palimpzest 0.8.7__py3-none-any.whl → 1.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- palimpzest/constants.py +13 -4
- palimpzest/core/data/dataset.py +75 -5
- palimpzest/core/elements/groupbysig.py +5 -1
- palimpzest/core/elements/records.py +16 -7
- palimpzest/core/lib/schemas.py +26 -3
- palimpzest/core/models.py +4 -4
- palimpzest/prompts/aggregate_prompts.py +99 -0
- palimpzest/prompts/prompt_factory.py +162 -75
- palimpzest/prompts/utils.py +38 -1
- palimpzest/prompts/validator.py +24 -24
- palimpzest/query/execution/all_sample_execution_strategy.py +1 -1
- palimpzest/query/execution/execution_strategy.py +8 -8
- palimpzest/query/execution/mab_execution_strategy.py +30 -11
- palimpzest/query/execution/parallel_execution_strategy.py +31 -7
- palimpzest/query/execution/single_threaded_execution_strategy.py +23 -6
- palimpzest/query/generators/generators.py +9 -7
- palimpzest/query/operators/__init__.py +10 -6
- palimpzest/query/operators/aggregate.py +394 -10
- palimpzest/query/operators/convert.py +1 -1
- palimpzest/query/operators/join.py +279 -23
- palimpzest/query/operators/logical.py +36 -11
- palimpzest/query/operators/mixture_of_agents.py +3 -1
- palimpzest/query/operators/physical.py +5 -2
- palimpzest/query/operators/{retrieve.py → topk.py} +10 -10
- palimpzest/query/optimizer/__init__.py +11 -3
- palimpzest/query/optimizer/cost_model.py +5 -5
- palimpzest/query/optimizer/optimizer.py +3 -2
- palimpzest/query/optimizer/plan.py +2 -3
- palimpzest/query/optimizer/rules.py +73 -13
- palimpzest/query/optimizer/tasks.py +4 -4
- palimpzest/utils/progress.py +19 -17
- palimpzest/validator/validator.py +7 -7
- {palimpzest-0.8.7.dist-info → palimpzest-1.0.0.dist-info}/METADATA +26 -66
- {palimpzest-0.8.7.dist-info → palimpzest-1.0.0.dist-info}/RECORD +37 -36
- {palimpzest-0.8.7.dist-info → palimpzest-1.0.0.dist-info}/WHEEL +0 -0
- {palimpzest-0.8.7.dist-info → palimpzest-1.0.0.dist-info}/licenses/LICENSE +0 -0
- {palimpzest-0.8.7.dist-info → palimpzest-1.0.0.dist-info}/top_level.txt +0 -0
palimpzest/constants.py
CHANGED
|
@@ -136,13 +136,17 @@ class PromptStrategy(str, Enum):
|
|
|
136
136
|
performing some task with a specified Model.
|
|
137
137
|
"""
|
|
138
138
|
|
|
139
|
+
# aggregation prompt strategies
|
|
140
|
+
AGG = "aggregation"
|
|
141
|
+
AGG_NO_REASONING = "aggregation-no-reasoning"
|
|
142
|
+
|
|
139
143
|
# filter prompt strategies
|
|
140
144
|
FILTER = "filter"
|
|
141
145
|
FILTER_NO_REASONING = "filter-no-reasoning"
|
|
142
146
|
FILTER_CRITIC = "filter-critic"
|
|
143
147
|
FILTER_REFINE = "filter-refine"
|
|
144
148
|
FILTER_MOA_PROPOSER = "filter-mixture-of-agents-proposer"
|
|
145
|
-
FILTER_MOA_AGG = "filter-mixture-of-agents-
|
|
149
|
+
FILTER_MOA_AGG = "filter-mixture-of-agents-aggregator"
|
|
146
150
|
FILTER_SPLIT_PROPOSER = "filter-split-proposer"
|
|
147
151
|
FILTER_SPLIT_MERGER = "filter-split-merger"
|
|
148
152
|
|
|
@@ -156,10 +160,13 @@ class PromptStrategy(str, Enum):
|
|
|
156
160
|
MAP_CRITIC = "map-critic"
|
|
157
161
|
MAP_REFINE = "map-refine"
|
|
158
162
|
MAP_MOA_PROPOSER = "map-mixture-of-agents-proposer"
|
|
159
|
-
MAP_MOA_AGG = "map-mixture-of-agents-
|
|
163
|
+
MAP_MOA_AGG = "map-mixture-of-agents-aggregator"
|
|
160
164
|
MAP_SPLIT_PROPOSER = "map-split-proposer"
|
|
161
165
|
MAP_SPLIT_MERGER = "map-split-merger"
|
|
162
166
|
|
|
167
|
+
def is_agg_prompt(self):
|
|
168
|
+
return "aggregation" in self.value
|
|
169
|
+
|
|
163
170
|
def is_filter_prompt(self):
|
|
164
171
|
return "filter" in self.value
|
|
165
172
|
|
|
@@ -179,7 +186,7 @@ class PromptStrategy(str, Enum):
|
|
|
179
186
|
return "mixture-of-agents-proposer" in self.value
|
|
180
187
|
|
|
181
188
|
def is_moa_aggregator_prompt(self):
|
|
182
|
-
return "mixture-of-agents-
|
|
189
|
+
return "mixture-of-agents-aggregator" in self.value
|
|
183
190
|
|
|
184
191
|
def is_split_proposer_prompt(self):
|
|
185
192
|
return "split-proposer" in self.value
|
|
@@ -200,7 +207,9 @@ class Modality(str, Enum):
|
|
|
200
207
|
class AggFunc(str, Enum):
|
|
201
208
|
COUNT = "count"
|
|
202
209
|
AVERAGE = "average"
|
|
203
|
-
|
|
210
|
+
SUM = "sum"
|
|
211
|
+
MIN = "min"
|
|
212
|
+
MAX = "max"
|
|
204
213
|
|
|
205
214
|
class Cardinality(str, Enum):
|
|
206
215
|
ONE_TO_ONE = "one-to-one"
|
palimpzest/core/data/dataset.py
CHANGED
|
@@ -22,7 +22,7 @@ from palimpzest.query.operators.logical import (
|
|
|
22
22
|
LimitScan,
|
|
23
23
|
LogicalOperator,
|
|
24
24
|
Project,
|
|
25
|
-
|
|
25
|
+
TopKScan,
|
|
26
26
|
)
|
|
27
27
|
from palimpzest.query.processor.config import QueryProcessorConfig
|
|
28
28
|
from palimpzest.utils.hash_helpers import hash_for_serialized_dict
|
|
@@ -243,7 +243,30 @@ class Dataset:
|
|
|
243
243
|
id=self.id,
|
|
244
244
|
)
|
|
245
245
|
|
|
246
|
-
def
|
|
246
|
+
def join(self, other: Dataset, on: str | list[str], how: str = "inner") -> Dataset:
|
|
247
|
+
"""
|
|
248
|
+
Perform the specified join on the specified (list of) column(s)
|
|
249
|
+
"""
|
|
250
|
+
# enforce type for on
|
|
251
|
+
if isinstance(on, str):
|
|
252
|
+
on = [on]
|
|
253
|
+
|
|
254
|
+
# construct new output schema
|
|
255
|
+
combined_schema = union_schemas([self.schema, other.schema], join=True, on=on)
|
|
256
|
+
|
|
257
|
+
# construct logical operator
|
|
258
|
+
operator = JoinOp(
|
|
259
|
+
input_schema=combined_schema,
|
|
260
|
+
output_schema=combined_schema,
|
|
261
|
+
condition="",
|
|
262
|
+
on=on,
|
|
263
|
+
how=how,
|
|
264
|
+
depends_on=on,
|
|
265
|
+
)
|
|
266
|
+
|
|
267
|
+
return Dataset(sources=[self, other], operator=operator, schema=combined_schema)
|
|
268
|
+
|
|
269
|
+
def sem_join(self, other: Dataset, condition: str, desc: str | None = None, depends_on: str | list[str] | None = None, how: str = "inner") -> Dataset:
|
|
247
270
|
"""
|
|
248
271
|
Perform a semantic (inner) join on the specified join predicate
|
|
249
272
|
"""
|
|
@@ -259,6 +282,7 @@ class Dataset:
|
|
|
259
282
|
input_schema=combined_schema,
|
|
260
283
|
output_schema=combined_schema,
|
|
261
284
|
condition=condition,
|
|
285
|
+
how=how,
|
|
262
286
|
desc=desc,
|
|
263
287
|
depends_on=depends_on,
|
|
264
288
|
)
|
|
@@ -346,7 +370,6 @@ class Dataset:
|
|
|
346
370
|
|
|
347
371
|
return Dataset(sources=[self], operator=operator, schema=new_output_schema)
|
|
348
372
|
|
|
349
|
-
|
|
350
373
|
def sem_add_columns(self, cols: list[dict] | type[BaseModel],
|
|
351
374
|
cardinality: Cardinality = Cardinality.ONE_TO_ONE,
|
|
352
375
|
desc: str | None = None,
|
|
@@ -534,12 +557,59 @@ class Dataset:
|
|
|
534
557
|
operator = Aggregate(input_schema=self.schema, agg_func=AggFunc.AVERAGE)
|
|
535
558
|
return Dataset(sources=[self], operator=operator, schema=operator.output_schema)
|
|
536
559
|
|
|
560
|
+
def sum(self) -> Dataset:
|
|
561
|
+
"""Apply a summation to this set"""
|
|
562
|
+
operator = Aggregate(input_schema=self.schema, agg_func=AggFunc.SUM)
|
|
563
|
+
return Dataset(sources=[self], operator=operator, schema=operator.output_schema)
|
|
564
|
+
|
|
565
|
+
def min(self) -> Dataset:
|
|
566
|
+
"""Apply an min operator to this set"""
|
|
567
|
+
operator = Aggregate(input_schema=self.schema, agg_func=AggFunc.MIN)
|
|
568
|
+
return Dataset(sources=[self], operator=operator, schema=operator.output_schema)
|
|
569
|
+
|
|
570
|
+
def max(self) -> Dataset:
|
|
571
|
+
"""Apply an max operator to this set"""
|
|
572
|
+
operator = Aggregate(input_schema=self.schema, agg_func=AggFunc.MAX)
|
|
573
|
+
return Dataset(sources=[self], operator=operator, schema=operator.output_schema)
|
|
574
|
+
|
|
537
575
|
def groupby(self, groupby: GroupBySig) -> Dataset:
|
|
538
576
|
output_schema = groupby.output_schema()
|
|
539
577
|
operator = GroupByAggregate(input_schema=self.schema, output_schema=output_schema, group_by_sig=groupby)
|
|
540
578
|
return Dataset(sources=[self], operator=operator, schema=output_schema)
|
|
541
579
|
|
|
542
|
-
def
|
|
580
|
+
def sem_agg(self, col: dict | type[BaseModel], agg: str, depends_on: str | list[str] | None = None) -> Dataset:
|
|
581
|
+
"""
|
|
582
|
+
Apply a semantic aggregation to this set. The `agg` string will be applied using an LLM
|
|
583
|
+
over the entire set of inputs' fields specified in `depends_on` to generate the output `col`.
|
|
584
|
+
|
|
585
|
+
Example:
|
|
586
|
+
sem_agg(
|
|
587
|
+
col={'name': 'overall_sentiment', 'desc': 'The overall sentiment of the reviews', 'type': str},
|
|
588
|
+
agg="Compute the overall sentiment of the reviews as POSITIVE or NEGATIVE.",
|
|
589
|
+
depends_on="review_text",
|
|
590
|
+
)
|
|
591
|
+
"""
|
|
592
|
+
# construct new output schema
|
|
593
|
+
new_output_schema = None
|
|
594
|
+
if isinstance(col, dict):
|
|
595
|
+
col_schema = create_schema_from_fields([col])
|
|
596
|
+
new_output_schema = union_schemas([self.schema, col_schema])
|
|
597
|
+
elif issubclass(col, BaseModel):
|
|
598
|
+
assert len(col.model_fields) == 1, "For semantic aggregation, when passing a BaseModel to `col` it must have exactly one field."
|
|
599
|
+
new_output_schema = union_schemas([self.schema, col])
|
|
600
|
+
else:
|
|
601
|
+
raise ValueError("`col` must be a dictionary or a single-field BaseModel.")
|
|
602
|
+
|
|
603
|
+
# enforce type for depends_on
|
|
604
|
+
if isinstance(depends_on, str):
|
|
605
|
+
depends_on = [depends_on]
|
|
606
|
+
|
|
607
|
+
# construct logical operator
|
|
608
|
+
operator = Aggregate(input_schema=self.schema, output_schema=new_output_schema, agg_str=agg, depends_on=depends_on)
|
|
609
|
+
|
|
610
|
+
return Dataset(sources=[self], operator=operator, schema=operator.output_schema)
|
|
611
|
+
|
|
612
|
+
def sem_topk(
|
|
543
613
|
self,
|
|
544
614
|
index: Collection,
|
|
545
615
|
search_attr: str,
|
|
@@ -566,7 +636,7 @@ class Dataset:
|
|
|
566
636
|
# index = index_factory(index)
|
|
567
637
|
|
|
568
638
|
# construct logical operator
|
|
569
|
-
operator =
|
|
639
|
+
operator = TopKScan(
|
|
570
640
|
input_schema=self.schema,
|
|
571
641
|
output_schema=new_output_schema,
|
|
572
642
|
index=index,
|
|
@@ -6,8 +6,11 @@ from pydantic import BaseModel
|
|
|
6
6
|
|
|
7
7
|
from palimpzest.core.lib.schemas import create_schema_from_fields
|
|
8
8
|
|
|
9
|
+
# TODO:
|
|
10
|
+
# - move the arguments for group_by_fields, agg_funcs, and agg_fields into the Dataset.groupby() operator
|
|
11
|
+
# - construct the correct output schema using the input schema and the group by and aggregation fields
|
|
12
|
+
# - remove/update all other references to GroupBySig in the codebase
|
|
9
13
|
|
|
10
|
-
# TODO: need to rethink how group bys work
|
|
11
14
|
# signature for a group by aggregate that applies
|
|
12
15
|
# group and aggregation to an input tuple
|
|
13
16
|
class GroupBySig:
|
|
@@ -50,6 +53,7 @@ class GroupBySig:
|
|
|
50
53
|
ops.append(self.agg_funcs[i] + "(" + self.agg_fields[i] + ")")
|
|
51
54
|
return ops
|
|
52
55
|
|
|
56
|
+
# TODO: output schema needs to account for input schema types and create new output schema types
|
|
53
57
|
def output_schema(self) -> type[BaseModel]:
|
|
54
58
|
# the output class varies depending on the group by, so here
|
|
55
59
|
# we dynamically construct this output
|
|
@@ -140,7 +140,7 @@ class DataRecord:
|
|
|
140
140
|
def schema(self) -> type[BaseModel]:
|
|
141
141
|
return type(self._data_item)
|
|
142
142
|
|
|
143
|
-
def copy(self):
|
|
143
|
+
def copy(self) -> DataRecord:
|
|
144
144
|
# get the set of fields to copy from the parent record
|
|
145
145
|
copy_field_names = [field.split(".")[-1] for field in self.get_field_names()]
|
|
146
146
|
|
|
@@ -228,18 +228,18 @@ class DataRecord:
|
|
|
228
228
|
@staticmethod
|
|
229
229
|
def from_join_parents(
|
|
230
230
|
schema: type[BaseModel],
|
|
231
|
-
left_parent_record: DataRecord,
|
|
232
|
-
right_parent_record: DataRecord,
|
|
231
|
+
left_parent_record: DataRecord | None,
|
|
232
|
+
right_parent_record: DataRecord | None,
|
|
233
233
|
project_cols: list[str] | None = None,
|
|
234
234
|
cardinality_idx: int = None,
|
|
235
235
|
) -> DataRecord:
|
|
236
236
|
# get the set of fields and field descriptions to copy from the parent record(s)
|
|
237
|
-
left_copy_field_names = (
|
|
237
|
+
left_copy_field_names = [] if left_parent_record is None else (
|
|
238
238
|
left_parent_record.get_field_names()
|
|
239
239
|
if project_cols is None
|
|
240
240
|
else [col for col in project_cols if col in left_parent_record.get_field_names()]
|
|
241
241
|
)
|
|
242
|
-
right_copy_field_names = (
|
|
242
|
+
right_copy_field_names = [] if right_parent_record is None else (
|
|
243
243
|
right_parent_record.get_field_names()
|
|
244
244
|
if project_cols is None
|
|
245
245
|
else [col for col in project_cols if col in right_parent_record.get_field_names()]
|
|
@@ -255,11 +255,20 @@ class DataRecord:
|
|
|
255
255
|
new_field_name = f"{field_name}_right"
|
|
256
256
|
data_item[new_field_name] = right_parent_record[field_name]
|
|
257
257
|
|
|
258
|
+
# for any missing fields in the schema, set them to None
|
|
259
|
+
for field_name in schema.model_fields:
|
|
260
|
+
if field_name not in data_item:
|
|
261
|
+
data_item[field_name] = None
|
|
262
|
+
|
|
258
263
|
# make new record which has left and right parent record as its parents
|
|
264
|
+
left_parent_source_indices = [] if left_parent_record is None else list(left_parent_record._source_indices)
|
|
265
|
+
right_parent_source_indices = [] if right_parent_record is None else list(right_parent_record._source_indices)
|
|
266
|
+
left_parent_record_id = [] if left_parent_record is None else [left_parent_record._id]
|
|
267
|
+
right_parent_record_id = [] if right_parent_record is None else [right_parent_record._id]
|
|
259
268
|
new_dr = DataRecord(
|
|
260
269
|
schema(**data_item),
|
|
261
|
-
source_indices=
|
|
262
|
-
parent_ids=
|
|
270
|
+
source_indices=left_parent_source_indices + right_parent_source_indices,
|
|
271
|
+
parent_ids=left_parent_record_id + right_parent_record_id,
|
|
263
272
|
cardinality_idx=cardinality_idx,
|
|
264
273
|
)
|
|
265
274
|
|
palimpzest/core/lib/schemas.py
CHANGED
|
@@ -142,16 +142,30 @@ def create_schema_from_df(df: pd.DataFrame) -> type[BaseModel]:
|
|
|
142
142
|
return _create_pickleable_model(fields)
|
|
143
143
|
|
|
144
144
|
|
|
145
|
-
def union_schemas(models: list[type[BaseModel]], join: bool = False) -> type[BaseModel]:
|
|
145
|
+
def union_schemas(models: list[type[BaseModel]], join: bool = False, on: list[str] | None = None) -> type[BaseModel]:
|
|
146
146
|
"""Union multiple Pydantic models into a single model."""
|
|
147
|
+
# convert on to empty list if None
|
|
148
|
+
if on is None:
|
|
149
|
+
on = []
|
|
150
|
+
|
|
151
|
+
# build up the fields for the new schema
|
|
147
152
|
fields = {}
|
|
148
153
|
for model in models:
|
|
149
154
|
for field_name, field in model.model_fields.items():
|
|
150
|
-
|
|
155
|
+
# for non-join unions, make sure duplicate fields have the same type
|
|
156
|
+
if not join and field_name in fields:
|
|
151
157
|
assert fields[field_name][0] == field.annotation, f"Field {field_name} has different types in different models"
|
|
152
|
-
|
|
158
|
+
|
|
159
|
+
# for joins with "on" specified, no need to rename fields in "on"
|
|
160
|
+
elif join and field_name in on and field_name in fields:
|
|
161
|
+
continue
|
|
162
|
+
|
|
163
|
+
# otherwise, rename duplicate fields by appending _right
|
|
164
|
+
elif join and field_name in fields:
|
|
153
165
|
while field_name in fields:
|
|
154
166
|
field_name = f"{field_name}_right"
|
|
167
|
+
|
|
168
|
+
# add the field to the new schema
|
|
155
169
|
fields[field_name] = (field.annotation, field)
|
|
156
170
|
|
|
157
171
|
# create and return the new schema
|
|
@@ -194,6 +208,15 @@ class Average(BaseModel):
|
|
|
194
208
|
class Count(BaseModel):
|
|
195
209
|
count: int = Field(description="The count of items in the dataset")
|
|
196
210
|
|
|
211
|
+
class Sum(BaseModel):
|
|
212
|
+
sum: int = Field(description="The summation of items in the dataset")
|
|
213
|
+
|
|
214
|
+
class Min(BaseModel):
|
|
215
|
+
min: int | float = Field(description="The minimum value of some items in the dataset")
|
|
216
|
+
|
|
217
|
+
class Max(BaseModel):
|
|
218
|
+
max: int | float = Field(description="The maximum value of some items in the dataset")
|
|
219
|
+
|
|
197
220
|
class OperatorDerivedSchema(BaseModel):
|
|
198
221
|
"""Schema defined by an operator, e.g., a join or a group by"""
|
|
199
222
|
|
palimpzest/core/models.py
CHANGED
|
@@ -51,10 +51,10 @@ class GenerationStats(BaseModel):
|
|
|
51
51
|
fn_call_duration_secs: float = 0.0
|
|
52
52
|
|
|
53
53
|
# (if applicable) the total number of LLM calls made by this operator
|
|
54
|
-
total_llm_calls:
|
|
54
|
+
total_llm_calls: float = 0
|
|
55
55
|
|
|
56
56
|
# (if applicable) the total number of embedding LLM calls made by this operator
|
|
57
|
-
total_embedding_llm_calls:
|
|
57
|
+
total_embedding_llm_calls: float = 0
|
|
58
58
|
|
|
59
59
|
def __iadd__(self, other: GenerationStats) -> GenerationStats:
|
|
60
60
|
# self.raw_answers.extend(other.raw_answers)
|
|
@@ -243,10 +243,10 @@ class RecordOpStats(BaseModel):
|
|
|
243
243
|
fn_call_duration_secs: float = 0.0
|
|
244
244
|
|
|
245
245
|
# (if applicable) the total number of LLM calls made by this operator
|
|
246
|
-
total_llm_calls:
|
|
246
|
+
total_llm_calls: float = 0
|
|
247
247
|
|
|
248
248
|
# (if applicable) the total number of embedding LLM calls made by this operator
|
|
249
|
-
total_embedding_llm_calls:
|
|
249
|
+
total_embedding_llm_calls: float = 0
|
|
250
250
|
|
|
251
251
|
# (if applicable) a boolean indicating whether this is the statistics captured from a failed convert operation
|
|
252
252
|
failed_convert: bool | None = None
|
|
@@ -0,0 +1,99 @@
|
|
|
1
|
+
"""This file contains prompts for aggregation operations."""
|
|
2
|
+
|
|
3
|
+
### BASE PROMPTS ###
|
|
4
|
+
AGG_BASE_SYSTEM_PROMPT = """You are a helpful assistant whose job is to {job_instruction}.
|
|
5
|
+
You will be presented with a context and an output field to generate. Your task is to generate a JSON object which aggregates the input and fills in the output field with the correct value.
|
|
6
|
+
You will be provided with a description of each input field and each output field. The field in the output JSON object can be derived using information from the context.
|
|
7
|
+
|
|
8
|
+
{output_format_instruction} Finish your response with a newline character followed by ---
|
|
9
|
+
|
|
10
|
+
An example is shown below:
|
|
11
|
+
---
|
|
12
|
+
INPUT FIELDS:
|
|
13
|
+
{example_input_fields}
|
|
14
|
+
|
|
15
|
+
OUTPUT FIELDS:
|
|
16
|
+
{example_output_fields}
|
|
17
|
+
|
|
18
|
+
CONTEXT:
|
|
19
|
+
{{{example_context}}}
|
|
20
|
+
{{{second_example_context}}}
|
|
21
|
+
{{{third_example_context}}}{image_disclaimer}{audio_disclaimer}
|
|
22
|
+
|
|
23
|
+
AGGREGATION INSTRUCTION: {example_agg_instruction}
|
|
24
|
+
|
|
25
|
+
Let's think step-by-step in order to answer the question.
|
|
26
|
+
|
|
27
|
+
REASONING: {example_reasoning}
|
|
28
|
+
|
|
29
|
+
ANSWER:
|
|
30
|
+
{{{example_answer}}}
|
|
31
|
+
---
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
AGG_NO_REASONING_BASE_SYSTEM_PROMPT = """You are a helpful assistant whose job is to {job_instruction}.
|
|
35
|
+
You will be presented with a context and an output field to generate. Your task is to generate a JSON object which aggregates the input and fills in the output field with the correct value.
|
|
36
|
+
You will be provided with a description of each input field and each output field. The field in the output JSON object can be derived using information from the context.
|
|
37
|
+
|
|
38
|
+
{output_format_instruction} Finish your response with a newline character followed by ---
|
|
39
|
+
|
|
40
|
+
An example is shown below:
|
|
41
|
+
---
|
|
42
|
+
INPUT FIELDS:
|
|
43
|
+
{example_input_fields}
|
|
44
|
+
|
|
45
|
+
OUTPUT FIELDS:
|
|
46
|
+
{example_output_fields}
|
|
47
|
+
|
|
48
|
+
CONTEXT:
|
|
49
|
+
{{{example_context}}}
|
|
50
|
+
{{{second_example_context}}}
|
|
51
|
+
{{{third_example_context}}}{image_disclaimer}{audio_disclaimer}
|
|
52
|
+
|
|
53
|
+
AGGREGATION INSTRUCTION: {example_agg_instruction}
|
|
54
|
+
|
|
55
|
+
ANSWER:
|
|
56
|
+
{{{example_answer}}}
|
|
57
|
+
---
|
|
58
|
+
"""
|
|
59
|
+
|
|
60
|
+
|
|
61
|
+
AGG_BASE_USER_PROMPT = """You are a helpful assistant whose job is to {job_instruction}.
|
|
62
|
+
You will be presented with a context and an output field to generate. Your task is to generate a JSON object which aggregates the input and fills in the output field with the correct value.
|
|
63
|
+
You will be provided with a description of each input field and each output field. The field in the output JSON object can be derived using information from the context.
|
|
64
|
+
{desc_section}
|
|
65
|
+
{output_format_instruction} Finish your response with a newline character followed by ---
|
|
66
|
+
---
|
|
67
|
+
INPUT FIELDS:
|
|
68
|
+
{input_fields_desc}
|
|
69
|
+
|
|
70
|
+
OUTPUT FIELDS:
|
|
71
|
+
{output_fields_desc}
|
|
72
|
+
|
|
73
|
+
CONTEXT:
|
|
74
|
+
{context}<<image-audio-placeholder>>
|
|
75
|
+
|
|
76
|
+
AGGREGATION INSTRUCTION: {agg_instruction}
|
|
77
|
+
|
|
78
|
+
Let's think step-by-step in order to answer the question.
|
|
79
|
+
|
|
80
|
+
REASONING: """
|
|
81
|
+
|
|
82
|
+
AGG_NO_REASONING_BASE_USER_PROMPT = """You are a helpful assistant whose job is to {job_instruction}.
|
|
83
|
+
You will be presented with a context and an output field to generate. Your task is to generate a JSON object which aggregates the input and fills in the output field with the correct value.
|
|
84
|
+
You will be provided with a description of each input field and each output field. The field in the output JSON object can be derived using information from the context.
|
|
85
|
+
{desc_section}
|
|
86
|
+
{output_format_instruction} Finish your response with a newline character followed by ---
|
|
87
|
+
---
|
|
88
|
+
INPUT FIELDS:
|
|
89
|
+
{input_fields_desc}
|
|
90
|
+
|
|
91
|
+
OUTPUT FIELDS:
|
|
92
|
+
{output_fields_desc}
|
|
93
|
+
|
|
94
|
+
CONTEXT:
|
|
95
|
+
{context}<<image-audio-placeholder>>
|
|
96
|
+
|
|
97
|
+
AGGREGATION INSTRUCTION: {agg_instruction}
|
|
98
|
+
|
|
99
|
+
ANSWER: """
|