as pd; import datetime; import pprint
586
- >>> dts = pd.date_range('2016-03-12', '2016-03-14')
587
- >>> dts_at_845 = days_at_time(dts, datetime.time(8, 45), 'US/Eastern')
588
- >>> pprint.pprint([str(dt) for dt in dts_at_845])
589
- ['2016-03-12 13:45:00+00:00',
590
- '2016-03-13 12:45:00+00:00',
591
- '2016-03-14 12:45:00+00:00']
592
-
593
- :param days: DatetimeIndex An index of dates (represented as midnight).
594
- :param market_time: datetime.time The time to apply as an offset to each day in ``days``.
595
- :param day_offset: int The number of days we want to offset @days by
596
- :return: pd.Series of date with the time requested.
597
- """
598
- # Offset days without tz to avoid timezone issues.
599
- days = pd.DatetimeIndex(days).tz_localize(None).to_series()
600
-
601
- if isinstance(
602
- market_time, str
603
- ): # if string, assume its a reference to saved market times
604
- timedeltas = self._regular_market_timedeltas[market_time]
605
- datetimes = days + timedeltas[0][1]
606
- for cut_off, timedelta in timedeltas[1:]:
607
- datetimes = datetimes.where(
608
- days < pd.Timestamp(cut_off), days + timedelta
609
- )
610
-
611
- else: # otherwise, assume it is a datetime.time object
612
- datetimes = days + self._tdelta(market_time, day_offset)
613
-
614
- return datetimes.dt.tz_localize(self.tz).dt.tz_convert("UTC")
615
-
616
- def _tryholidays(self, cal, s, e):
617
- try:
618
- return cal.holidays(s, e)
619
- except ValueError:
620
- return pd.DatetimeIndex([])
621
-
622
- def _special_dates(self, calendars, ad_hoc_dates, start, end):
623
- """
624
- Union an iterable of pairs of the form (time, calendar)
625
- and an iterable of pairs of the form (time, [dates])
626
-
627
- (This is shared logic for computing special opens and special closes.)
628
- """
629
- indexes = [
630
- self.days_at_time(self._tryholidays(calendar, start, end), time_)
631
- for time_, calendar in calendars
632
- ] + [self.days_at_time(dates, time_) for time_, dates in ad_hoc_dates]
633
- if indexes:
634
- dates = pd.concat(indexes).sort_index().drop_duplicates()
635
- return dates.loc[start : end.replace(hour=23, minute=59, second=59)]
636
-
637
- return pd.Series([], dtype="datetime64[ns, UTC]", index=pd.DatetimeIndex([]))
638
-
639
- def special_dates(self, market_time, start_date, end_date, filter_holidays=True):
640
- """
641
- Calculate a datetimeindex that only contains the specail times of the requested market time.
642
-
643
- :param market_time: market_time reference
644
- :param start_date: first possible date of the index
645
- :param end_date: last possible date of the index
646
- :param filter_holidays: will filter days by self.valid_days, which can be useful when debugging
647
-
648
- :return: schedule DatetimeIndex
649
- """
650
- start_date, end_date = self.clean_dates(start_date, end_date)
651
- calendars = self.get_special_times(market_time)
652
- ad_hoc = self.get_special_times_adhoc(market_time)
653
- special = self._special_dates(calendars, ad_hoc, start_date, end_date)
654
-
655
- if filter_holidays:
656
- valid = self.valid_days(start_date, end_date, tz=None)
657
- special = special[
658
- special.index.isin(valid)
659
- ] # some sources of special times don't exclude holidays
660
- return special
661
-
662
- def schedule(
663
- self,
664
- start_date,
665
- end_date,
666
- tz="UTC",
667
- start="market_open",
668
- end="market_close",
669
- force_special_times=True,
670
- market_times=None,
671
- interruptions=False,
672
- ):
673
- """
674
- Generates the schedule DataFrame. The resulting DataFrame will have all the valid business days as the index
675
- and columns for the requested market times. The columns can be determined either by setting a range (inclusive
676
- on both sides), using `start` and `end`, or by passing a list to `market_times'. A range of market_times is
677
- derived from a list of market_times that are available to the instance, which are sorted based on the current
678
- regular time. See examples/usage.ipynb for demonstrations.
679
-
680
- All time zones are set to UTC by default. Setting the tz parameter will convert the columns to the desired
681
- timezone, such as 'America/New_York'.
682
-
683
- :param start_date: first date of the schedule
684
- :param end_date: last date of the schedule
685
- :param tz: timezone that the columns of the returned schedule are in, default: "UTC"
686
- :param start: the first market_time to include as a column, default: "market_open"
687
- :param end: the last market_time to include as a column, default: "market_close"
688
- :param force_special_times: how to handle special times.
689
- True: overwrite regular times of the column itself, conform other columns to special times of
690
- market_open/market_close if those are requested.
691
- False: only overwrite regular times of the column itself, leave others alone
692
- None: completely ignore special times
693
- :param market_times: alternative to start/end, list of market_times that are in self.regular_market_times
694
- :param interruptions: bool, whether to add interruptions to the schedule, default: False
695
- These will be added as columns to the right of the DataFrame. Any interruption on a day between
696
- start_date and end_date will be included, regardless of the market_times requested.
697
- Also, `force_special_times` does not take these into consideration.
698
- :return: schedule DataFrame
699
- """
700
- start_date, end_date = self.clean_dates(start_date, end_date)
701
- if not (start_date <= end_date):
702
- raise ValueError("start_date must be before or equal to end_date.")
703
-
704
- # Setup all valid trading days and the requested market_times
705
- _all_days = self.valid_days(start_date, end_date)
706
- if market_times is None:
707
- market_times = self._get_market_times(start, end)
708
- elif market_times == "all":
709
- market_times = self._market_times
710
-
711
- # If no valid days return an empty DataFrame
712
- if not _all_days.size:
713
- return pd.DataFrame(
714
- columns=market_times, index=pd.DatetimeIndex([], freq="C")
715
- )
716
-
717
- _adj_others = force_special_times is True
718
- _adj_col = force_special_times is not None
719
- _open_adj = _close_adj = []
720
-
721
- schedule = pd.DataFrame()
722
- for market_time in market_times:
723
- temp = self.days_at_time(_all_days, market_time).copy() # standard times
724
- if _adj_col:
725
- # create an array of special times
726
- special = self.special_dates(
727
- market_time, start_date, end_date, filter_holidays=False
728
- )
729
- # overwrite standard times
730
- specialix = special.index[
731
- special.index.isin(temp.index)
732
- ] # some sources of special times don't exclude holidays
733
- temp.loc[specialix] = special
734
-
735
- if _adj_others:
736
- if market_time == "market_open":
737
- _open_adj = specialix
738
- elif market_time == "market_close":
739
- _close_adj = specialix
740
-
741
- schedule[market_time] = temp
742
-
743
- if _adj_others:
744
- adjusted = schedule.loc[_open_adj].apply(
745
- lambda x: x.where(x.ge(x["market_open"]), x["market_open"]), axis=1
746
- )
747
- schedule.loc[_open_adj] = adjusted
748
-
749
- adjusted = schedule.loc[_close_adj].apply(
750
- lambda x: x.where(x.le(x["market_close"]), x["market_close"]), axis=1
751
- )
752
- schedule.loc[_close_adj] = adjusted
753
-
754
- if interruptions:
755
- interrs = self.interruptions_df
756
- schedule[interrs.columns] = interrs
757
- schedule = schedule.dropna(how="all", axis=1)
758
-
759
- if tz != "UTC":
760
- schedule = schedule.apply(lambda s: s.dt.tz_convert(tz))
761
-
762
- return schedule
763
-
764
- def open_at_time(self, schedule, timestamp, include_close=False, only_rth=False):
765
- """
766
- Determine if a given timestamp is during an open time for the market. If the timestamp is
767
- before the first open time or after the last close time of `schedule`, a ValueError will be raised.
768
-
769
- :param schedule: schedule DataFrame
770
- :param timestamp: the timestamp to check for. Assumed to be UTC, if it doesn't include tz information.
771
- :param include_close: if False then the timestamp that equals the closing timestamp will return False and not be
772
- considered a valid open date and time. If True then it will be considered valid and return True. Use True
773
- if using bars and would like to include the last bar as a valid open date and time. The close refers to the
774
- latest market_time available, which could be after market_close (e.g. 'post').
775
- :param only_rth: whether to ignore columns that are before market_open or after market_close. If true,
776
- include_close will be referring to market_close.
777
- :return: True if the timestamp is a valid open date and time, False if not
778
- """
779
- timestamp = pd.Timestamp(timestamp)
780
- try:
781
- timestamp = timestamp.tz_localize("UTC")
782
- except TypeError:
783
- pass
784
-
785
- cols = schedule.columns
786
- interrs = cols.str.startswith("interruption_")
787
- if not (cols.isin(self._oc_market_times) | interrs).all():
788
- raise ValueError(
789
- "You seem to be using a schedule that isn't based on the market_times, "
790
- "or includes market_times that are not represented in the open_close_map."
791
- )
792
-
793
- if only_rth:
794
- lowest, highest = "market_open", "market_close"
795
- else:
796
- cols = cols[~interrs]
797
- ix = cols.map(self._oc_market_times.index)
798
- lowest, highest = cols[ix == ix.min()][0], cols[ix == ix.max()][0]
799
-
800
- if timestamp < schedule[lowest].iat[0] or timestamp > schedule[highest].iat[-1]:
801
- raise ValueError("The provided timestamp is not covered by the schedule")
802
-
803
- day = schedule[schedule[lowest].le(timestamp)].iloc[-1].dropna().sort_values()
804
- day = day.loc[lowest:highest]
805
- day = day.index.to_series(index=day)
806
-
807
- if interrs.any():
808
- starts = day.str.startswith("interruption_start_")
809
- ends = day.str.startswith("interruption_end_")
810
- day.loc[starts] = False
811
- day.loc[ends] = True
812
-
813
- # When post follows market_close, market_close should not be considered a close
814
- day.loc[day.eq("market_close") & day.shift(-1).eq("post")] = "market_open"
815
- day = day.replace(self.open_close_map)
816
-
817
- if include_close:
818
- below = day.index < timestamp
819
- else:
820
- below = day.index <= timestamp
821
- return bool(day[below].iat[-1]) # returns numpy.bool_ if not bool(...)
822
-
823
- # need this to make is_open_now testable
824
- @staticmethod
825
- def _get_current_time():
826
- return pd.Timestamp.now(tz="UTC")
827
-
828
- def is_open_now(self, schedule, include_close=False, only_rth=False):
829
- """
830
- To determine if the current local system time (converted to UTC) is an open time for the market
831
-
832
- :param schedule: schedule DataFrame
833
- :param include_close: if False then the function will return False if the current local system time is equal to
834
- the closing timestamp. If True then it will return True if the current local system time is equal to the
835
- closing timestamp. Use True if using bars and would like to include the last bar as a valid open date
836
- and time.
837
- :param only_rth: whether to consider columns that are before market_open or after market_close
838
-
839
- :return: True if the current local system time is a valid open date and time, False if not
840
- """
841
- current_time = MarketCalendar._get_current_time()
842
- return self.open_at_time(
843
- schedule, current_time, include_close=include_close, only_rth=only_rth
844
- )
845
-
846
- def clean_dates(self, start_date, end_date):
847
- """
848
- Strips the inputs of time and time zone information
849
-
850
- :param start_date: start date
851
- :param end_date: end date
852
- :return: (start_date, end_date) with just date, no time and no time zone
853
- """
854
- start_date = pd.Timestamp(start_date).tz_localize(None).normalize()
855
- end_date = pd.Timestamp(end_date).tz_localize(None).normalize()
856
- return start_date, end_date
857
-
858
- def is_different(self, col, diff=None):
859
- if diff is None:
860
- diff = pd.Series.ne
861
- normal = self.days_at_time(col.index, col.name)
862
- return diff(col.dt.tz_convert("UTC"), normal)
863
-
864
- def early_closes(self, schedule):
865
- """
866
- Get a DataFrame of the dates that are an early close.
867
-
868
- :param schedule: schedule DataFrame
869
- :return: schedule DataFrame with rows that are early closes
870
- """
871
- return schedule[self.is_different(schedule["market_close"], pd.Series.lt)]
872
-
873
- def late_opens(self, schedule):
874
- """
875
- Get a DataFrame of the dates that are an late opens.
876
-
877
- :param schedule: schedule DataFrame
878
- :return: schedule DataFrame with rows that are late opens
879
- """
880
- return schedule[self.is_different(schedule["market_open"], pd.Series.gt)]
881
-
882
- def __getitem__(self, item):
883
- if isinstance(item, (tuple, list)):
884
- if item[1] == "all":
885
- return self.get_time(item[0], all_times=True)
886
- else:
887
- return self.get_time_on(item[0], item[1])
888
- else:
889
- return self.get_time(item)
890
-
891
- def __setitem__(self, key, value):
892
- return self.add_time(key, value)
893
-
894
- def __delitem__(self, key):
895
- return self.remove_time(key)
1
+ # Fork of zipline from Quantopian. Licensed under MIT, original licence below
2
+ #
3
+ # Copyright 2016 Quantopian, Inc.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ import warnings
17
+ from abc import ABCMeta, abstractmethod
18
+ from datetime import time
19
+ from typing import Literal, Union
20
+
21
+ import pandas as pd
22
+ from pandas.tseries.offsets import CustomBusinessDay
23
+
24
+ from .class_registry import RegisteryMeta, ProtectedDict
25
+
26
+ from . import calendar_utils as u
27
+
28
+ MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = range(7)
29
+
30
+ WEEKMASK_ABBR = {
31
+ MONDAY: "Mon",
32
+ TUESDAY: "Tue",
33
+ WEDNESDAY: "Wed",
34
+ THURSDAY: "Thu",
35
+ FRIDAY: "Fri",
36
+ SATURDAY: "Sat",
37
+ SUNDAY: "Sun",
38
+ }
39
+
40
+
41
+ class DEFAULT:
42
+ pass
43
+
44
+
45
+ class MarketCalendarMeta(ABCMeta, RegisteryMeta):
46
+ pass
47
+
48
+
49
+ class MarketCalendar(metaclass=MarketCalendarMeta):
50
+ """
51
+ An MarketCalendar represents the timing information of a single market or exchange.
52
+ Unless otherwise noted all times are in UTC and use Pandas data structures.
53
+ """
54
+
55
+ regular_market_times = {
56
+ "market_open": ((None, time(0)),),
57
+ "market_close": ((None, time(23)),),
58
+ }
59
+
60
+ open_close_map = {
61
+ "market_open": True,
62
+ "market_close": False,
63
+ "break_start": False,
64
+ "break_end": True,
65
+ "pre": True,
66
+ "post": False,
67
+ }
68
+
69
+ @staticmethod
70
+ def _tdelta(t, day_offset=0):
71
+ try:
72
+ return pd.Timedelta(
73
+ days=day_offset, hours=t.hour, minutes=t.minute, seconds=t.second
74
+ )
75
+ except AttributeError:
76
+ t, day_offset = t
77
+ return pd.Timedelta(
78
+ days=day_offset, hours=t.hour, minutes=t.minute, seconds=t.second
79
+ )
80
+
81
+ @staticmethod
82
+ def _off(tple):
83
+ try:
84
+ return tple[2]
85
+ except IndexError:
86
+ return 0
87
+
88
+ @classmethod
89
+ def calendar_names(cls):
90
+ """All Market Calendar names and aliases that can be used in "factory"
91
+ :return: list(str)
92
+ """
93
+ return [
94
+ cal
95
+ for cal in cls._regmeta_class_registry.keys()
96
+ if cal not in ["MarketCalendar", "TradingCalendar"]
97
+ ]
98
+
99
+ @classmethod
100
+ def factory(
101
+ cls, name, *args, **kwargs
102
+ ): # Will be set by Meta, keeping it there for tests
103
+ """
104
+ :param name: The name of the MarketCalendar to be retrieved.
105
+ :param *args/**kwargs: passed to requested MarketCalendar.__init__
106
+ :return: MarketCalendar of the desired calendar.
107
+ """
108
+ return
109
+
110
+ def __init__(self, open_time=None, close_time=None):
111
+ """
112
+ :param open_time: Market open time override as datetime.time object. If None then default is used.
113
+ :param close_time: Market close time override as datetime.time object. If None then default is used.
114
+ """
115
+
116
+ self.regular_market_times = self.regular_market_times.copy()
117
+ self.open_close_map = self.open_close_map.copy()
118
+ self._customized_market_times = []
119
+
120
+ if open_time is not None:
121
+ self.change_time("market_open", open_time)
122
+
123
+ if close_time is not None:
124
+ self.change_time("market_close", close_time)
125
+
126
+ if not hasattr(self, "_market_times"):
127
+ self._prepare_regular_market_times()
128
+
129
+ @property
130
+ @abstractmethod
131
+ def name(self):
132
+ """
133
+ Name of the market
134
+
135
+ :return: string name
136
+ """
137
+ raise NotImplementedError()
138
+
139
+ @property
140
+ @abstractmethod
141
+ def tz(self):
142
+ """
143
+ Time zone for the market.
144
+
145
+ :return: timezone
146
+ """
147
+ raise NotImplementedError()
148
+
149
+ @property
150
+ def market_times(self):
151
+ return self._market_times
152
+
153
+ def _prepare_regular_market_times(self):
154
+ oc_map = self.open_close_map
155
+ assert all(
156
+ isinstance(x, bool) for x in oc_map.values()
157
+ ), "Values in open_close_map need to be True or False"
158
+
159
+ regular = self.regular_market_times
160
+ discontinued = ProtectedDict()
161
+ regular_tds = {}
162
+
163
+ for market_time, times in regular.items():
164
+ # in case a market_time has been discontinued, extend the last time
165
+ # and add it to the discontinued_market_times dictionary
166
+ if market_time.startswith("interruption_"):
167
+ raise ValueError("'interruption_' prefix is reserved")
168
+
169
+ if times[-1][1] is None:
170
+ discontinued._set(market_time, times[-1][0])
171
+ times = times[:-1]
172
+ regular._set(market_time, times)
173
+
174
+ regular_tds[market_time] = tuple(
175
+ (t[0], self._tdelta(t[1], self._off(t))) for t in times
176
+ )
177
+
178
+ if discontinued:
179
+ warnings.warn(
180
+ f"{list(discontinued.keys())} are discontinued, the dictionary"
181
+ f" `.discontinued_market_times` has the dates on which these were discontinued."
182
+ f" The times as of those dates are incorrect, use .remove_time(market_time)"
183
+ f" to ignore a market_time."
184
+ )
185
+
186
+ self.discontinued_market_times = discontinued
187
+ self.regular_market_times = regular
188
+
189
+ self._regular_market_timedeltas = regular_tds
190
+ self._market_times = sorted(regular.keys(), key=lambda x: regular_tds[x][-1][1])
191
+ self._oc_market_times = list(filter(oc_map.__contains__, self._market_times))
192
+
193
+ def _set_time(self, market_time, times, opens):
194
+ if isinstance(times, (tuple, list)): # passed a tuple
195
+ if not isinstance(times[0], (tuple, list)): # doesn't have a tuple inside
196
+ if times[0] is None: # seems to be a tuple indicating starting time
197
+ times = (times,)
198
+ else: # must be a tuple with: (time, offset)
199
+ times = ((None, times[0], times[1]),)
200
+ else: # should be a datetime.time object
201
+ times = ((None, times),)
202
+
203
+ ln = len(times)
204
+ for i, t in enumerate(times):
205
+ try:
206
+ assert (
207
+ t[0] is None
208
+ or isinstance(t[0], str)
209
+ or isinstance(t[0], pd.Timestamp)
210
+ )
211
+ assert isinstance(t[1], time) or (
212
+ ln > 1 and i == ln - 1 and t[1] is None
213
+ )
214
+ assert isinstance(self._off(t), int)
215
+ except AssertionError:
216
+ raise AssertionError(
217
+ "The passed time information is not in the right format, "
218
+ "please consult the docs for how to set market times"
219
+ )
220
+
221
+ if opens is DEFAULT:
222
+ opens = self.__class__.open_close_map.get(market_time, None)
223
+
224
+ if opens in (True, False):
225
+ self.open_close_map._set(market_time, opens)
226
+
227
+ elif opens is None: # make sure it's ignored
228
+ try:
229
+ self.open_close_map._del(market_time)
230
+ except KeyError:
231
+ pass
232
+ else:
233
+ raise ValueError(
234
+ "when you pass `opens`, it needs to be True, False, or None"
235
+ )
236
+
237
+ self.regular_market_times._set(market_time, times)
238
+
239
+ if not self.is_custom(market_time):
240
+ self._customized_market_times.append(market_time)
241
+
242
+ self._prepare_regular_market_times()
243
+
244
+ def change_time(self, market_time, times, opens=DEFAULT):
245
+ """
246
+ Changes the specified market time in regular_market_times and makes the necessary adjustments.
247
+
248
+ :param market_time: the market_time to change
249
+ :param times: new time information
250
+ :param opens: whether the market_time is a time that closes or opens the market
251
+ this is only needed if the market_time should be respected by .open_at_time
252
+ True: opens
253
+ False: closes
254
+ None: consider it neither opening nor closing, don't add to open_close_map (ignore in .open_at_time)
255
+ DEFAULT: same as None, unless the market_time is in self.__class__.open_close_map. Then it will take
256
+ the default value as defined by the class.
257
+ :return: None
258
+ """
259
+ assert market_time in self.regular_market_times, (
260
+ f"{market_time} is not in regular_market_times:" f"\n{self._market_times}."
261
+ )
262
+ return self._set_time(market_time, times, opens)
263
+
264
+ def add_time(self, market_time, times, opens=DEFAULT):
265
+ """
266
+ Adds the specified market time to regular_market_times and makes the necessary adjustments.
267
+
268
+ :param market_time: the market_time to add
269
+ :param times: the time information
270
+ :param opens: see .change_time docstring
271
+ :return: None
272
+ """
273
+ assert market_time not in self.regular_market_times, (
274
+ f"{market_time} is already in regular_market_times:"
275
+ f"\n{self._market_times}"
276
+ )
277
+
278
+ return self._set_time(market_time, times, opens)
279
+
280
+ def remove_time(self, market_time):
281
+ """
282
+ Removes the specified market time from regular_market_times and makes the necessary adjustments.
283
+
284
+ :param market_time: the market_time to remove
285
+ :return: None
286
+ """
287
+
288
+ self.regular_market_times._del(market_time)
289
+ try:
290
+ self.open_close_map._del(market_time)
291
+ except KeyError:
292
+ pass
293
+
294
+ self._prepare_regular_market_times()
295
+ if self.is_custom(market_time):
296
+ self._customized_market_times.remove(market_time)
297
+
298
+ def is_custom(self, market_time):
299
+ return market_time in self._customized_market_times
300
+
301
+ @property
302
+ def has_custom(self):
303
+ return len(self._customized_market_times) > 0
304
+
305
+ def is_discontinued(self, market_time):
306
+ return market_time in self.discontinued_market_times
307
+
308
+ @property
309
+ def has_discontinued(self):
310
+ return len(self.discontinued_market_times) > 0
311
+
312
+ def get_time(self, market_time, all_times=False):
313
+ try:
314
+ times = self.regular_market_times[market_time]
315
+ except KeyError as e:
316
+ if "break_start" in market_time or "break_end" in market_time:
317
+ return None # in case of no breaks
318
+ elif market_time in ["market_open", "market_close"]:
319
+ raise NotImplementedError("You need to set market_times")
320
+ else:
321
+ raise e
322
+
323
+ if all_times:
324
+ return times
325
+ return times[-1][1].replace(tzinfo=self.tz)
326
+
327
+ def get_time_on(self, market_time, date):
328
+ times = self.get_time(market_time, all_times=True)
329
+ if times is None:
330
+ return None
331
+
332
+ date = pd.Timestamp(date)
333
+ for d, t in times[::-1]:
334
+ if d is None or pd.Timestamp(d) < date:
335
+ return t.replace(tzinfo=self.tz)
336
+
337
+ def open_time_on(self, date):
338
+ return self.get_time_on("market_open", date)
339
+
340
+ def close_time_on(self, date):
341
+ return self.get_time_on("market_close", date)
342
+
343
+ def break_start_on(self, date):
344
+ return self.get_time_on("break_start", date)
345
+
346
+ def break_end_on(self, date):
347
+ return self.get_time_on("break_end", date)
348
+
349
+ @property
350
+ def open_time(self):
351
+ """
352
+ Default open time for the market
353
+
354
+ :return: time
355
+ """
356
+ return self.get_time("market_open")
357
+
358
+ @property
359
+ def close_time(self):
360
+ """
361
+ Default close time for the market
362
+
363
+ :return: time
364
+ """
365
+ return self.get_time("market_close")
366
+
367
+ @property
368
+ def break_start(self):
369
+ """
370
+ Break time start. If None then there is no break
371
+
372
+ :return: time or None
373
+ """
374
+ return self.get_time("break_start")
375
+
376
+ @property
377
+ def break_end(self):
378
+ """
379
+ Break time end. If None then there is no break
380
+
381
+ :return: time or None
382
+ """
383
+ return self.get_time("break_end")
384
+
385
+ @property
386
+ def regular_holidays(self):
387
+ """
388
+
389
+ :return: pd.AbstractHolidayCalendar: a calendar containing the regular holidays for this calendar
390
+ """
391
+ return None
392
+
393
+ @property
394
+ def adhoc_holidays(self):
395
+ """
396
+
397
+ :return: list of ad-hoc holidays
398
+ """
399
+ return []
400
+
401
+ @property
402
+ def weekmask(self):
403
+ return "Mon Tue Wed Thu Fri"
404
+
405
+ @property
406
+ def special_opens(self):
407
+ """
408
+ A list of special open times and corresponding AbstractHolidayCalendar.
409
+
410
+ :return: List of (time, AbstractHolidayCalendar) tuples
411
+ """
412
+ return []
413
+
414
+ @property
415
+ def special_opens_adhoc(self):
416
+ """
417
+
418
+ :return: List of (time, DatetimeIndex) tuples that represent special opens that cannot be codified into rules.
419
+ """
420
+ return []
421
+
422
+ @property
423
+ def special_closes(self):
424
+ """
425
+ A list of special close times and corresponding HolidayCalendars.
426
+
427
+ :return: List of (time, AbstractHolidayCalendar) tuples
428
+ """
429
+ return []
430
+
431
+ @property
432
+ def special_closes_adhoc(self):
433
+ """
434
+
435
+ :return: List of (time, DatetimeIndex) tuples that represent special closes that cannot be codified into rules.
436
+ """
437
+ return []
438
+
439
+ def get_special_times(self, market_time):
440
+ return getattr(self, "special_" + market_time, [])
441
+
442
+ def get_special_times_adhoc(self, market_time):
443
+ return getattr(self, "special_" + market_time + "_adhoc", [])
444
+
445
+ def get_offset(self, market_time):
446
+ return self._off(self.get_time(market_time, all_times=True)[-1])
447
+
448
+ @property
449
+ def open_offset(self):
450
+ """
451
+ :return: open offset
452
+ """
453
+ return self.get_offset("market_open")
454
+
455
+ @property
456
+ def close_offset(self):
457
+ """
458
+ :return: close offset
459
+ """
460
+ return self.get_offset("market_close")
461
+
462
+ @property
463
+ def interruptions(self):
464
+ """
465
+ This needs to be a list with a tuple for each date that had an interruption.
466
+ The tuple should have this layout:
467
+
468
+ (date, start_time, end_time[, start_time2, end_time2, ...])
469
+
470
+ E.g.:
471
+ [
472
+ ("2002-02-03", (time(11), -1), time(11, 2)),
473
+ ("2010-01-11", time(11), (time(11, 1), 1)),
474
+ ("2010-01-13", time(9, 59), time(10), time(10, 29), time(10, 30)),
475
+ ("2011-01-10", time(11), time(11, 1))
476
+ ]
477
+
478
+ The date needs to be a string in this format: 'yyyy-mm-dd'.
479
+ Times need to be two datetime.time objects for each interruption, indicating start and end.
480
+ Optionally these can be wrapped in a tuple, where the
481
+ second element needs to be an integer indicating an offset.
482
+ On "2010-01-13" in the example, it is shown that there can be multiple interruptions in a day.
483
+ """
484
+ return []
485
+
486
+ def _convert(self, col: pd.Series):
487
+ """
488
+ col is a series indexed by dates at which interruptions occurred. The values are either the start or end times
489
+ of an interruption, represented by either a timedelta or a tuple with a timedelta and day offset of the form
490
+ (timedelta, offset). _convert produces a new series where the values are replaced by datetimes equal to the
491
+ index of the original series plus the offset if present, at the timedelta.
492
+
493
+ E.g.:
494
+ >>> self._convert(
495
+ pd.Series(
496
+ [datetime.time(11, 2), (datetime.time(11, 1), 1), datetime.time(10, 0), None],
497
+ index=pd.DatetimeIndex(['2002-02-03', '2010-01-11', '2010-01-13', '2011-01-10'])
498
+ )
499
+ )
500
+ 2002-02-03 2002-02-03 11:02:00+00:00
501
+ 2010-01-11 2010-01-12 11:01:00+00:00
502
+ 2010-01-13 2010-01-13 10:00:00+00:00
503
+ 2011-01-10 NaT
504
+ dtype: datetime64[ns, UTC]
505
+ """
506
+ col = (
507
+ col.dropna()
508
+ ) # Python 3.8, pandas 2.0.3 cannot create time deltas from NaT
509
+ try:
510
+ times = col.str[0]
511
+ except AttributeError: # no tuples, only offset 0
512
+ return (
513
+ (
514
+ pd.to_timedelta(col.astype("string").fillna(""), errors="coerce")
515
+ + col.index
516
+ )
517
+ .dt.tz_localize(self.tz)
518
+ .dt.tz_convert("UTC")
519
+ )
520
+
521
+ return (
522
+ (
523
+ pd.to_timedelta(
524
+ times.fillna(col).astype("string").fillna(""), errors="coerce"
525
+ )
526
+ + pd.to_timedelta(col.str[1].fillna(0), unit="D")
527
+ + col.index
528
+ )
529
+ .dt.tz_localize(self.tz)
530
+ .dt.tz_convert("UTC")
531
+ )
532
+
533
+ @staticmethod
534
+ def _col_name(n: int):
535
+ return (
536
+ f"interruption_start_{n // 2 + 1}"
537
+ if n % 2 == 1
538
+ else f"interruption_end_{n // 2}"
539
+ )
540
+
541
+ @property
542
+ def interruptions_df(self):
543
+ """
544
+ Will return a pd.DataFrame only containing interruptions.
545
+ """
546
+ if not self.interruptions:
547
+ return pd.DataFrame(index=pd.DatetimeIndex([]))
548
+ intr = pd.DataFrame(self.interruptions)
549
+ intr.index = pd.to_datetime(intr.pop(0))
550
+
551
+ intr.columns = map(self._col_name, intr.columns)
552
+ intr.index.name = None
553
+
554
+ return intr.apply(self._convert).sort_index()
555
+
556
+ def holidays(self) -> pd.tseries.offsets.CustomBusinessDay:
557
+ """
558
+ Returns the complete CustomBusinessDay object of holidays that can be used in any Pandas function that take
559
+ that input.
560
+
561
+ :return: CustomBusinessDay object of holidays
562
+ """
563
+ try:
564
+ return self._holidays
565
+ except AttributeError:
566
+ self._holidays = CustomBusinessDay(
567
+ holidays=self.adhoc_holidays,
568
+ calendar=self.regular_holidays,
569
+ weekmask=self.weekmask,
570
+ )
571
+ return self._holidays
572
+
573
+ def valid_days(self, start_date, end_date, tz="UTC") -> pd.DatetimeIndex:
574
+ """
575
+ Get a DatetimeIndex of valid open business days.
576
+
577
+ :param start_date: start date
578
+ :param end_date: end date
579
+ :param tz: time zone in either string or pytz.timezone
580
+ :return: DatetimeIndex of valid business days
581
+ """
582
+ return pd.date_range(
583
+ start_date, end_date, freq=self.holidays(), normalize=True, tz=tz
584
+ )
585
+
586
+ def _get_market_times(self, start, end):
587
+ mts = self._market_times
588
+ return mts[mts.index(start) : mts.index(end) + 1]
589
+
590
+ def days_at_time(self, days, market_time, day_offset=0):
591
+ """
592
+ Create an index of days at time ``t``, interpreted in timezone ``tz``. The returned index is localized to UTC.
593
+
594
+ In the example below, the times switch from 13:45 to 12:45 UTC because
595
+ March 13th is the daylight savings transition for US/Eastern. All the
596
+ times are still 8:45 when interpreted in US/Eastern.
597
+
598
+ >>> import pandas as pd; import datetime; import pprint
599
+ >>> dts = pd.date_range('2016-03-12', '2016-03-14')
600
+ >>> dts_at_845 = days_at_time(dts, datetime.time(8, 45), 'US/Eastern')
601
+ >>> pprint.pprint([str(dt) for dt in dts_at_845])
602
+ ['2016-03-12 13:45:00+00:00',
603
+ '2016-03-13 12:45:00+00:00',
604
+ '2016-03-14 12:45:00+00:00']
605
+
606
+ :param days: DatetimeIndex An index of dates (represented as midnight).
607
+ :param market_time: datetime.time The time to apply as an offset to each day in ``days``.
608
+ :param day_offset: int The number of days we want to offset @days by
609
+ :return: pd.Series of date with the time requested.
610
+ """
611
+ # Offset days without tz to avoid timezone issues.
612
+ days = pd.DatetimeIndex(days).tz_localize(None).to_series()
613
+
614
+ if isinstance(
615
+ market_time, str
616
+ ): # if string, assume its a reference to saved market times
617
+ timedeltas = self._regular_market_timedeltas[market_time]
618
+ datetimes = days + timedeltas[0][1]
619
+ for cut_off, timedelta in timedeltas[1:]:
620
+ datetimes = datetimes.where(
621
+ days < pd.Timestamp(cut_off), days + timedelta
622
+ )
623
+
624
+ else: # otherwise, assume it is a datetime.time object
625
+ datetimes = days + self._tdelta(market_time, day_offset)
626
+
627
+ return datetimes.dt.tz_localize(self.tz).dt.tz_convert("UTC")
628
+
629
+ def _tryholidays(self, cal, s, e):
630
+ try:
631
+ # If the Calendar is all single Observance Holidays then it is far
632
+ # more efficient to extract and return those dates
633
+ observed_dates = u.all_single_observance_rules(cal)
634
+ if observed_dates is not None:
635
+ return pd.DatetimeIndex(
636
+ [date for date in observed_dates if s <= date <= e]
637
+ )
638
+ else:
639
+ return cal.holidays(s, e)
640
+ except ValueError:
641
+ return pd.DatetimeIndex([])
642
+
643
+ def _special_dates(self, calendars, ad_hoc_dates, start, end):
644
+ """
645
+ Union an iterable of pairs of the forms (time, calendar),
646
+ (time, [dates]), and (time, int). If the second item in the pair
647
+ is an int it will be interpreted as a specific day of the week.
648
+
649
+ (This is shared logic for computing special opens and special closes.)
650
+ """
651
+ indexes = []
652
+ for time_, calendar in calendars:
653
+ if isinstance(calendar, int):
654
+ day_of_week = CustomBusinessDay(weekmask=WEEKMASK_ABBR[calendar])
655
+ indexes.append(
656
+ self.days_at_time(
657
+ pd.date_range(start, end, freq=day_of_week), time_
658
+ )
659
+ )
660
+ else:
661
+ indexes.append(
662
+ self.days_at_time(self._tryholidays(calendar, start, end), time_)
663
+ )
664
+
665
+ indexes += [self.days_at_time(dates, time_) for time_, dates in ad_hoc_dates]
666
+
667
+ if indexes:
668
+ dates = pd.concat(indexes).sort_index().drop_duplicates()
669
+ return dates.loc[start : end.replace(hour=23, minute=59, second=59)]
670
+
671
+ return pd.Series([], dtype="datetime64[ns, UTC]", index=pd.DatetimeIndex([]))
672
+
673
+ def special_dates(self, market_time, start_date, end_date, filter_holidays=True):
674
+ """
675
+ Calculate a datetimeindex that only contains the specail times of the requested market time.
676
+
677
+ :param market_time: market_time reference
678
+ :param start_date: first possible date of the index
679
+ :param end_date: last possible date of the index
680
+ :param filter_holidays: will filter days by self.valid_days, which can be useful when debugging
681
+
682
+ :return: schedule DatetimeIndex
683
+ """
684
+ start_date, end_date = self.clean_dates(start_date, end_date)
685
+ calendars = self.get_special_times(market_time)
686
+ ad_hoc = self.get_special_times_adhoc(market_time)
687
+ special = self._special_dates(calendars, ad_hoc, start_date, end_date)
688
+
689
+ if filter_holidays:
690
+ valid = self.valid_days(start_date, end_date, tz=None)
691
+ special = special[
692
+ special.index.isin(valid)
693
+ ] # some sources of special times don't exclude holidays
694
+ return special
695
+
696
+ def schedule(
697
+ self,
698
+ start_date,
699
+ end_date,
700
+ tz="UTC",
701
+ start="market_open",
702
+ end="market_close",
703
+ force_special_times=True,
704
+ market_times=None,
705
+ interruptions=False,
706
+ ) -> pd.DataFrame:
707
+ """
708
+ Generates the schedule DataFrame. The resulting DataFrame will have all the valid business days as the index
709
+ and columns for the requested market times. The columns can be determined either by setting a range (inclusive
710
+ on both sides), using `start` and `end`, or by passing a list to `market_times'. A range of market_times is
711
+ derived from a list of market_times that are available to the instance, which are sorted based on the current
712
+ regular time. See examples/usage.ipynb for demonstrations.
713
+
714
+ All time zones are set to UTC by default. Setting the tz parameter will convert the columns to the desired
715
+ timezone, such as 'America/New_York'.
716
+
717
+ :param start_date: first date of the schedule
718
+ :param end_date: last date of the schedule
719
+ :param tz: timezone that the columns of the returned schedule are in, default: "UTC"
720
+ :param start: the first market_time to include as a column, default: "market_open"
721
+ :param end: the last market_time to include as a column, default: "market_close"
722
+ :param force_special_times: how to handle special times.
723
+ True: overwrite regular times of the column itself, conform other columns to special times of
724
+ market_open/market_close if those are requested.
725
+ False: only overwrite regular times of the column itself, leave others alone
726
+ None: completely ignore special times
727
+ :param market_times: alternative to start/end, list of market_times that are in self.regular_market_times
728
+ :param interruptions: bool, whether to add interruptions to the schedule, default: False
729
+ These will be added as columns to the right of the DataFrame. Any interruption on a day between
730
+ start_date and end_date will be included, regardless of the market_times requested.
731
+ Also, `force_special_times` does not take these into consideration.
732
+ :return: schedule DataFrame
733
+ """
734
+ start_date, end_date = self.clean_dates(start_date, end_date)
735
+ if not (start_date <= end_date):
736
+ raise ValueError("start_date must be before or equal to end_date.")
737
+
738
+ _all_days = self.valid_days(start_date, end_date)
739
+
740
+ # Setup all valid trading days and the requested market_times
741
+ if market_times is None:
742
+ market_times = self._get_market_times(start, end)
743
+ elif market_times == "all":
744
+ market_times = self._market_times
745
+
746
+ if not _all_days.size: # If no valid days return an empty DataFrame
747
+ return pd.DataFrame(
748
+ columns=market_times, index=pd.DatetimeIndex([], freq="C")
749
+ )
750
+
751
+ return self.schedule_from_days(
752
+ _all_days, tz, start, end, force_special_times, market_times, interruptions
753
+ )
754
+
755
+ def schedule_from_days(
756
+ self,
757
+ days: pd.DatetimeIndex,
758
+ tz="UTC",
759
+ start="market_open",
760
+ end="market_close",
761
+ force_special_times=True,
762
+ market_times=None,
763
+ interruptions=False,
764
+ ) -> pd.DataFrame:
765
+ """
766
+ Generates a schedule DataFrame for the days provided. The days are assumed to be valid trading days.
767
+
768
+ The columns can be determined either by setting a range (inclusive on both sides), using `start` and `end`,
769
+ or by passing a list to `market_times'. A range of market_times is derived from a list of market_times that
770
+ are available to the instance, which are sorted based on the current regular time.
771
+ See examples/usage.ipynb for demonstrations.
772
+
773
+ All time zones are set to UTC by default. Setting the tz parameter will convert the columns to the desired
774
+ timezone, such as 'America/New_York'.
775
+
776
+ :param days: pd.DatetimeIndex of all the desired days in ascending order. This function does not double check
777
+ that these are valid trading days, it is assumed they are. It is intended that this parameter is generated
778
+ by either the .valid_days() or .date_range_htf() methods. Time & Timezone Information is ignored.
779
+ :param tz: timezone that the columns of the returned schedule are in, default: "UTC"
780
+ :param start: the first market_time to include as a column, default: "market_open"
781
+ :param end: the last market_time to include as a column, default: "market_close"
782
+ :param force_special_times: how to handle special times.
783
+ True: overwrite regular times of the column itself, conform other columns to special times of
784
+ market_open/market_close if those are requested.
785
+ False: only overwrite regular times of the column itself, leave others alone
786
+ None: completely ignore special times
787
+ :param market_times: alternative to start/end, list of market_times that are in self.regular_market_times
788
+ :param interruptions: bool, whether to add interruptions to the schedule, default: False
789
+ These will be added as columns to the right of the DataFrame. Any interruption on a day between
790
+ start_date and end_date will be included, regardless of the market_times requested.
791
+ Also, `force_special_times` does not take these into consideration.
792
+ :return: schedule DataFrame
793
+ """
794
+
795
+ if days.dtype != "datetime64[ns]":
796
+ days = pd.DatetimeIndex(days).normalize().tz_localize(None)
797
+
798
+ # Setup all valid trading days and the requested market_times
799
+ if market_times is None:
800
+ market_times = self._get_market_times(start, end)
801
+ elif market_times == "all":
802
+ market_times = self._market_times
803
+
804
+ _adj_others = force_special_times is True
805
+ _adj_col = force_special_times is not None
806
+ _open_adj = _close_adj = []
807
+
808
+ schedule = pd.DataFrame()
809
+ for market_time in market_times:
810
+ temp = self.days_at_time(days, market_time).copy() # standard times
811
+ if _adj_col:
812
+ # create an array of special times
813
+ special = self.special_dates(
814
+ market_time, days[0], days[-1], filter_holidays=False
815
+ )
816
+ # overwrite standard times
817
+ specialix = special.index[
818
+ special.index.isin(temp.index)
819
+ ] # some sources of special times don't exclude holidays
820
+ temp.loc[specialix] = special
821
+
822
+ if _adj_others:
823
+ if market_time == "market_open":
824
+ _open_adj = specialix
825
+ elif market_time == "market_close":
826
+ _close_adj = specialix
827
+
828
+ schedule[market_time] = temp
829
+
830
+ cols = schedule.columns
831
+ if _adj_others and len(_open_adj) > 0:
832
+ mkt_open_ind = cols.get_loc("market_open")
833
+
834
+ # Can't use Lambdas here since numpy array assignment doesn't return the array.
835
+ def adjust_opens(x): # x is an np.Array.
836
+ x[x <= x[mkt_open_ind]] = x[mkt_open_ind]
837
+ return x
838
+
839
+ adjusted = schedule.loc[_open_adj].apply(adjust_opens, axis=1, raw=True)
840
+ schedule.loc[_open_adj] = adjusted
841
+
842
+ if _adj_others and len(_close_adj) > 0:
843
+ mkt_close_ind = cols.get_loc("market_close")
844
+
845
+ def adjust_closes(x):
846
+ x[x >= x[mkt_close_ind]] = x[mkt_close_ind]
847
+ return x
848
+
849
+ adjusted = schedule.loc[_close_adj].apply(adjust_closes, axis=1, raw=True)
850
+ schedule.loc[_close_adj] = adjusted
851
+
852
+ if interruptions:
853
+ interrs = self.interruptions_df
854
+ schedule[interrs.columns] = interrs
855
+ schedule = schedule.dropna(how="all", axis=1)
856
+
857
+ if tz != "UTC":
858
+ schedule = schedule.apply(lambda s: s.dt.tz_convert(tz))
859
+
860
+ return schedule
861
+
862
+ def date_range_htf(
863
+ self,
864
+ frequency: Union[str, pd.Timedelta, int, float],
865
+ start: Union[str, pd.Timestamp, int, float, None] = None,
866
+ end: Union[str, pd.Timestamp, int, float, None] = None,
867
+ periods: Union[int, None] = None,
868
+ closed: Union[Literal["left", "right"], None] = "right",
869
+ *,
870
+ day_anchor: u.Day_Anchor = "SUN",
871
+ month_anchor: u.Month_Anchor = "JAN",
872
+ ) -> pd.DatetimeIndex:
873
+ """
874
+ Returns a Normalized DatetimeIndex from the start-date to End-Date for Time periods of 1D and Higher.
875
+
876
+ PARAMETERS:
877
+
878
+ :param frequency: String, Int/float (POSIX seconds) or pd.Timedelta of the desired frequency.
879
+ :Must be Greater than '1D' and an integer multiple of the base frequency (D, W, M, Q, or Y)
880
+ :Important Note: Ints/Floats & Timedeltas are always considered as 'Open Business Days',
881
+ '2D' == Every Other Buisness Day, '3D' == Every 3rd B.Day, '7D' == Every 7th B.Day
882
+ :Higher periods (passed as strings) align to the beginning or end of the relevant period
883
+ :i.e. '1W' == First/[Last] Trading Day of each Week, '1Q' == First/[Last] Day of every Quarter
884
+
885
+ :param start: String, Int/float (POSIX seconds) or pd.Timestamp of the desired start time.
886
+ :The Time & Timezone information is ignored. Only the Normalized Day is considered.
887
+
888
+ :param end: String, Int/float (POSIX seconds) or pd.Timestamp of the desired start time.
889
+ :The Time & Timezone information is ignored. Only the Normalized Day is considered.
890
+
891
+ :param periods: Optional Integer number of periods to return. If a Period count, Start time,
892
+ and End time are given the period count is ignored.
893
+
894
+ :param closed: Literal['left', 'right']. Method used to close each range.
895
+ :Left: First open trading day of the Session is returned (e.g. First Open Day of The Month)
896
+ :right: Last open trading day of the Session is returned (e.g. Last Open Day of The Month)
897
+ :Note, This has no effect when the desired frequency is a number of days.
898
+
899
+ :param day_anchor: Day to Anchor the start of the Weekly timeframes to. Default 'SUN'.
900
+ : To get the First/Last Days of the trading Week then the Anchor needs to be on a day the relevant
901
+ market is closed.
902
+ : This can be set so that a specific day each week is returned.
903
+ : freq='1W' & day_anchor='WED' Will return Every 'WED' when the market is open, and nearest day
904
+ to the left or right (based on 'closed') when the market is closed.
905
+ Options: ["SUN", "MON", "TUE", "WED", "THU", "FRI", "SAT"]
906
+
907
+ :param month_anchor: Month to Anchor the start of the year to for Quarter and yearly timeframes.
908
+ : Default 'JAN' for Calendar Quarters/Years. Can be set to 'JUL' to return Fiscal Years
909
+ Options: ["JAN", "FEB", "MAR", "APR", "MAY", "JUN", "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"]
910
+ """
911
+ return u.date_range_htf(
912
+ self.holidays(),
913
+ frequency,
914
+ start,
915
+ end,
916
+ periods,
917
+ closed,
918
+ day_anchor=day_anchor,
919
+ month_anchor=month_anchor,
920
+ )
921
+
922
+ def open_at_time(self, schedule, timestamp, include_close=False, only_rth=False):
923
+ """
924
+ Determine if a given timestamp is during an open time for the market. If the timestamp is
925
+ before the first open time or after the last close time of `schedule`, a ValueError will be raised.
926
+
927
+ :param schedule: schedule DataFrame
928
+ :param timestamp: the timestamp to check for. Assumed to be UTC, if it doesn't include tz information.
929
+ :param include_close: if False then the timestamp that equals the closing timestamp will return False and not be
930
+ considered a valid open date and time. If True then it will be considered valid and return True. Use True
931
+ if using bars and would like to include the last bar as a valid open date and time. The close refers to the
932
+ latest market_time available, which could be after market_close (e.g. 'post').
933
+ :param only_rth: whether to ignore columns that are before market_open or after market_close. If true,
934
+ include_close will be referring to market_close.
935
+ :return: True if the timestamp is a valid open date and time, False if not
936
+ """
937
+ timestamp = pd.Timestamp(timestamp)
938
+ try:
939
+ timestamp = timestamp.tz_localize("UTC")
940
+ except TypeError:
941
+ pass
942
+
943
+ cols = schedule.columns
944
+ interrs = cols.str.startswith("interruption_")
945
+ if not (cols.isin(self._oc_market_times) | interrs).all():
946
+ raise ValueError(
947
+ "You seem to be using a schedule that isn't based on the market_times, "
948
+ "or includes market_times that are not represented in the open_close_map."
949
+ )
950
+
951
+ if only_rth:
952
+ lowest, highest = "market_open", "market_close"
953
+ else:
954
+ cols = cols[~interrs]
955
+ ix = cols.map(self._oc_market_times.index)
956
+ lowest, highest = cols[ix == ix.min()][0], cols[ix == ix.max()][0]
957
+
958
+ if timestamp < schedule[lowest].iat[0] or timestamp > schedule[highest].iat[-1]:
959
+ raise ValueError("The provided timestamp is not covered by the schedule")
960
+
961
+ day = schedule[schedule[lowest].le(timestamp)].iloc[-1].dropna().sort_values()
962
+ day = day.loc[lowest:highest]
963
+ day = day.index.to_series(index=day)
964
+
965
+ if interrs.any():
966
+ starts = day.str.startswith("interruption_start_")
967
+ ends = day.str.startswith("interruption_end_")
968
+ day.loc[starts] = False
969
+ day.loc[ends] = True
970
+
971
+ # When post follows market_close, market_close should not be considered a close
972
+ day.loc[day.eq("market_close") & day.shift(-1).eq("post")] = "market_open"
973
+ day = day.map(
974
+ lambda x: (
975
+ self.open_close_map.get(x) if x in self.open_close_map.keys() else x
976
+ )
977
+ )
978
+
979
+ if include_close:
980
+ below = day.index < timestamp
981
+ else:
982
+ below = day.index <= timestamp
983
+ return bool(day[below].iat[-1]) # returns numpy.bool_ if not bool(...)
984
+
985
+ # need this to make is_open_now testable
986
+ @staticmethod
987
+ def _get_current_time():
988
+ return pd.Timestamp.now(tz="UTC")
989
+
990
+ def is_open_now(self, schedule, include_close=False, only_rth=False):
991
+ """
992
+ To determine if the current local system time (converted to UTC) is an open time for the market
993
+
994
+ :param schedule: schedule DataFrame
995
+ :param include_close: if False then the function will return False if the current local system time is equal to
996
+ the closing timestamp. If True then it will return True if the current local system time is equal to the
997
+ closing timestamp. Use True if using bars and would like to include the last bar as a valid open date
998
+ and time.
999
+ :param only_rth: whether to consider columns that are before market_open or after market_close
1000
+
1001
+ :return: True if the current local system time is a valid open date and time, False if not
1002
+ """
1003
+ current_time = MarketCalendar._get_current_time()
1004
+ return self.open_at_time(
1005
+ schedule, current_time, include_close=include_close, only_rth=only_rth
1006
+ )
1007
+
1008
+ def clean_dates(self, start_date, end_date):
1009
+ """
1010
+ Strips the inputs of time and time zone information
1011
+
1012
+ :param start_date: start date
1013
+ :param end_date: end date
1014
+ :return: (start_date, end_date) with just date, no time and no time zone
1015
+ """
1016
+ start_date = pd.Timestamp(start_date).tz_localize(None).normalize()
1017
+ end_date = pd.Timestamp(end_date).tz_localize(None).normalize()
1018
+ return start_date, end_date
1019
+
1020
+ def is_different(self, col, diff=None):
1021
+ if diff is None:
1022
+ diff = pd.Series.ne
1023
+ normal = self.days_at_time(col.index, col.name)
1024
+ return diff(col.dt.tz_convert("UTC"), normal)
1025
+
1026
+ def early_closes(self, schedule):
1027
+ """
1028
+ Get a DataFrame of the dates that are an early close.
1029
+
1030
+ :param schedule: schedule DataFrame
1031
+ :return: schedule DataFrame with rows that are early closes
1032
+ """
1033
+ return schedule[self.is_different(schedule["market_close"], pd.Series.lt)]
1034
+
1035
+ def late_opens(self, schedule):
1036
+ """
1037
+ Get a DataFrame of the dates that are an late opens.
1038
+
1039
+ :param schedule: schedule DataFrame
1040
+ :return: schedule DataFrame with rows that are late opens
1041
+ """
1042
+ return schedule[self.is_different(schedule["market_open"], pd.Series.gt)]
1043
+
1044
+ def __getitem__(self, item):
1045
+ if isinstance(item, (tuple, list)):
1046
+ if item[1] == "all":
1047
+ return self.get_time(item[0], all_times=True)
1048
+ else:
1049
+ return self.get_time_on(item[0], item[1])
1050
+ else:
1051
+ return self.get_time(item)
1052
+
1053
+ def __setitem__(self, key, value):
1054
+ return self.add_time(key, value)
1055
+
1056
+ def __delitem__(self, key):
1057
+ return self.remove_time(key)