paddlex 3.0.0rc1__py3-none-any.whl → 3.0.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (233) hide show
  1. paddlex/.version +1 -1
  2. paddlex/__init__.py +1 -1
  3. paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
  4. paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
  5. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
  6. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
  7. paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
  8. paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
  9. paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +2 -2
  10. paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +2 -2
  11. paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +2 -2
  12. paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
  13. paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
  14. paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
  15. paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
  16. paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
  17. paddlex/configs/modules/textline_orientation/PP-LCNet_x1_0_textline_ori.yaml +41 -0
  18. paddlex/configs/pipelines/OCR.yaml +7 -6
  19. paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +3 -1
  20. paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +91 -34
  21. paddlex/configs/pipelines/PP-StructureV3.yaml +72 -72
  22. paddlex/configs/pipelines/doc_understanding.yaml +1 -1
  23. paddlex/configs/pipelines/formula_recognition.yaml +2 -2
  24. paddlex/configs/pipelines/layout_parsing.yaml +3 -2
  25. paddlex/configs/pipelines/seal_recognition.yaml +1 -0
  26. paddlex/configs/pipelines/table_recognition.yaml +2 -1
  27. paddlex/configs/pipelines/table_recognition_v2.yaml +7 -1
  28. paddlex/hpip_links.html +20 -20
  29. paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +33 -10
  30. paddlex/inference/common/batch_sampler/image_batch_sampler.py +34 -25
  31. paddlex/inference/common/result/mixin.py +19 -12
  32. paddlex/inference/models/base/predictor/base_predictor.py +2 -8
  33. paddlex/inference/models/common/static_infer.py +11 -59
  34. paddlex/inference/models/common/tokenizer/__init__.py +2 -0
  35. paddlex/inference/models/common/tokenizer/clip_tokenizer.py +1 -1
  36. paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +2 -2
  37. paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
  38. paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +7 -1
  39. paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
  40. paddlex/inference/models/common/tokenizer/tokenizer_utils.py +13 -13
  41. paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +3 -3
  42. paddlex/inference/models/common/tokenizer/vocab.py +7 -7
  43. paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
  44. paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
  45. paddlex/inference/models/common/vlm/generation/configuration_utils.py +1 -1
  46. paddlex/inference/models/common/vlm/generation/logits_process.py +1 -1
  47. paddlex/inference/models/common/vlm/generation/utils.py +1 -1
  48. paddlex/inference/models/common/vlm/transformers/configuration_utils.py +3 -3
  49. paddlex/inference/models/common/vlm/transformers/conversion_utils.py +3 -3
  50. paddlex/inference/models/common/vlm/transformers/model_outputs.py +2 -2
  51. paddlex/inference/models/common/vlm/transformers/model_utils.py +7 -31
  52. paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
  53. paddlex/inference/models/doc_vlm/modeling/__init__.py +2 -0
  54. paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
  55. paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
  56. paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +0 -105
  57. paddlex/inference/models/doc_vlm/predictor.py +79 -24
  58. paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
  59. paddlex/inference/models/doc_vlm/processors/__init__.py +2 -0
  60. paddlex/inference/models/doc_vlm/processors/common.py +189 -0
  61. paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
  62. paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +21 -176
  63. paddlex/inference/models/formula_recognition/predictor.py +7 -1
  64. paddlex/inference/models/formula_recognition/processors.py +92 -79
  65. paddlex/inference/models/formula_recognition/result.py +28 -27
  66. paddlex/inference/models/image_feature/processors.py +3 -4
  67. paddlex/inference/models/keypoint_detection/predictor.py +3 -0
  68. paddlex/inference/models/object_detection/predictor.py +2 -0
  69. paddlex/inference/models/object_detection/processors.py +28 -3
  70. paddlex/inference/models/object_detection/utils.py +2 -0
  71. paddlex/inference/models/table_structure_recognition/result.py +0 -10
  72. paddlex/inference/models/text_detection/predictor.py +8 -0
  73. paddlex/inference/models/text_detection/processors.py +44 -10
  74. paddlex/inference/models/text_detection/result.py +0 -10
  75. paddlex/inference/pipelines/__init__.py +9 -5
  76. paddlex/inference/pipelines/_parallel.py +172 -0
  77. paddlex/inference/pipelines/anomaly_detection/pipeline.py +16 -6
  78. paddlex/inference/pipelines/attribute_recognition/pipeline.py +11 -1
  79. paddlex/inference/pipelines/base.py +14 -4
  80. paddlex/inference/pipelines/components/faisser.py +1 -1
  81. paddlex/inference/pipelines/doc_preprocessor/pipeline.py +53 -27
  82. paddlex/inference/pipelines/formula_recognition/pipeline.py +120 -82
  83. paddlex/inference/pipelines/formula_recognition/result.py +1 -11
  84. paddlex/inference/pipelines/image_classification/pipeline.py +16 -6
  85. paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +16 -6
  86. paddlex/inference/pipelines/instance_segmentation/pipeline.py +16 -6
  87. paddlex/inference/pipelines/keypoint_detection/pipeline.py +16 -6
  88. paddlex/inference/pipelines/layout_parsing/pipeline.py +34 -47
  89. paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +893 -260
  90. paddlex/inference/pipelines/layout_parsing/result.py +4 -17
  91. paddlex/inference/pipelines/layout_parsing/result_v2.py +523 -245
  92. paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
  93. paddlex/inference/pipelines/layout_parsing/utils.py +565 -1998
  94. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
  95. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1144 -0
  96. paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +563 -0
  97. paddlex/inference/pipelines/m_3d_bev_detection/pipeline.py +2 -2
  98. paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +2 -2
  99. paddlex/inference/pipelines/object_detection/pipeline.py +16 -6
  100. paddlex/inference/pipelines/ocr/pipeline.py +127 -70
  101. paddlex/inference/pipelines/ocr/result.py +19 -16
  102. paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +2 -2
  103. paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +2 -2
  104. paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +2 -2
  105. paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +2 -5
  106. paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +5 -5
  107. paddlex/inference/pipelines/rotated_object_detection/pipeline.py +16 -6
  108. paddlex/inference/pipelines/seal_recognition/pipeline.py +109 -53
  109. paddlex/inference/pipelines/semantic_segmentation/pipeline.py +16 -6
  110. paddlex/inference/pipelines/small_object_detection/pipeline.py +16 -6
  111. paddlex/inference/pipelines/table_recognition/pipeline.py +26 -18
  112. paddlex/inference/pipelines/table_recognition/pipeline_v2.py +624 -53
  113. paddlex/inference/pipelines/table_recognition/result.py +1 -1
  114. paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +9 -5
  115. paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +2 -2
  116. paddlex/inference/pipelines/ts_classification/pipeline.py +2 -2
  117. paddlex/inference/pipelines/ts_forecasting/pipeline.py +2 -2
  118. paddlex/inference/pipelines/video_classification/pipeline.py +2 -2
  119. paddlex/inference/pipelines/video_detection/pipeline.py +2 -2
  120. paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +5 -1
  121. paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +0 -1
  122. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +0 -1
  123. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +1 -1
  124. paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +6 -2
  125. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +1 -5
  126. paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +4 -5
  127. paddlex/inference/serving/infra/utils.py +20 -22
  128. paddlex/inference/serving/schemas/formula_recognition.py +1 -1
  129. paddlex/inference/serving/schemas/layout_parsing.py +1 -2
  130. paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +1 -2
  131. paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +2 -2
  132. paddlex/inference/serving/schemas/pp_structurev3.py +10 -6
  133. paddlex/inference/serving/schemas/seal_recognition.py +1 -1
  134. paddlex/inference/serving/schemas/table_recognition.py +2 -6
  135. paddlex/inference/serving/schemas/table_recognition_v2.py +5 -6
  136. paddlex/inference/utils/hpi.py +8 -1
  137. paddlex/inference/utils/hpi_model_info_collection.json +81 -2
  138. paddlex/inference/utils/io/readers.py +12 -12
  139. paddlex/inference/utils/mkldnn_blocklist.py +25 -0
  140. paddlex/inference/utils/official_models.py +14 -0
  141. paddlex/inference/utils/pp_option.py +29 -8
  142. paddlex/model.py +2 -2
  143. paddlex/modules/__init__.py +1 -1
  144. paddlex/modules/anomaly_detection/evaluator.py +2 -2
  145. paddlex/modules/base/__init__.py +1 -1
  146. paddlex/modules/base/evaluator.py +5 -5
  147. paddlex/modules/base/trainer.py +1 -1
  148. paddlex/modules/doc_vlm/dataset_checker.py +2 -2
  149. paddlex/modules/doc_vlm/evaluator.py +2 -2
  150. paddlex/modules/doc_vlm/exportor.py +2 -2
  151. paddlex/modules/doc_vlm/model_list.py +1 -1
  152. paddlex/modules/doc_vlm/trainer.py +2 -2
  153. paddlex/modules/face_recognition/evaluator.py +2 -2
  154. paddlex/modules/formula_recognition/evaluator.py +5 -2
  155. paddlex/modules/formula_recognition/model_list.py +3 -0
  156. paddlex/modules/formula_recognition/trainer.py +3 -0
  157. paddlex/modules/general_recognition/evaluator.py +1 -1
  158. paddlex/modules/image_classification/evaluator.py +2 -2
  159. paddlex/modules/image_classification/model_list.py +1 -0
  160. paddlex/modules/instance_segmentation/evaluator.py +1 -1
  161. paddlex/modules/keypoint_detection/evaluator.py +1 -1
  162. paddlex/modules/m_3d_bev_detection/evaluator.py +2 -2
  163. paddlex/modules/multilabel_classification/evaluator.py +2 -2
  164. paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +4 -4
  165. paddlex/modules/object_detection/evaluator.py +2 -2
  166. paddlex/modules/object_detection/model_list.py +2 -0
  167. paddlex/modules/semantic_segmentation/evaluator.py +2 -2
  168. paddlex/modules/table_recognition/evaluator.py +2 -2
  169. paddlex/modules/text_detection/evaluator.py +2 -2
  170. paddlex/modules/text_detection/model_list.py +2 -0
  171. paddlex/modules/text_recognition/evaluator.py +2 -2
  172. paddlex/modules/text_recognition/model_list.py +2 -0
  173. paddlex/modules/ts_anomaly_detection/evaluator.py +2 -2
  174. paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +1 -1
  175. paddlex/modules/ts_classification/evaluator.py +2 -2
  176. paddlex/modules/ts_forecast/evaluator.py +2 -2
  177. paddlex/modules/video_classification/evaluator.py +2 -2
  178. paddlex/modules/video_detection/evaluator.py +2 -2
  179. paddlex/ops/__init__.py +2 -2
  180. paddlex/paddlex_cli.py +19 -13
  181. paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +2 -2
  182. paddlex/repo_apis/PaddleClas_api/cls/config.py +1 -1
  183. paddlex/repo_apis/PaddleClas_api/cls/model.py +1 -1
  184. paddlex/repo_apis/PaddleClas_api/cls/register.py +10 -0
  185. paddlex/repo_apis/PaddleClas_api/cls/runner.py +1 -1
  186. paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +1 -1
  187. paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +1 -1
  188. paddlex/repo_apis/PaddleDetection_api/object_det/config.py +1 -1
  189. paddlex/repo_apis/PaddleDetection_api/object_det/model.py +1 -1
  190. paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +25 -0
  191. paddlex/repo_apis/PaddleDetection_api/object_det/register.py +30 -0
  192. paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +1 -1
  193. paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +3 -3
  194. paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +5 -9
  195. paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +27 -0
  196. paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +1 -1
  197. paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +1 -1
  198. paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +1 -1
  199. paddlex/repo_apis/PaddleOCR_api/text_det/model.py +1 -1
  200. paddlex/repo_apis/PaddleOCR_api/text_det/register.py +18 -0
  201. paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +1 -1
  202. paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +3 -3
  203. paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +5 -9
  204. paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +18 -0
  205. paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +1 -1
  206. paddlex/repo_apis/PaddleSeg_api/seg/model.py +1 -1
  207. paddlex/repo_apis/PaddleSeg_api/seg/runner.py +1 -1
  208. paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +3 -3
  209. paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +2 -2
  210. paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +4 -4
  211. paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +1 -1
  212. paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +1 -1
  213. paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +1 -1
  214. paddlex/repo_apis/PaddleVideo_api/video_det/config.py +1 -1
  215. paddlex/repo_apis/PaddleVideo_api/video_det/model.py +1 -1
  216. paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +1 -1
  217. paddlex/repo_apis/base/config.py +1 -1
  218. paddlex/repo_manager/core.py +3 -3
  219. paddlex/repo_manager/meta.py +6 -2
  220. paddlex/repo_manager/repo.py +17 -16
  221. paddlex/utils/custom_device_list.py +26 -2
  222. paddlex/utils/deps.py +1 -1
  223. paddlex/utils/device.py +15 -8
  224. paddlex/utils/env.py +4 -0
  225. paddlex/utils/flags.py +2 -4
  226. paddlex/utils/fonts/__init__.py +34 -4
  227. paddlex/utils/misc.py +1 -1
  228. {paddlex-3.0.0rc1.dist-info → paddlex-3.0.1.dist-info}/METADATA +52 -56
  229. {paddlex-3.0.0rc1.dist-info → paddlex-3.0.1.dist-info}/RECORD +233 -206
  230. {paddlex-3.0.0rc1.dist-info → paddlex-3.0.1.dist-info}/WHEEL +1 -1
  231. {paddlex-3.0.0rc1.dist-info → paddlex-3.0.1.dist-info}/entry_points.txt +0 -0
  232. {paddlex-3.0.0rc1.dist-info → paddlex-3.0.1.dist-info}/licenses/LICENSE +0 -0
  233. {paddlex-3.0.0rc1.dist-info → paddlex-3.0.1.dist-info}/top_level.txt +0 -0
@@ -14,21 +14,20 @@
14
14
 
15
15
  __all__ = [
16
16
  "get_sub_regions_ocr_res",
17
- "get_layout_ordering",
18
- "get_single_block_parsing_res",
19
17
  "get_show_color",
20
18
  "sorted_layout_boxes",
21
19
  ]
22
20
 
23
21
  import re
24
22
  from copy import deepcopy
25
- from typing import Any, Dict, List, Optional, Tuple, Union
23
+ from typing import Dict, List, Optional, Tuple, Union
26
24
 
27
25
  import numpy as np
28
26
  from PIL import Image
29
27
 
30
- from ...models.object_detection.result import DetResult
28
+ from ..components import convert_points_to_boxes
31
29
  from ..ocr.result import OCRResult
30
+ from .setting import BLOCK_LABEL_MAP, REGION_SETTINGS
32
31
 
33
32
 
34
33
  def get_overlap_boxes_idx(src_boxes: np.ndarray, ref_boxes: np.ndarray) -> List:
@@ -172,808 +171,453 @@ def sorted_layout_boxes(res, w):
172
171
  return new_res
173
172
 
174
173
 
175
- def _calculate_overlap_area_div_minbox_area_ratio(
176
- bbox1: Union[list, tuple],
177
- bbox2: Union[list, tuple],
174
+ def calculate_projection_overlap_ratio(
175
+ bbox1: List[float],
176
+ bbox2: List[float],
177
+ direction: str = "horizontal",
178
+ mode="union",
178
179
  ) -> float:
179
180
  """
180
- Calculate the ratio of the overlap area between bbox1 and bbox2
181
- to the area of the smaller bounding box.
181
+ Calculate the IoU of lines between two bounding boxes.
182
182
 
183
183
  Args:
184
- bbox1 (list or tuple): Coordinates of the first bounding box [x_min, y_min, x_max, y_max].
185
- bbox2 (list or tuple): Coordinates of the second bounding box [x_min, y_min, x_max, y_max].
184
+ bbox1 (List[float]): First bounding box [x_min, y_min, x_max, y_max].
185
+ bbox2 (List[float]): Second bounding box [x_min, y_min, x_max, y_max].
186
+ direction (str): direction of the projection, "horizontal" or "vertical".
186
187
 
187
188
  Returns:
188
- float: The ratio of the overlap area to the area of the smaller bounding box.
189
+ float: Line overlap ratio. Returns 0 if there is no overlap.
189
190
  """
190
- bbox1 = list(map(int, bbox1))
191
- bbox2 = list(map(int, bbox2))
192
-
193
- x_left = max(bbox1[0], bbox2[0])
194
- y_top = max(bbox1[1], bbox2[1])
195
- x_right = min(bbox1[2], bbox2[2])
196
- y_bottom = min(bbox1[3], bbox2[3])
197
-
198
- if x_right <= x_left or y_bottom <= y_top:
199
- return 0.0
191
+ start_index, end_index = 1, 3
192
+ if direction == "horizontal":
193
+ start_index, end_index = 0, 2
200
194
 
201
- intersection_area = (x_right - x_left) * (y_bottom - y_top)
202
- area_bbox1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
203
- area_bbox2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
204
- min_box_area = min(area_bbox1, area_bbox2)
195
+ intersection_start = max(bbox1[start_index], bbox2[start_index])
196
+ intersection_end = min(bbox1[end_index], bbox2[end_index])
197
+ overlap = intersection_end - intersection_start
198
+ if overlap <= 0:
199
+ return 0
205
200
 
206
- if min_box_area <= 0:
207
- return 0.0
201
+ if mode == "union":
202
+ ref_width = max(bbox1[end_index], bbox2[end_index]) - min(
203
+ bbox1[start_index], bbox2[start_index]
204
+ )
205
+ elif mode == "small":
206
+ ref_width = min(
207
+ bbox1[end_index] - bbox1[start_index], bbox2[end_index] - bbox2[start_index]
208
+ )
209
+ elif mode == "large":
210
+ ref_width = max(
211
+ bbox1[end_index] - bbox1[start_index], bbox2[end_index] - bbox2[start_index]
212
+ )
213
+ else:
214
+ raise ValueError(
215
+ f"Invalid mode {mode}, must be one of ['union', 'small', 'large']."
216
+ )
208
217
 
209
- return intersection_area / min_box_area
218
+ return overlap / ref_width if ref_width > 0 else 0.0
210
219
 
211
220
 
212
- def _whether_y_overlap_exceeds_threshold(
213
- bbox1: Union[list, tuple],
214
- bbox2: Union[list, tuple],
215
- overlap_ratio_threshold: float = 0.6,
216
- ) -> bool:
221
+ def calculate_overlap_ratio(
222
+ bbox1: Union[list, tuple], bbox2: Union[list, tuple], mode="union"
223
+ ) -> float:
217
224
  """
218
- Determines whether the vertical overlap between two bounding boxes exceeds a given threshold.
225
+ Calculate the overlap ratio between two bounding boxes.
219
226
 
220
227
  Args:
221
- bbox1 (list or tuple): The first bounding box defined as (left, top, right, bottom).
222
- bbox2 (list or tuple): The second bounding box defined as (left, top, right, bottom).
223
- overlap_ratio_threshold (float): The threshold ratio to determine if the overlap is significant.
224
- Defaults to 0.6.
228
+ bbox1 (list or tuple): The first bounding box, format [x_min, y_min, x_max, y_max]
229
+ bbox2 (list or tuple): The second bounding box, format [x_min, y_min, x_max, y_max]
230
+ mode (str): The mode of calculation, either 'union', 'small', or 'large'.
225
231
 
226
232
  Returns:
227
- bool: True if the vertical overlap divided by the minimum height of the two bounding boxes
228
- exceeds the overlap_ratio_threshold, otherwise False.
229
- """
230
- _, y1_0, _, y1_1 = bbox1
231
- _, y2_0, _, y2_1 = bbox2
232
-
233
- overlap = max(0, min(y1_1, y2_1) - max(y1_0, y2_0))
234
- min_height = min(y1_1 - y1_0, y2_1 - y2_0)
235
-
236
- return (overlap / min_height) > overlap_ratio_threshold
237
-
238
-
239
- def _adjust_span_text(span: List[str], prepend: bool = False, append: bool = False):
233
+ float: The overlap ratio value between the two bounding boxes
240
234
  """
241
- Adjust the text of a span by prepending or appending a newline.
235
+ x_min_inter = max(bbox1[0], bbox2[0])
236
+ y_min_inter = max(bbox1[1], bbox2[1])
237
+ x_max_inter = min(bbox1[2], bbox2[2])
238
+ y_max_inter = min(bbox1[3], bbox2[3])
242
239
 
243
- Args:
244
- span (list): A list where the second element is the text of the span.
245
- prepend (bool): If True, prepend a newline to the text.
246
- append (bool): If True, append a newline to the text.
240
+ inter_width = max(0, x_max_inter - x_min_inter)
241
+ inter_height = max(0, y_max_inter - y_min_inter)
247
242
 
248
- Returns:
249
- None: The function modifies the span in place.
250
- """
251
- if prepend:
252
- span[1] = "\n" + span[1]
253
- if append:
254
- span[1] = span[1] + "\n"
255
- return span
243
+ inter_area = inter_width * inter_height
256
244
 
245
+ bbox1_area = caculate_bbox_area(bbox1)
246
+ bbox2_area = caculate_bbox_area(bbox2)
257
247
 
258
- def _format_line(
259
- line: List[List[Union[List[int], str]]],
260
- layout_min: int,
261
- layout_max: int,
262
- is_reference: bool = False,
263
- ) -> None:
264
- """
265
- Format a line of text spans based on layout constraints.
266
-
267
- Args:
268
- line (list): A list of spans, where each span is a list containing a bounding box and text.
269
- layout_min (int): The minimum x-coordinate of the layout bounding box.
270
- layout_max (int): The maximum x-coordinate of the layout bounding box.
271
- is_reference (bool): A flag indicating whether the line is a reference line, which affects formatting rules.
272
-
273
- Returns:
274
- None: The function modifies the line in place.
275
- """
276
- first_span = line[0]
277
- end_span = line[-1]
278
-
279
- if not is_reference:
280
- if first_span[0][0] - layout_min > 10:
281
- first_span = _adjust_span_text(first_span, prepend=True)
282
- if layout_max - end_span[0][2] > 10:
283
- end_span = _adjust_span_text(end_span, append=True)
248
+ if mode == "union":
249
+ ref_area = bbox1_area + bbox2_area - inter_area
250
+ elif mode == "small":
251
+ ref_area = min(bbox1_area, bbox2_area)
252
+ elif mode == "large":
253
+ ref_area = max(bbox1_area, bbox2_area)
284
254
  else:
285
- if first_span[0][0] - layout_min < 5:
286
- first_span = _adjust_span_text(first_span, prepend=True)
287
- if layout_max - end_span[0][2] > 20:
288
- end_span = _adjust_span_text(end_span, append=True)
255
+ raise ValueError(
256
+ f"Invalid mode {mode}, must be one of ['union', 'small', 'large']."
257
+ )
289
258
 
290
- line[0] = first_span
291
- line[-1] = end_span
259
+ if ref_area == 0:
260
+ return 0.0
292
261
 
293
- return line
262
+ return inter_area / ref_area
294
263
 
295
264
 
296
- def split_boxes_if_x_contained(boxes, offset=1e-5):
297
- """
298
- Check if there is any complete containment in the x-direction
299
- between the bounding boxes and split the containing box accordingly.
265
+ def group_boxes_into_lines(ocr_rec_res, line_height_iou_threshold):
266
+ rec_boxes = ocr_rec_res["boxes"]
267
+ rec_texts = ocr_rec_res["rec_texts"]
268
+ rec_labels = ocr_rec_res["rec_labels"]
300
269
 
301
- Args:
302
- boxes (list of lists): Each element is a list containing an ndarray of length 4, a description, and a label.
303
- offset (float): A small offset value to ensure that the split boxes are not too close to the original boxes.
304
- Returns:
305
- A new list of boxes, including split boxes, with the same `rec_text` and `label` attributes.
306
- """
270
+ text_boxes = [
271
+ rec_boxes[i] for i in range(len(rec_boxes)) if rec_labels[i] == "text"
272
+ ]
273
+ text_orientation = calculate_text_orientation(text_boxes)
307
274
 
308
- def is_x_contained(box_a, box_b):
309
- """Check if box_a completely contains box_b in the x-direction."""
310
- return box_a[0][0] <= box_b[0][0] and box_a[0][2] >= box_b[0][2]
275
+ match_direction = "vertical" if text_orientation == "horizontal" else "horizontal"
311
276
 
312
- new_boxes = []
277
+ line_start_index = 1 if text_orientation == "horizontal" else 0
278
+ line_end_index = 3 if text_orientation == "horizontal" else 2
313
279
 
314
- for i in range(len(boxes)):
315
- box_a = boxes[i]
316
- is_split = False
317
- for j in range(len(boxes)):
318
- if i == j:
319
- continue
320
- box_b = boxes[j]
321
- if is_x_contained(box_a, box_b):
322
- is_split = True
323
- # Split box_a based on the x-coordinates of box_b
324
- if box_a[0][0] < box_b[0][0]:
325
- w = box_b[0][0] - offset - box_a[0][0]
326
- if w > 1:
327
- new_boxes.append(
328
- [
329
- np.array(
330
- [
331
- box_a[0][0],
332
- box_a[0][1],
333
- box_b[0][0] - offset,
334
- box_a[0][3],
335
- ]
336
- ),
337
- box_a[1],
338
- box_a[2],
339
- ]
340
- )
341
- if box_a[0][2] > box_b[0][2]:
342
- w = box_a[0][2] - box_b[0][2] + offset
343
- if w > 1:
344
- box_a = [
345
- np.array(
346
- [
347
- box_b[0][2] + offset,
348
- box_a[0][1],
349
- box_a[0][2],
350
- box_a[0][3],
351
- ]
352
- ),
353
- box_a[1],
354
- box_a[2],
355
- ]
356
- if j == len(boxes) - 1 and is_split:
357
- new_boxes.append(box_a)
358
- if not is_split:
359
- new_boxes.append(box_a)
360
-
361
- return new_boxes
280
+ spans = list(zip(rec_boxes, rec_texts, rec_labels))
281
+ sort_index = 1
282
+ reverse = False
283
+ if text_orientation == "vertical":
284
+ sort_index = 0
285
+ reverse = True
286
+ spans.sort(key=lambda span: span[0][sort_index], reverse=reverse)
287
+ spans = [list(span) for span in spans]
362
288
 
289
+ lines = []
290
+ line = [spans[0]]
291
+ line_region_box = spans[0][0].copy()
292
+ line_heights = []
293
+ # merge line
294
+ for span in spans[1:]:
295
+ rec_bbox = span[0]
296
+ if (
297
+ calculate_projection_overlap_ratio(
298
+ line_region_box, rec_bbox, match_direction, mode="small"
299
+ )
300
+ >= line_height_iou_threshold
301
+ ):
302
+ line.append(span)
303
+ line_region_box[line_start_index] = min(
304
+ line_region_box[line_start_index], rec_bbox[line_start_index]
305
+ )
306
+ line_region_box[line_end_index] = max(
307
+ line_region_box[line_end_index], rec_bbox[line_end_index]
308
+ )
309
+ else:
310
+ line_heights.append(
311
+ line_region_box[line_end_index] - line_region_box[line_start_index]
312
+ )
313
+ lines.append(line)
314
+ line = [span]
315
+ line_region_box = rec_bbox.copy()
363
316
 
364
- def _sort_line_by_x_projection(
365
- input_img: np.ndarray,
366
- general_ocr_pipeline: Any,
367
- line: List[List[Union[List[int], str]]],
368
- ) -> None:
369
- """
370
- Sort a line of text spans based on their vertical position within the layout bounding box.
317
+ lines.append(line)
318
+ line_heights.append(
319
+ line_region_box[line_end_index] - line_region_box[line_start_index]
320
+ )
371
321
 
372
- Args:
373
- input_img (ndarray): The input image used for OCR.
374
- general_ocr_pipeline (Any): The general OCR pipeline used for text recognition.
375
- line (list): A list of spans, where each span is a list containing a bounding box and text.
322
+ min_height = min(line_heights) if line_heights else 0
323
+ max_height = max(line_heights) if line_heights else 0
376
324
 
377
- Returns:
378
- list: The sorted line of text spans.
379
- """
380
- splited_boxes = split_boxes_if_x_contained(line)
381
- splited_lines = []
382
- if len(line) != len(splited_boxes):
383
- splited_boxes.sort(key=lambda span: span[0][0])
384
- text_rec_model = general_ocr_pipeline.text_rec_model
385
- for span in splited_boxes:
386
- if span[2] == "text":
387
- crop_img = input_img[
388
- int(span[0][1]) : int(span[0][3]),
389
- int(span[0][0]) : int(span[0][2]),
390
- ]
391
- span[1] = next(text_rec_model([crop_img]))["rec_text"]
392
- splited_lines.append(span)
393
- else:
394
- splited_lines = line
325
+ if max_height > min_height * 2 and text_orientation == "vertical":
326
+ line_heights = np.array(line_heights)
327
+ min_height_num = np.sum(line_heights < min_height * 1.1)
328
+ if min_height_num < len(lines) * 0.4:
329
+ condition = line_heights > min_height * 1.1
330
+ lines = [value for value, keep in zip(lines, condition) if keep]
395
331
 
396
- return splited_lines
332
+ return lines, text_orientation, np.mean(line_heights)
397
333
 
398
334
 
399
- def _sort_ocr_res_by_y_projection(
400
- input_img: np.ndarray,
401
- general_ocr_pipeline: Any,
402
- label: Any,
403
- block_bbox: Tuple[int, int, int, int],
404
- ocr_res: Dict[str, List[Any]],
405
- line_height_iou_threshold: float = 0.7,
406
- ) -> Dict[str, List[Any]]:
335
+ def calculate_minimum_enclosing_bbox(bboxes):
407
336
  """
408
- Sorts OCR results based on their spatial arrangement, grouping them into lines and blocks.
337
+ Calculate the minimum enclosing bounding box for a list of bounding boxes.
409
338
 
410
339
  Args:
411
- input_img (ndarray): The input image used for OCR.
412
- general_ocr_pipeline (Any): The general OCR pipeline used for text recognition.
413
- label (Any): The label associated with the OCR results. It's not used in the function but might be
414
- relevant for other parts of the calling context.
415
- block_bbox (Tuple[int, int, int, int]): A tuple representing the layout bounding box, defined as
416
- (left, top, right, bottom).
417
- ocr_res (Dict[str, List[Any]]): A dictionary containing OCR results with the following keys:
418
- - "boxes": A list of bounding boxes, each defined as [left, top, right, bottom].
419
- - "rec_texts": A corresponding list of recognized text strings for each box.
420
- line_height_iou_threshold (float): The threshold for determining whether two boxes belong to
421
- the same line based on their vertical overlap. Defaults to 0.7.
340
+ bboxes (list): A list of bounding boxes represented as lists of four integers [x1, y1, x2, y2].
422
341
 
423
342
  Returns:
424
- Dict[str, List[Any]]: A dictionary with the same structure as `ocr_res`, but with boxes and texts sorted
425
- and grouped into lines and blocks.
343
+ list: The minimum enclosing bounding box represented as a list of four integers [x1, y1, x2, y2].
426
344
  """
427
- assert (
428
- ocr_res["boxes"] and ocr_res["rec_texts"]
429
- ), "OCR results must contain 'boxes' and 'rec_texts'"
430
-
431
- boxes = ocr_res["boxes"]
432
- rec_texts = ocr_res["rec_texts"]
433
- rec_labels = ocr_res["rec_labels"]
345
+ if not bboxes:
346
+ raise ValueError("The list of bounding boxes is empty.")
434
347
 
435
- x_min, _, x_max, _ = block_bbox
436
- inline_x_min = min([box[0] for box in boxes])
437
- inline_x_max = max([box[2] for box in boxes])
348
+ # Convert the list of bounding boxes to a NumPy array
349
+ bboxes_array = np.array(bboxes)
438
350
 
439
- spans = list(zip(boxes, rec_texts, rec_labels))
351
+ # Compute the minimum and maximum values along the respective axes
352
+ min_x = np.min(bboxes_array[:, 0])
353
+ min_y = np.min(bboxes_array[:, 1])
354
+ max_x = np.max(bboxes_array[:, 2])
355
+ max_y = np.max(bboxes_array[:, 3])
440
356
 
441
- spans.sort(key=lambda span: span[0][1])
442
- spans = [list(span) for span in spans]
357
+ # Return the minimum enclosing bounding box
358
+ return [min_x, min_y, max_x, max_y]
443
359
 
444
- lines = []
445
- current_line = [spans[0]]
446
- current_y0, current_y1 = spans[0][0][1], spans[0][0][3]
447
360
 
448
- for span in spans[1:]:
449
- y0, y1 = span[0][1], span[0][3]
450
- if _whether_y_overlap_exceeds_threshold(
451
- (0, current_y0, 0, current_y1),
452
- (0, y0, 0, y1),
453
- line_height_iou_threshold,
454
- ):
455
- current_line.append(span)
456
- current_y0 = min(current_y0, y0)
457
- current_y1 = max(current_y1, y1)
458
- else:
459
- lines.append(current_line)
460
- current_line = [span]
461
- current_y0, current_y1 = y0, y1
462
-
463
- if current_line:
464
- lines.append(current_line)
465
-
466
- new_lines = []
467
- for line in lines:
468
- line.sort(key=lambda span: span[0][0])
469
-
470
- ocr_labels = [span[2] for span in line]
471
- if "formula" in ocr_labels:
472
- line = _sort_line_by_x_projection(input_img, general_ocr_pipeline, line)
473
- if label == "reference":
474
- line = _format_line(line, inline_x_min, inline_x_max, is_reference=True)
475
- elif label != "content":
476
- line = _format_line(line, x_min, x_max)
477
- new_lines.append(line)
478
-
479
- ocr_res["boxes"] = [span[0] for line in new_lines for span in line]
480
- if label == "content":
481
- ocr_res["rec_texts"] = [
482
- "".join(f"{span[1]} " for span in line).rstrip() for line in new_lines
483
- ]
484
- else:
485
- ocr_res["rec_texts"] = [span[1] + " " for line in new_lines for span in line]
486
- return ocr_res, len(new_lines)
487
-
488
-
489
- def _process_text(input_text: str) -> str:
361
+ def calculate_text_orientation(
362
+ bboxes: List[List[int]], orientation_ratio: float = 1.5
363
+ ) -> bool:
490
364
  """
491
- Process the input text to handle spaces.
492
-
493
- The function removes multiple consecutive spaces between Chinese characters and ensures that
494
- only a single space is retained between Chinese and non-Chinese characters.
365
+ Calculate the orientation of the text based on the bounding boxes.
495
366
 
496
367
  Args:
497
- input_text (str): The text to be processed.
368
+ bboxes (list): A list of bounding boxes.
369
+ orientation_ratio (float): Ratio for determining orientation. Default is 1.5.
498
370
 
499
371
  Returns:
500
- str: The processed text with properly formatted spaces.
372
+ str: "horizontal" or "vertical".
501
373
  """
502
374
 
503
- def handle_spaces_(text: str) -> str:
504
- """
505
- Handle spaces in the text by removing multiple consecutive spaces and inserting a single space
506
- between Chinese and non-Chinese characters.
507
-
508
- Args:
509
- text (str): The text to handle spaces for.
510
-
511
- Returns:
512
- str: The text with properly formatted spaces.
513
- """
514
- spaces = re.finditer(r"\s+", text)
515
- processed_text = list(text)
516
-
517
- for space in reversed(list(spaces)):
518
- start, end = space.span()
519
- prev_char = processed_text[start - 1] if start > 0 else ""
520
- next_char = processed_text[end] if end < len(processed_text) else ""
521
-
522
- is_prev_chinese = (
523
- re.match(r"[\u4e00-\u9fff]", prev_char) if prev_char else False
524
- )
525
- is_next_chinese = (
526
- re.match(r"[\u4e00-\u9fff]", next_char) if next_char else False
375
+ horizontal_box_num = 0
376
+ for bbox in bboxes:
377
+ if len(bbox) != 4:
378
+ raise ValueError(
379
+ "Invalid bounding box format. Expected a list of length 4."
527
380
  )
381
+ x1, y1, x2, y2 = bbox
382
+ width = x2 - x1
383
+ height = y2 - y1
384
+ horizontal_box_num += 1 if width * orientation_ratio >= height else 0
528
385
 
529
- if is_prev_chinese and is_next_chinese:
530
- processed_text[start:end] = []
531
- else:
532
- processed_text[start:end] = [" "]
386
+ return "horizontal" if horizontal_box_num >= len(bboxes) * 0.5 else "vertical"
533
387
 
534
- return "".join(processed_text)
535
388
 
536
- text_without_spaces = handle_spaces_(input_text)
389
+ def is_english_letter(char):
390
+ return bool(re.match(r"^[A-Za-z]$", char))
537
391
 
538
- final_text = re.sub(r"\s+", " ", text_without_spaces).strip()
539
- return final_text
540
392
 
393
+ def is_numeric(char):
394
+ return bool(re.match(r"^[\d.]+$", char))
541
395
 
542
- def get_single_block_parsing_res(
543
- general_ocr_pipeline: Any,
544
- overall_ocr_res: OCRResult,
545
- layout_det_res: DetResult,
546
- table_res_list: list,
547
- seal_res_list: list,
548
- ) -> OCRResult:
396
+
397
+ def is_non_breaking_punctuation(char):
549
398
  """
550
- Extract structured information from OCR and layout detection results.
399
+ 判断一个字符是否是不需要换行的标点符号,包括全角和半角的符号。
551
400
 
552
- Args:
553
- overall_ocr_res (OCRResult): An object containing the overall OCR results, including detected text boxes and recognized text. The structure is expected to have:
554
- - "input_img": The image on which OCR was performed.
555
- - "dt_boxes": A list of detected text box coordinates.
556
- - "rec_texts": A list of recognized text corresponding to the detected boxes.
401
+ :param char: str, 单个字符
402
+ :return: bool, 如果字符是不需要换行的标点符号,返回True,否则返回False
403
+ """
404
+ non_breaking_punctuations = {
405
+ ",", # 半角逗号
406
+ ",", # 全角逗号
407
+ "、", # 顿号
408
+ ";", # 半角分号
409
+ ";", # 全角分号
410
+ ":", # 半角冒号
411
+ ":", # 全角冒号
412
+ "-", # 连字符
413
+ }
557
414
 
558
- layout_det_res (DetResult): An object containing the layout detection results, including detected layout boxes and their labels. The structure is expected to have:
559
- - "boxes": A list of dictionaries with keys "coordinate" for box coordinates and "block_label" for the type of content.
415
+ return char in non_breaking_punctuations
560
416
 
561
- table_res_list (list): A list of table detection results, where each item is a dictionary containing:
562
- - "block_bbox": The bounding box of the table layout.
563
- - "pred_html": The predicted HTML representation of the table.
564
417
 
565
- seal_res_list (List): A list of seal detection results. The details of each item depend on the specific application context.
418
+ def format_line(
419
+ line: List[List[Union[List[int], str]]],
420
+ text_direction: int,
421
+ block_width: int,
422
+ block_start_coordinate: int,
423
+ block_stop_coordinate: int,
424
+ line_gap_limit: int = 10,
425
+ block_label: str = "text",
426
+ ) -> None:
427
+ """
428
+ Format a line of text spans based on layout constraints.
566
429
 
430
+ Args:
431
+ line (list): A list of spans, where each span is a list containing a bounding box and text.
432
+ block_left_coordinate (int): The text line directional minimum coordinate of the layout bounding box.
433
+ block_stop_coordinate (int): The text line directional maximum x-coordinate of the layout bounding box.
434
+ first_line_span_limit (int): The limit for the number of pixels before the first span that should be considered part of the first line. Default is 10.
435
+ line_gap_limit (int): The limit for the number of pixels after the last span that should be considered part of the last line. Default is 10.
436
+ block_label (str): The label associated with the entire block. Default is 'text'.
567
437
  Returns:
568
- list: A list of structured boxes where each item is a dictionary containing:
569
- - "block_label": The label of the content (e.g., 'table', 'chart', 'image').
570
- - The label as a key with either table HTML or image data and text.
571
- - "block_bbox": The coordinates of the layout box.
438
+ None: The function modifies the line in place.
572
439
  """
440
+ first_span_box = line[0][0]
441
+ last_span_box = line[-1][0]
573
442
 
574
- single_block_layout_parsing_res = []
575
- input_img = overall_ocr_res["doc_preprocessor_res"]["output_img"]
576
- seal_index = 0
577
- with_doc_title = False
578
- max_block_area = 0.0
579
- paragraph_title_indexs = []
580
-
581
- layout_det_res_list, _ = _remove_overlap_blocks(
582
- deepcopy(layout_det_res["boxes"]),
583
- threshold=0.5,
584
- smaller=True,
585
- )
586
-
587
- for box_idx, box_info in enumerate(layout_det_res_list):
588
- block_bbox = box_info["coordinate"]
589
- label = box_info["label"]
590
- rec_res = {"boxes": [], "rec_texts": [], "rec_labels": [], "flag": False}
591
- seg_start_coordinate = float("inf")
592
- seg_end_coordinate = float("-inf")
593
- num_of_lines = 1
594
-
595
- if label == "doc_title":
596
- with_doc_title = True
597
- elif label == "paragraph_title":
598
- paragraph_title_indexs.append(box_idx)
599
-
600
- block_area = (block_bbox[2] - block_bbox[0]) * (block_bbox[3] - block_bbox[1])
601
- max_block_area = max(max_block_area, block_area)
602
-
603
- if label == "table":
604
- for table_res in table_res_list:
605
- if len(table_res["cell_box_list"]) == 0:
606
- continue
607
- if (
608
- _calculate_overlap_area_div_minbox_area_ratio(
609
- block_bbox, table_res["cell_box_list"][0]
610
- )
611
- > 0.5
612
- ):
613
- single_block_layout_parsing_res.append(
614
- {
615
- "block_label": label,
616
- "block_content": table_res["pred_html"],
617
- "block_bbox": block_bbox,
618
- },
619
- )
620
- break
621
- elif label == "seal":
622
- if len(seal_res_list) > 0:
623
- single_block_layout_parsing_res.append(
624
- {
625
- "block_label": label,
626
- "block_content": _process_text(
627
- ", ".join(seal_res_list[seal_index]["rec_texts"])
628
- ),
629
- "block_bbox": block_bbox,
630
- },
631
- )
632
- seal_index += 1
633
- else:
634
- overall_text_boxes = overall_ocr_res["rec_boxes"]
635
- for box_no in range(len(overall_text_boxes)):
636
- if (
637
- _calculate_overlap_area_div_minbox_area_ratio(
638
- block_bbox, overall_text_boxes[box_no]
639
- )
640
- > 0.5
641
- ):
642
- rec_res["boxes"].append(overall_text_boxes[box_no])
643
- rec_res["rec_texts"].append(
644
- overall_ocr_res["rec_texts"][box_no],
645
- )
646
- rec_res["rec_labels"].append(
647
- overall_ocr_res["rec_labels"][box_no],
648
- )
649
- rec_res["flag"] = True
650
-
651
- if rec_res["flag"]:
652
- rec_res, num_of_lines = _sort_ocr_res_by_y_projection(
653
- input_img, general_ocr_pipeline, label, block_bbox, rec_res, 0.7
654
- )
655
- seg_start_coordinate = rec_res["boxes"][0][0]
656
- seg_end_coordinate = rec_res["boxes"][-1][2]
657
- if label == "formula":
658
- rec_res["rec_texts"] = [
659
- rec_res_text.replace("$", "")
660
- for rec_res_text in rec_res["rec_texts"]
661
- ]
662
-
663
- if label in ["chart", "image"]:
664
- x_min, y_min, x_max, y_max = list(map(int, block_bbox))
665
- img_path = f"imgs/img_in_table_box_{x_min}_{y_min}_{x_max}_{y_max}.jpg"
666
- img = Image.fromarray(input_img[y_min:y_max, x_min:x_max, ::-1])
667
- single_block_layout_parsing_res.append(
668
- {
669
- "block_label": label,
670
- "block_content": _process_text("".join(rec_res["rec_texts"])),
671
- "block_image": {img_path: img},
672
- "block_bbox": block_bbox,
673
- },
674
- )
675
- else:
676
- if label in ["doc_title"]:
677
- content = " ".join(rec_res["rec_texts"])
678
- elif label in ["content"]:
679
- content = "\n".join(rec_res["rec_texts"])
443
+ for span in line:
444
+ if span[2] == "formula" and block_label != "formula":
445
+ formula_rec = span[1]
446
+ if not formula_rec.startswith("$") and not formula_rec.endswith("$"):
447
+ if len(line) > 1:
448
+ span[1] = f"${span[1]}$"
680
449
  else:
681
- content = "".join(rec_res["rec_texts"])
682
- if label != "reference":
683
- content = _process_text(content)
684
- single_block_layout_parsing_res.append(
685
- {
686
- "block_label": label,
687
- "block_content": content,
688
- "block_bbox": block_bbox,
689
- "seg_start_coordinate": seg_start_coordinate,
690
- "seg_end_coordinate": seg_end_coordinate,
691
- "num_of_lines": num_of_lines,
692
- "block_area": block_area,
693
- },
694
- )
450
+ span[1] = f"\n${span[1]}$"
451
+
452
+ line_text = ""
453
+ for span in line:
454
+ _, text, label = span
455
+ line_text += text
456
+ if len(text) > 0 and is_english_letter(line_text[-1]) or label == "formula":
457
+ line_text += " "
458
+
459
+ if text_direction == "horizontal":
460
+ text_start_index = 0
461
+ text_stop_index = 2
462
+ else:
463
+ text_start_index = 1
464
+ text_stop_index = 3
695
465
 
466
+ need_new_line = False
696
467
  if (
697
- not with_doc_title
698
- and len(paragraph_title_indexs) == 1
699
- and single_block_layout_parsing_res[paragraph_title_indexs[0]].get(
700
- "block_area", 0
701
- )
702
- > max_block_area * 0.3
468
+ len(line_text) > 0
469
+ and not is_english_letter(line_text[-1])
470
+ and not is_non_breaking_punctuation(line_text[-1])
703
471
  ):
704
- single_block_layout_parsing_res[paragraph_title_indexs[0]][
705
- "block_label"
706
- ] = "doc_title"
707
-
708
- if len(layout_det_res_list) == 0:
709
- for ocr_rec_box, ocr_rec_text in zip(
710
- overall_ocr_res["rec_boxes"], overall_ocr_res["rec_texts"]
711
- ):
712
- single_block_layout_parsing_res.append(
713
- {
714
- "block_label": "text",
715
- "block_content": ocr_rec_text,
716
- "block_bbox": ocr_rec_box,
717
- "seg_start_coordinate": ocr_rec_box[0],
718
- "seg_end_coordinate": ocr_rec_box[2],
719
- },
472
+ if (
473
+ text_direction == "horizontal"
474
+ and block_stop_coordinate - last_span_box[text_stop_index] > line_gap_limit
475
+ ) or (
476
+ text_direction == "vertical"
477
+ and (
478
+ block_stop_coordinate - last_span_box[text_stop_index] > line_gap_limit
479
+ or first_span_box[1] - block_start_coordinate > line_gap_limit
720
480
  )
481
+ ):
482
+ need_new_line = True
483
+
484
+ if line_text.endswith("-"):
485
+ line_text = line_text[:-1]
486
+ elif (
487
+ len(line_text) > 0 and is_english_letter(line_text[-1])
488
+ ) or line_text.endswith("$"):
489
+ line_text += " "
490
+ elif (
491
+ len(line_text) > 0
492
+ and not is_english_letter(line_text[-1])
493
+ and not is_non_breaking_punctuation(line_text[-1])
494
+ and not is_numeric(line_text[-1])
495
+ ) or text_direction == "vertical":
496
+ if block_stop_coordinate - last_span_box[text_stop_index] > block_width * 0.4:
497
+ line_text += "\n"
498
+ if (
499
+ first_span_box[text_start_index] - block_start_coordinate
500
+ > block_width * 0.4
501
+ ):
502
+ line_text = "\n" + line_text
721
503
 
722
- single_block_layout_parsing_res = get_layout_ordering(
723
- single_block_layout_parsing_res,
724
- no_mask_labels=[
725
- "text",
726
- "formula",
727
- "algorithm",
728
- "reference",
729
- "content",
730
- "abstract",
731
- ],
732
- )
733
-
734
- return single_block_layout_parsing_res
504
+ return line_text, need_new_line
735
505
 
736
506
 
737
- def _projection_by_bboxes(boxes: np.ndarray, axis: int) -> np.ndarray:
507
+ def split_boxes_by_projection(spans: List[List[int]], direction, offset=1e-5):
738
508
  """
739
- Generate a 1D projection histogram from bounding boxes along a specified axis.
509
+ Check if there is any complete containment in the x-direction
510
+ between the bounding boxes and split the containing box accordingly.
740
511
 
741
512
  Args:
742
- boxes: A (N, 4) array of bounding boxes defined by [x_min, y_min, x_max, y_max].
743
- axis: Axis for projection; 0 for horizontal (x-axis), 1 for vertical (y-axis).
744
-
513
+ spans (list of lists): Each element is a list containing an ndarray of length 4, a text string, and a label.
514
+ direction: 'horizontal' or 'vertical', indicating whether the spans are arranged horizontally or vertically.
515
+ offset (float): A small offset value to ensure that the split boxes are not too close to the original boxes.
745
516
  Returns:
746
- A 1D numpy array representing the projection histogram based on bounding box intervals.
747
- """
748
- assert axis in [0, 1]
749
- max_length = np.max(boxes[:, axis::2])
750
- projection = np.zeros(max_length, dtype=int)
751
-
752
- # Increment projection histogram over the interval defined by each bounding box
753
- for start, end in boxes[:, axis::2]:
754
- projection[start:end] += 1
755
-
756
- return projection
757
-
758
-
759
- def _split_projection_profile(arr_values: np.ndarray, min_value: float, min_gap: float):
517
+ A new list of boxes, including split boxes, with the same `rec_text` and `label` attributes.
760
518
  """
761
- Split the projection profile into segments based on specified thresholds.
762
-
763
- Args:
764
- arr_values: 1D array representing the projection profile.
765
- min_value: Minimum value threshold to consider a profile segment significant.
766
- min_gap: Minimum gap width to consider a separation between segments.
767
519
 
768
- Returns:
769
- A tuple of start and end indices for each segment that meets the criteria.
770
- """
771
- # Identify indices where the projection exceeds the minimum value
772
- significant_indices = np.where(arr_values > min_value)[0]
773
- if not len(significant_indices):
774
- return
775
-
776
- # Calculate gaps between significant indices
777
- index_diffs = significant_indices[1:] - significant_indices[:-1]
778
- gap_indices = np.where(index_diffs > min_gap)[0]
779
-
780
- # Determine start and end indices of segments
781
- segment_starts = np.insert(
782
- significant_indices[gap_indices + 1],
783
- 0,
784
- significant_indices[0],
785
- )
786
- segment_ends = np.append(
787
- significant_indices[gap_indices],
788
- significant_indices[-1] + 1,
789
- )
520
+ def is_projection_contained(box_a, box_b, start_idx, end_idx):
521
+ """Check if box_a completely contains box_b in the x-direction."""
522
+ return box_a[start_idx] <= box_b[start_idx] and box_a[end_idx] >= box_b[end_idx]
790
523
 
791
- return segment_starts, segment_ends
524
+ new_boxes = []
525
+ if direction == "horizontal":
526
+ projection_start_index, projection_end_index = 0, 2
527
+ else:
528
+ projection_start_index, projection_end_index = 1, 3
792
529
 
530
+ for i in range(len(spans)):
531
+ span = spans[i]
532
+ is_split = False
533
+ for j in range(i, len(spans)):
534
+ box_b = spans[j][0]
535
+ box_a, text, label = span
536
+ if is_projection_contained(
537
+ box_a, box_b, projection_start_index, projection_end_index
538
+ ):
539
+ is_split = True
540
+ # Split box_a based on the x-coordinates of box_b
541
+ if box_a[projection_start_index] < box_b[projection_start_index]:
542
+ w = (
543
+ box_b[projection_start_index]
544
+ - offset
545
+ - box_a[projection_start_index]
546
+ )
547
+ if w > 1:
548
+ new_bbox = box_a.copy()
549
+ new_bbox[projection_end_index] = (
550
+ box_b[projection_start_index] - offset
551
+ )
552
+ new_boxes.append(
553
+ [
554
+ np.array(new_bbox),
555
+ text,
556
+ label,
557
+ ]
558
+ )
559
+ if box_a[projection_end_index] > box_b[projection_end_index]:
560
+ w = (
561
+ box_a[projection_end_index]
562
+ - box_b[projection_end_index]
563
+ + offset
564
+ )
565
+ if w > 1:
566
+ box_a[projection_start_index] = (
567
+ box_b[projection_end_index] + offset
568
+ )
569
+ span = [
570
+ np.array(box_a),
571
+ text,
572
+ label,
573
+ ]
574
+ if j == len(spans) - 1 and is_split:
575
+ new_boxes.append(span)
576
+ if not is_split:
577
+ new_boxes.append(span)
793
578
 
794
- def _recursive_yx_cut(
795
- boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1
796
- ):
797
- """
798
- Recursively project and segment bounding boxes, starting with Y-axis and followed by X-axis.
579
+ return new_boxes
799
580
 
800
- Args:
801
- boxes: A (N, 4) array representing bounding boxes.
802
- indices: List of indices indicating the original position of boxes.
803
- res: List to store indices of the final segmented bounding boxes.
804
- min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1.
805
581
 
806
- Returns:
807
- None: This function modifies the `res` list in place.
582
+ def remove_extra_space(input_text: str) -> str:
808
583
  """
809
- assert len(boxes) == len(
810
- indices
811
- ), "The length of boxes and indices must be the same."
812
-
813
- # Sort by y_min for Y-axis projection
814
- y_sorted_indices = boxes[:, 1].argsort()
815
- y_sorted_boxes = boxes[y_sorted_indices]
816
- y_sorted_indices = np.array(indices)[y_sorted_indices]
817
-
818
- # Perform Y-axis projection
819
- y_projection = _projection_by_bboxes(boxes=y_sorted_boxes, axis=1)
820
- y_intervals = _split_projection_profile(y_projection, 0, 1)
821
-
822
- if not y_intervals:
823
- return
824
-
825
- # Process each segment defined by Y-axis projection
826
- for y_start, y_end in zip(*y_intervals):
827
- # Select boxes within the current y interval
828
- y_interval_indices = (y_start <= y_sorted_boxes[:, 1]) & (
829
- y_sorted_boxes[:, 1] < y_end
830
- )
831
- y_boxes_chunk = y_sorted_boxes[y_interval_indices]
832
- y_indices_chunk = y_sorted_indices[y_interval_indices]
833
-
834
- # Sort by x_min for X-axis projection
835
- x_sorted_indices = y_boxes_chunk[:, 0].argsort()
836
- x_sorted_boxes_chunk = y_boxes_chunk[x_sorted_indices]
837
- x_sorted_indices_chunk = y_indices_chunk[x_sorted_indices]
838
-
839
- # Perform X-axis projection
840
- x_projection = _projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0)
841
- x_intervals = _split_projection_profile(x_projection, 0, min_gap)
842
-
843
- if not x_intervals:
844
- continue
845
-
846
- # If X-axis cannot be further segmented, add current indices to results
847
- if len(x_intervals[0]) == 1:
848
- res.extend(x_sorted_indices_chunk)
849
- continue
850
-
851
- # Recursively process each segment defined by X-axis projection
852
- for x_start, x_end in zip(*x_intervals):
853
- x_interval_indices = (x_start <= x_sorted_boxes_chunk[:, 0]) & (
854
- x_sorted_boxes_chunk[:, 0] < x_end
855
- )
856
- _recursive_yx_cut(
857
- x_sorted_boxes_chunk[x_interval_indices],
858
- x_sorted_indices_chunk[x_interval_indices],
859
- res,
860
- )
861
-
584
+ Process the input text to handle spaces.
862
585
 
863
- def _recursive_xy_cut(
864
- boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1
865
- ):
866
- """
867
- Recursively performs X-axis projection followed by Y-axis projection to segment bounding boxes.
586
+ The function removes multiple consecutive spaces between Chinese characters and ensures that
587
+ only a single space is retained between Chinese and non-Chinese characters.
868
588
 
869
589
  Args:
870
- boxes: A (N, 4) array representing bounding boxes with [x_min, y_min, x_max, y_max].
871
- indices: A list of indices representing the position of boxes in the original data.
872
- res: A list to store indices of bounding boxes that meet the criteria.
873
- min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1.
590
+ input_text (str): The text to be processed.
874
591
 
875
592
  Returns:
876
- None: This function modifies the `res` list in place.
593
+ str: The processed text with properly formatted spaces.
877
594
  """
878
- # Ensure boxes and indices have the same length
879
- assert len(boxes) == len(
880
- indices
881
- ), "The length of boxes and indices must be the same."
882
-
883
- # Sort by x_min to prepare for X-axis projection
884
- x_sorted_indices = boxes[:, 0].argsort()
885
- x_sorted_boxes = boxes[x_sorted_indices]
886
- x_sorted_indices = np.array(indices)[x_sorted_indices]
887
-
888
- # Perform X-axis projection
889
- x_projection = _projection_by_bboxes(boxes=x_sorted_boxes, axis=0)
890
- x_intervals = _split_projection_profile(x_projection, 0, 1)
891
-
892
- if not x_intervals:
893
- return
894
-
895
- # Process each segment defined by X-axis projection
896
- for x_start, x_end in zip(*x_intervals):
897
- # Select boxes within the current x interval
898
- x_interval_indices = (x_start <= x_sorted_boxes[:, 0]) & (
899
- x_sorted_boxes[:, 0] < x_end
900
- )
901
- x_boxes_chunk = x_sorted_boxes[x_interval_indices]
902
- x_indices_chunk = x_sorted_indices[x_interval_indices]
903
-
904
- # Sort selected boxes by y_min to prepare for Y-axis projection
905
- y_sorted_indices = x_boxes_chunk[:, 1].argsort()
906
- y_sorted_boxes_chunk = x_boxes_chunk[y_sorted_indices]
907
- y_sorted_indices_chunk = x_indices_chunk[y_sorted_indices]
908
-
909
- # Perform Y-axis projection
910
- y_projection = _projection_by_bboxes(boxes=y_sorted_boxes_chunk, axis=1)
911
- y_intervals = _split_projection_profile(y_projection, 0, min_gap)
912
-
913
- if not y_intervals:
914
- continue
915
-
916
- # If Y-axis cannot be further segmented, add current indices to results
917
- if len(y_intervals[0]) == 1:
918
- res.extend(y_sorted_indices_chunk)
919
- continue
920
-
921
- # Recursively process each segment defined by Y-axis projection
922
- for y_start, y_end in zip(*y_intervals):
923
- y_interval_indices = (y_start <= y_sorted_boxes_chunk[:, 1]) & (
924
- y_sorted_boxes_chunk[:, 1] < y_end
925
- )
926
- _recursive_xy_cut(
927
- y_sorted_boxes_chunk[y_interval_indices],
928
- y_sorted_indices_chunk[y_interval_indices],
929
- res,
930
- )
931
595
 
596
+ # Remove spaces between Chinese characters
597
+ text_without_spaces = re.sub(
598
+ r"(?<=[\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff])", "", input_text
599
+ )
932
600
 
933
- def sort_by_xycut(
934
- block_bboxes: Union[np.ndarray, List[List[int]]],
935
- direction: int = 0,
936
- min_gap: int = 1,
937
- ) -> List[int]:
938
- """
939
- Sort bounding boxes using recursive XY cut method based on the specified direction.
601
+ # Ensure single space between Chinese and non-Chinese characters
602
+ text_with_single_spaces = re.sub(
603
+ r"(?<=[\u4e00-\u9fff])\s+(?=[^\u4e00-\u9fff])|(?<=[^\u4e00-\u9fff])\s+(?=[\u4e00-\u9fff])",
604
+ " ",
605
+ text_without_spaces,
606
+ )
940
607
 
941
- Args:
942
- block_bboxes (Union[np.ndarray, List[List[int]]]): An array or list of bounding boxes,
943
- where each box is represented as
944
- [x_min, y_min, x_max, y_max].
945
- direction (int): Direction for the initial cut. Use 1 for Y-axis first and 0 for X-axis first.
946
- Defaults to 0.
947
- min_gap (int): Minimum gap width to consider a separation between segments. Defaults to 1.
608
+ # Reduce any remaining consecutive spaces to a single space
609
+ final_text = re.sub(r"\s+", " ", text_with_single_spaces).strip()
948
610
 
949
- Returns:
950
- List[int]: A list of indices representing the order of sorted bounding boxes.
951
- """
952
- block_bboxes = np.asarray(block_bboxes).astype(int)
953
- res = []
954
- if direction == 1:
955
- _recursive_yx_cut(
956
- block_bboxes,
957
- np.arange(len(block_bboxes)).tolist(),
958
- res,
959
- min_gap,
960
- )
961
- else:
962
- _recursive_xy_cut(
963
- block_bboxes,
964
- np.arange(len(block_bboxes)).tolist(),
965
- res,
966
- min_gap,
967
- )
968
- return res
611
+ return final_text
969
612
 
970
613
 
971
614
  def gather_imgs(original_img, layout_det_objs):
972
615
  imgs_in_doc = []
973
616
  for det_obj in layout_det_objs:
974
- if det_obj["label"] in ("image", "chart"):
617
+ if det_obj["label"] in BLOCK_LABEL_MAP["image_labels"]:
618
+ label = det_obj["label"]
975
619
  x_min, y_min, x_max, y_max = list(map(int, det_obj["coordinate"]))
976
- img_path = f"imgs/img_in_table_box_{x_min}_{y_min}_{x_max}_{y_max}.jpg"
620
+ img_path = f"imgs/img_in_{label}_box_{x_min}_{y_min}_{x_max}_{y_max}.jpg"
977
621
  img = Image.fromarray(original_img[y_min:y_max, x_min:x_max, ::-1])
978
622
  imgs_in_doc.append(
979
623
  {
@@ -1007,10 +651,10 @@ def _get_minbox_if_overlap_by_ratio(
1007
651
  The selected bounding box or None if the overlap ratio is not exceeded.
1008
652
  """
1009
653
  # Calculate the areas of both bounding boxes
1010
- area1 = (bbox1[2] - bbox1[0]) * (bbox1[3] - bbox1[1])
1011
- area2 = (bbox2[2] - bbox2[0]) * (bbox2[3] - bbox2[1])
654
+ area1 = caculate_bbox_area(bbox1)
655
+ area2 = caculate_bbox_area(bbox2)
1012
656
  # Calculate the overlap ratio using a helper function
1013
- overlap_ratio = _calculate_overlap_area_div_minbox_area_ratio(bbox1, bbox2)
657
+ overlap_ratio = calculate_overlap_ratio(bbox1, bbox2, mode="small")
1014
658
  # Check if the overlap ratio exceeds the threshold
1015
659
  if overlap_ratio > ratio:
1016
660
  if (area1 <= area2 and smaller) or (area1 >= area2 and not smaller):
@@ -1020,7 +664,7 @@ def _get_minbox_if_overlap_by_ratio(
1020
664
  return None
1021
665
 
1022
666
 
1023
- def _remove_overlap_blocks(
667
+ def remove_overlap_blocks(
1024
668
  blocks: List[Dict[str, List[int]]], threshold: float = 0.65, smaller: bool = True
1025
669
  ) -> Tuple[List[Dict[str, List[int]]], List[Dict[str, List[int]]]]:
1026
670
  """
@@ -1035,13 +679,13 @@ def _remove_overlap_blocks(
1035
679
  Tuple[List[Dict[str, List[int]]], List[Dict[str, List[int]]]]:
1036
680
  A tuple containing the updated list of blocks and a list of dropped blocks.
1037
681
  """
1038
- dropped_blocks = []
1039
682
  dropped_indexes = set()
1040
-
683
+ blocks = deepcopy(blocks)
684
+ overlap_image_blocks = []
1041
685
  # Iterate over each pair of blocks to find overlaps
1042
- for i, block1 in enumerate(blocks):
1043
- for j in range(i + 1, len(blocks)):
1044
- block2 = blocks[j]
686
+ for i, block1 in enumerate(blocks["boxes"]):
687
+ for j in range(i + 1, len(blocks["boxes"])):
688
+ block2 = blocks["boxes"][j]
1045
689
  # Skip blocks that are already marked for removal
1046
690
  if i in dropped_indexes or j in dropped_indexes:
1047
691
  continue
@@ -1053,1332 +697,255 @@ def _remove_overlap_blocks(
1053
697
  smaller=smaller,
1054
698
  )
1055
699
  if overlap_box_index is not None:
1056
- # Determine which block to remove based on overlap_box_index
1057
- if overlap_box_index == 1:
1058
- drop_index = i
700
+ is_block1_image = block1["label"] == "image"
701
+ is_block2_image = block2["label"] == "image"
702
+
703
+ if is_block1_image != is_block2_image:
704
+ # 如果只有一个块在视觉标签中,删除在视觉标签中的那个块
705
+ drop_index = i if is_block1_image else j
706
+ overlap_image_blocks.append(blocks["boxes"][drop_index])
1059
707
  else:
1060
- drop_index = j
708
+ # 如果两个块都在或都不在视觉标签中,根据 overlap_box_index 决定删除哪个块
709
+ drop_index = i if overlap_box_index == 1 else j
710
+
1061
711
  dropped_indexes.add(drop_index)
1062
712
 
1063
713
  # Remove marked blocks from the original list
1064
714
  for index in sorted(dropped_indexes, reverse=True):
1065
- dropped_blocks.append(blocks[index])
1066
- del blocks[index]
1067
-
1068
- return blocks, dropped_blocks
1069
-
1070
-
1071
- def _get_text_median_width(blocks: List[Dict[str, any]]) -> float:
1072
- """
1073
- Calculate the median width of blocks labeled as "text".
1074
-
1075
- Args:
1076
- blocks (List[Dict[str, any]]): List of block dictionaries, each containing a 'block_bbox' and 'label'.
1077
-
1078
- Returns:
1079
- float: The median width of text blocks, or infinity if no text blocks are found.
1080
- """
1081
- widths = [
1082
- block["block_bbox"][2] - block["block_bbox"][0]
1083
- for block in blocks
1084
- if block.get("block_label") == "text"
1085
- ]
1086
- return np.median(widths) if widths else float("inf")
1087
-
1088
-
1089
- def _get_layout_property(
1090
- blocks: List[Dict[str, any]],
1091
- median_width: float,
1092
- no_mask_labels: List[str],
1093
- threshold: float = 0.8,
1094
- ) -> Tuple[List[Dict[str, any]], bool]:
1095
- """
1096
- Determine the layout (single or double column) of text blocks.
1097
-
1098
- Args:
1099
- blocks (List[Dict[str, any]]): List of block dictionaries containing 'label' and 'block_bbox'.
1100
- median_width (float): Median width of text blocks.
1101
- no_mask_labels (List[str]): Labels of blocks to be considered for layout analysis.
1102
- threshold (float): Threshold for determining layout overlap.
1103
-
1104
- Returns:
1105
- Tuple[List[Dict[str, any]], bool]: Updated list of blocks with layout information and a boolean
1106
- indicating if the double layout area is greater than the single layout area.
1107
- """
1108
- blocks.sort(
1109
- key=lambda x: (
1110
- x["block_bbox"][0],
1111
- (x["block_bbox"][2] - x["block_bbox"][0]),
1112
- ),
1113
- )
1114
- check_single_layout = {}
1115
- page_min_x, page_max_x = float("inf"), 0
1116
- double_label_area = 0
1117
- single_label_area = 0
1118
-
1119
- for i, block in enumerate(blocks):
1120
- page_min_x = min(page_min_x, block["block_bbox"][0])
1121
- page_max_x = max(page_max_x, block["block_bbox"][2])
1122
- page_width = page_max_x - page_min_x
1123
-
1124
- for i, block in enumerate(blocks):
1125
- if block["block_label"] not in no_mask_labels:
1126
- continue
1127
-
1128
- x_min_i, _, x_max_i, _ = block["block_bbox"]
1129
- layout_length = x_max_i - x_min_i
1130
- cover_count, cover_with_threshold_count = 0, 0
1131
- match_block_with_threshold_indexes = []
1132
-
1133
- for j, other_block in enumerate(blocks):
1134
- if i == j or other_block["block_label"] not in no_mask_labels:
1135
- continue
1136
-
1137
- x_min_j, _, x_max_j, _ = other_block["block_bbox"]
1138
- x_match_min, x_match_max = max(
1139
- x_min_i,
1140
- x_min_j,
1141
- ), min(x_max_i, x_max_j)
1142
- match_block_iou = (x_match_max - x_match_min) / (x_max_j - x_min_j)
1143
-
1144
- if match_block_iou > 0:
1145
- cover_count += 1
1146
- if match_block_iou > threshold:
1147
- cover_with_threshold_count += 1
1148
- match_block_with_threshold_indexes.append(
1149
- (j, match_block_iou),
1150
- )
1151
- x_min_i = x_match_max
1152
- if x_min_i >= x_max_i:
1153
- break
1154
-
1155
- if (
1156
- layout_length > median_width * 1.3
1157
- and (cover_with_threshold_count >= 2 or cover_count >= 2)
1158
- ) or layout_length > 0.6 * page_width:
1159
- # if layout_length > median_width * 1.3 and (cover_with_threshold_count >= 2):
1160
- block["layout"] = "double"
1161
- double_label_area += (block["block_bbox"][2] - block["block_bbox"][0]) * (
1162
- block["block_bbox"][3] - block["block_bbox"][1]
1163
- )
1164
- else:
1165
- block["layout"] = "single"
1166
- check_single_layout[i] = match_block_with_threshold_indexes
1167
-
1168
- # Check single-layout block
1169
- for i, single_layout in check_single_layout.items():
1170
- if single_layout:
1171
- index, match_iou = single_layout[-1]
1172
- if match_iou > 0.9 and blocks[index]["layout"] == "double":
1173
- blocks[i]["layout"] = "double"
1174
- double_label_area += (
1175
- blocks[i]["block_bbox"][2] - blocks[i]["block_bbox"][0]
1176
- ) * (blocks[i]["block_bbox"][3] - blocks[i]["block_bbox"][1])
1177
- else:
1178
- single_label_area += (
1179
- blocks[i]["block_bbox"][2] - blocks[i]["block_bbox"][0]
1180
- ) * (blocks[i]["block_bbox"][3] - blocks[i]["block_bbox"][1])
715
+ del blocks["boxes"][index]
1181
716
 
1182
- return blocks, (double_label_area > single_label_area)
717
+ return blocks
1183
718
 
1184
719
 
1185
- def _get_bbox_direction(input_bbox: List[float], ratio: float = 1.0) -> bool:
720
+ def get_bbox_intersection(bbox1, bbox2, return_format="bbox"):
1186
721
  """
1187
- Determine if a bounding box is horizontal or vertical.
1188
-
1189
- Args:
1190
- input_bbox (List[float]): Bounding box [x_min, y_min, x_max, y_max].
1191
- ratio (float): Ratio for determining orientation. Default is 1.0.
1192
-
1193
- Returns:
1194
- bool: True if the bounding box is considered horizontal, False if vertical.
1195
- """
1196
- width = input_bbox[2] - input_bbox[0]
1197
- height = input_bbox[3] - input_bbox[1]
1198
- return width * ratio >= height
1199
-
1200
-
1201
- def _get_projection_iou(
1202
- input_bbox: List[float], match_bbox: List[float], is_horizontal: bool = True
1203
- ) -> float:
1204
- """
1205
- Calculate the IoU of lines between two bounding boxes.
722
+ Compute the intersection of two bounding boxes, supporting both 4-coordinate and 8-coordinate formats.
1206
723
 
1207
724
  Args:
1208
- input_bbox (List[float]): First bounding box [x_min, y_min, x_max, y_max].
1209
- match_bbox (List[float]): Second bounding box [x_min, y_min, x_max, y_max].
1210
- is_horizontal (bool): Whether to compare horizontally or vertically.
725
+ bbox1 (tuple): The first bounding box, either in 4-coordinate format (x_min, y_min, x_max, y_max)
726
+ or 8-coordinate format (x1, y1, x2, y2, x3, y3, x4, y4).
727
+ bbox2 (tuple): The second bounding box in the same format as bbox1.
728
+ return_format (str): The format of the output intersection, either 'bbox' or 'poly'.
1211
729
 
1212
730
  Returns:
1213
- float: Line IoU. Returns 0 if there is no overlap.
1214
- """
1215
- if is_horizontal:
1216
- x_match_min = max(input_bbox[0], match_bbox[0])
1217
- x_match_max = min(input_bbox[2], match_bbox[2])
1218
- overlap = max(0, x_match_max - x_match_min)
1219
- input_width = min(input_bbox[2] - input_bbox[0], match_bbox[2] - match_bbox[0])
731
+ tuple or None: The intersection bounding box in the specified format, or None if there is no intersection.
732
+ """
733
+ bbox1 = np.array(bbox1)
734
+ bbox2 = np.array(bbox2)
735
+ # Convert both bounding boxes to rectangles
736
+ rect1 = bbox1 if len(bbox1.shape) == 1 else convert_points_to_boxes([bbox1])[0]
737
+ rect2 = bbox2 if len(bbox2.shape) == 1 else convert_points_to_boxes([bbox2])[0]
738
+
739
+ # Calculate the intersection rectangle
740
+
741
+ x_min_inter = max(rect1[0], rect2[0])
742
+ y_min_inter = max(rect1[1], rect2[1])
743
+ x_max_inter = min(rect1[2], rect2[2])
744
+ y_max_inter = min(rect1[3], rect2[3])
745
+
746
+ # Check if there is an intersection
747
+ if x_min_inter >= x_max_inter or y_min_inter >= y_max_inter:
748
+ return None
749
+
750
+ if return_format == "bbox":
751
+ return np.array([x_min_inter, y_min_inter, x_max_inter, y_max_inter])
752
+ elif return_format == "poly":
753
+ return np.array(
754
+ [
755
+ [x_min_inter, y_min_inter],
756
+ [x_max_inter, y_min_inter],
757
+ [x_max_inter, y_max_inter],
758
+ [x_min_inter, y_max_inter],
759
+ ],
760
+ dtype=np.int16,
761
+ )
1220
762
  else:
1221
- y_match_min = max(input_bbox[1], match_bbox[1])
1222
- y_match_max = min(input_bbox[3], match_bbox[3])
1223
- overlap = max(0, y_match_max - y_match_min)
1224
- input_width = min(input_bbox[3] - input_bbox[1], match_bbox[3] - match_bbox[1])
1225
-
1226
- return overlap / input_width if input_width > 0 else 0.0
763
+ raise ValueError("return_format must be either 'bbox' or 'poly'.")
1227
764
 
1228
765
 
1229
- def _get_sub_category(
1230
- blocks: List[Dict[str, Any]], title_labels: List[str]
1231
- ) -> Tuple[List[Dict[str, Any]], List[float]]:
766
+ def shrink_supplement_region_bbox(
767
+ supplement_region_bbox,
768
+ ref_region_bbox,
769
+ image_width,
770
+ image_height,
771
+ block_idxes_set,
772
+ block_bboxes,
773
+ ) -> List:
1232
774
  """
1233
- Determine the layout of title and text blocks and collect pre_cuts.
775
+ Shrink the supplement region bbox according to the reference region bbox and match the block bboxes.
1234
776
 
1235
777
  Args:
1236
- blocks (List[Dict[str, Any]]): List of block dictionaries.
1237
- title_labels (List[str]): List of labels considered as titles.
778
+ supplement_region_bbox (list): The supplement region bbox.
779
+ ref_region_bbox (list): The reference region bbox.
780
+ image_width (int): The width of the image.
781
+ image_height (int): The height of the image.
782
+ block_idxes_set (set): The indexes of the blocks that intersect with the region bbox.
783
+ block_bboxes (dict): The dictionary of block bboxes.
1238
784
 
1239
785
  Returns:
1240
- List[Dict[str, Any]]: Updated list of blocks with title-text layout information.
1241
- Dict[float]: Dict of pre_cuts coordinates.
1242
- """
1243
-
1244
- sub_title_labels = ["paragraph_title"]
1245
- vision_labels = ["image", "table", "chart", "figure"]
1246
- vision_title_labels = ["figure_title", "chart_title", "table_title"]
1247
- all_labels = title_labels + sub_title_labels + vision_labels + vision_title_labels
1248
- special_pre_cut_labels = sub_title_labels
1249
-
1250
- # single doc title is irregular,pre cut not applicable
1251
- num_doc_title = 0
1252
- for block in blocks:
1253
- if block["block_label"] == "doc_title":
1254
- num_doc_title += 1
1255
- if num_doc_title == 2:
1256
- special_pre_cut_labels = title_labels + sub_title_labels
1257
- break
1258
- if len(blocks) == 0:
1259
- return blocks, {}
1260
-
1261
- min_x = min(block["block_bbox"][0] for block in blocks)
1262
- min_y = min(block["block_bbox"][1] for block in blocks)
1263
- max_x = max(block["block_bbox"][2] for block in blocks)
1264
- max_y = max(block["block_bbox"][3] for block in blocks)
1265
- region_bbox = (min_x, min_y, max_x, max_y)
1266
- region_x_center = (region_bbox[0] + region_bbox[2]) / 2
1267
- region_y_center = (region_bbox[1] + region_bbox[3]) / 2
1268
- region_width = region_bbox[2] - region_bbox[0]
1269
- region_height = region_bbox[3] - region_bbox[1]
1270
-
1271
- pre_cuts = {}
1272
-
1273
- for i, block1 in enumerate(blocks):
1274
- block1.setdefault("title_text", [])
1275
- block1.setdefault("sub_title", [])
1276
- block1.setdefault("vision_footnote", [])
1277
- block1.setdefault("sub_label", block1["block_label"])
1278
-
1279
- if block1["block_label"] not in all_labels:
1280
- continue
1281
-
1282
- bbox1 = block1["block_bbox"]
1283
- x1, y1, x2, y2 = bbox1
1284
- is_horizontal_1 = _get_bbox_direction(block1["block_bbox"])
1285
- left_up_title_text_distance = float("inf")
1286
- left_up_title_text_index = -1
1287
- left_up_title_text_direction = None
1288
- right_down_title_text_distance = float("inf")
1289
- right_down_title_text_index = -1
1290
- right_down_title_text_direction = None
1291
-
1292
- # pre-cuts
1293
- # Condition 1: Length is greater than half of the layout region
1294
- if is_horizontal_1:
1295
- block_length = x2 - x1
1296
- required_length = region_width / 2
1297
- else:
1298
- block_length = y2 - y1
1299
- required_length = region_height / 2
1300
- if block1["block_label"] in special_pre_cut_labels:
1301
- length_condition = True
1302
- else:
1303
- length_condition = block_length > required_length
1304
-
1305
- # Condition 2: Centered check (must be within ±20 in both horizontal and vertical directions)
1306
- block_x_center = (x1 + x2) / 2
1307
- block_y_center = (y1 + y2) / 2
1308
- tolerance_len = block_length // 5
1309
- if block1["block_label"] in special_pre_cut_labels:
1310
- tolerance_len = block_length // 10
1311
- if is_horizontal_1:
1312
- is_centered = abs(block_x_center - region_x_center) <= tolerance_len
1313
- else:
1314
- is_centered = abs(block_y_center - region_y_center) <= tolerance_len
1315
-
1316
- # Condition 3: Check for surrounding text
1317
- has_left_text = False
1318
- has_right_text = False
1319
- has_above_text = False
1320
- has_below_text = False
1321
- for block2 in blocks:
1322
- if block2["block_label"] != "text":
1323
- continue
1324
- bbox2 = block2["block_bbox"]
1325
- x1_2, y1_2, x2_2, y2_2 = bbox2
1326
- if is_horizontal_1:
1327
- if x2_2 <= x1 and not (y2_2 <= y1 or y1_2 >= y2):
1328
- has_left_text = True
1329
- if x1_2 >= x2 and not (y2_2 <= y1 or y1_2 >= y2):
1330
- has_right_text = True
1331
- else:
1332
- if y2_2 <= y1 and not (x2_2 <= x1 or x1_2 >= x2):
1333
- has_above_text = True
1334
- if y1_2 >= y2 and not (x2_2 <= x1 or x1_2 >= x2):
1335
- has_below_text = True
1336
-
1337
- if (is_horizontal_1 and has_left_text and has_right_text) or (
1338
- not is_horizontal_1 and has_above_text and has_below_text
1339
- ):
1340
- break
1341
-
1342
- no_text_on_sides = (
1343
- not (has_left_text or has_right_text)
1344
- if is_horizontal_1
1345
- else not (has_above_text or has_below_text)
1346
- )
1347
-
1348
- # Add coordinates if all conditions are met
1349
- if is_centered and length_condition and no_text_on_sides:
1350
- if is_horizontal_1:
1351
- pre_cuts.setdefault("y", []).append(y1)
1352
- else:
1353
- pre_cuts.setdefault("x", []).append(x1)
1354
-
1355
- for j, block2 in enumerate(blocks):
1356
- if i == j:
1357
- continue
1358
-
1359
- bbox2 = block2["block_bbox"]
1360
- x1_prime, y1_prime, x2_prime, y2_prime = bbox2
1361
- is_horizontal_2 = _get_bbox_direction(bbox2)
1362
- match_block_iou = _get_projection_iou(
1363
- bbox2,
1364
- bbox1,
1365
- is_horizontal_1,
786
+ list: The new region bbox and the matched block idxes.
787
+ """
788
+ x1, y1, x2, y2 = supplement_region_bbox
789
+ x1_prime, y1_prime, x2_prime, y2_prime = ref_region_bbox
790
+ index_conversion_map = {0: 2, 1: 3, 2: 0, 3: 1}
791
+ edge_distance_list = [
792
+ (x1_prime - x1) / image_width,
793
+ (y1_prime - y1) / image_height,
794
+ (x2 - x2_prime) / image_width,
795
+ (y2 - y2_prime) / image_height,
796
+ ]
797
+ edge_distance_list_tmp = edge_distance_list[:]
798
+ min_distance = min(edge_distance_list)
799
+ src_index = index_conversion_map[edge_distance_list.index(min_distance)]
800
+ if len(block_idxes_set) == 0:
801
+ return supplement_region_bbox, []
802
+ for _ in range(3):
803
+ dst_index = index_conversion_map[src_index]
804
+ tmp_region_bbox = supplement_region_bbox[:]
805
+ tmp_region_bbox[dst_index] = ref_region_bbox[src_index]
806
+ iner_block_idxes, split_block_idxes = [], []
807
+ for block_idx in block_idxes_set:
808
+ overlap_ratio = calculate_overlap_ratio(
809
+ tmp_region_bbox, block_bboxes[block_idx], mode="small"
1366
810
  )
1367
-
1368
- def distance_(is_horizontal, is_left_up):
1369
- if is_horizontal:
1370
- if is_left_up:
1371
- return (y1 - y2_prime + 2) // 5 + x1_prime / 5000
1372
- else:
1373
- return (y1_prime - y2 + 2) // 5 + x1_prime / 5000
1374
-
1375
- else:
1376
- if is_left_up:
1377
- return (x1 - x2_prime + 2) // 5 + y1_prime / 5000
1378
- else:
1379
- return (x1_prime - x2 + 2) // 5 + y1_prime / 5000
1380
-
1381
- block_iou_threshold = 0.1
1382
- if block1["block_label"] in sub_title_labels:
1383
- block_iou_threshold = 0.5
1384
-
1385
- if is_horizontal_1:
1386
- if match_block_iou >= block_iou_threshold:
1387
- left_up_distance = distance_(True, True)
1388
- right_down_distance = distance_(True, False)
1389
- if (
1390
- y2_prime <= y1
1391
- and left_up_distance <= left_up_title_text_distance
1392
- ):
1393
- left_up_title_text_distance = left_up_distance
1394
- left_up_title_text_index = j
1395
- left_up_title_text_direction = is_horizontal_2
1396
- elif (
1397
- y1_prime > y2
1398
- and right_down_distance < right_down_title_text_distance
1399
- ):
1400
- right_down_title_text_distance = right_down_distance
1401
- right_down_title_text_index = j
1402
- right_down_title_text_direction = is_horizontal_2
1403
- else:
1404
- if match_block_iou >= block_iou_threshold:
1405
- left_up_distance = distance_(False, True)
1406
- right_down_distance = distance_(False, False)
1407
- if (
1408
- x2_prime <= x1
1409
- and left_up_distance <= left_up_title_text_distance
1410
- ):
1411
- left_up_title_text_distance = left_up_distance
1412
- left_up_title_text_index = j
1413
- left_up_title_text_direction = is_horizontal_2
1414
- elif (
1415
- x1_prime > x2
1416
- and right_down_distance < right_down_title_text_distance
1417
- ):
1418
- right_down_title_text_distance = right_down_distance
1419
- right_down_title_text_index = j
1420
- right_down_title_text_direction = is_horizontal_2
1421
-
1422
- height = bbox1[3] - bbox1[1]
1423
- width = bbox1[2] - bbox1[0]
1424
- title_text_weight = [0.8, 0.8]
1425
-
1426
- title_text, sub_title, vision_footnote = [], [], []
1427
-
1428
- def get_sub_category_(
1429
- title_text_direction,
1430
- title_text_index,
1431
- label,
1432
- is_left_up=True,
1433
- ):
1434
- direction_ = [1, 3] if is_left_up else [2, 4]
1435
- if (
1436
- title_text_direction == is_horizontal_1
1437
- and title_text_index != -1
1438
- and (label == "text" or label == "paragraph_title")
811
+ if overlap_ratio > REGION_SETTINGS.get(
812
+ "match_block_overlap_ratio_threshold", 0.8
1439
813
  ):
1440
- bbox2 = blocks[title_text_index]["block_bbox"]
1441
- if is_horizontal_1:
1442
- height1 = bbox2[3] - bbox2[1]
1443
- width1 = bbox2[2] - bbox2[0]
1444
- if label == "text":
1445
- if (
1446
- _nearest_edge_distance(bbox1, bbox2)[0] <= 15
1447
- and block1["block_label"] in vision_labels
1448
- and width1 < width
1449
- and height1 < 0.5 * height
1450
- ):
1451
- blocks[title_text_index]["sub_label"] = "vision_footnote"
1452
- vision_footnote.append(bbox2)
1453
- elif (
1454
- height1 < height * title_text_weight[0]
1455
- and (width1 < width or width1 > 1.5 * width)
1456
- and block1["block_label"] in title_labels
1457
- ):
1458
- blocks[title_text_index]["sub_label"] = "title_text"
1459
- title_text.append((direction_[0], bbox2))
1460
- elif (
1461
- label == "paragraph_title"
1462
- and block1["block_label"] in sub_title_labels
1463
- ):
1464
- sub_title.append(bbox2)
1465
- else:
1466
- height1 = bbox2[3] - bbox2[1]
1467
- width1 = bbox2[2] - bbox2[0]
1468
- if label == "text":
1469
- if (
1470
- _nearest_edge_distance(bbox1, bbox2)[0] <= 15
1471
- and block1["block_label"] in vision_labels
1472
- and height1 < height
1473
- and width1 < 0.5 * width
1474
- ):
1475
- blocks[title_text_index]["sub_label"] = "vision_footnote"
1476
- vision_footnote.append(bbox2)
1477
- elif (
1478
- width1 < width * title_text_weight[1]
1479
- and block1["block_label"] in title_labels
1480
- ):
1481
- blocks[title_text_index]["sub_label"] = "title_text"
1482
- title_text.append((direction_[1], bbox2))
1483
- elif (
1484
- label == "paragraph_title"
1485
- and block1["block_label"] in sub_title_labels
1486
- ):
1487
- sub_title.append(bbox2)
1488
-
1489
- if (
1490
- is_horizontal_1
1491
- and abs(left_up_title_text_distance - right_down_title_text_distance) * 5
1492
- > height
1493
- ) or (
1494
- not is_horizontal_1
1495
- and abs(left_up_title_text_distance - right_down_title_text_distance) * 5
1496
- > width
1497
- ):
1498
- if left_up_title_text_distance < right_down_title_text_distance:
1499
- get_sub_category_(
1500
- left_up_title_text_direction,
1501
- left_up_title_text_index,
1502
- blocks[left_up_title_text_index]["block_label"],
1503
- True,
1504
- )
1505
- else:
1506
- get_sub_category_(
1507
- right_down_title_text_direction,
1508
- right_down_title_text_index,
1509
- blocks[right_down_title_text_index]["block_label"],
1510
- False,
1511
- )
1512
- else:
1513
- get_sub_category_(
1514
- left_up_title_text_direction,
1515
- left_up_title_text_index,
1516
- blocks[left_up_title_text_index]["block_label"],
1517
- True,
1518
- )
1519
- get_sub_category_(
1520
- right_down_title_text_direction,
1521
- right_down_title_text_index,
1522
- blocks[right_down_title_text_index]["block_label"],
1523
- False,
1524
- )
1525
-
1526
- if block1["block_label"] in title_labels:
1527
- if blocks[i].get("title_text") == []:
1528
- blocks[i]["title_text"] = title_text
1529
-
1530
- if block1["block_label"] in sub_title_labels:
1531
- if blocks[i].get("sub_title") == []:
1532
- blocks[i]["sub_title"] = sub_title
1533
-
1534
- if block1["block_label"] in vision_labels:
1535
- if blocks[i].get("vision_footnote") == []:
1536
- blocks[i]["vision_footnote"] = vision_footnote
1537
-
1538
- return blocks, pre_cuts
1539
-
1540
-
1541
- def get_layout_ordering(
1542
- parsing_res_list: List[Dict[str, Any]],
1543
- no_mask_labels: List[str] = [],
1544
- ) -> None:
1545
- """
1546
- Process layout parsing results to remove overlapping bounding boxes
1547
- and assign an ordering index based on their positions.
1548
-
1549
- Modifies:
1550
- The 'parsing_res_list' list by adding an 'index' to each block.
1551
-
1552
- Args:
1553
- parsing_res_list (List[Dict[str, Any]]): List of block dictionaries with 'block_bbox' and 'block_label'.
1554
- no_mask_labels (List[str]): Labels for which overlapping removal is not performed.
1555
- """
1556
- title_text_labels = ["doc_title"]
1557
- title_labels = ["doc_title", "paragraph_title"]
1558
- vision_labels = ["image", "table", "seal", "chart", "figure"]
1559
- vision_title_labels = ["table_title", "chart_title", "figure_title"]
1560
-
1561
- parsing_res_list, pre_cuts = _get_sub_category(parsing_res_list, title_text_labels)
1562
-
1563
- parsing_res_by_pre_cuts_list = []
1564
- if len(pre_cuts) > 0:
1565
- block_bboxes = [block["block_bbox"] for block in parsing_res_list]
1566
- for axis, cuts in pre_cuts.items():
1567
- axis_index = 1 if axis == "y" else 0
1568
-
1569
- max_val = max(bbox[axis_index + 2] for bbox in block_bboxes)
1570
-
1571
- intervals = []
1572
- prev = 0
1573
- for cut in sorted(cuts):
1574
- intervals.append((prev, cut))
1575
- prev = cut
1576
- intervals.append((prev, max_val))
1577
-
1578
- for start, end in intervals:
1579
- mask = [
1580
- (bbox[axis_index] >= start) and (bbox[axis_index] < end)
1581
- for bbox in block_bboxes
1582
- ]
1583
- parsing_res_by_pre_cuts_list.append(
1584
- [parsing_res_list[i] for i, m in enumerate(mask) if m]
1585
- )
1586
- else:
1587
- parsing_res_by_pre_cuts_list = [parsing_res_list]
1588
-
1589
- final_parsing_res_list = []
1590
- num_index = 0
1591
- num_sub_index = 0
1592
- for parsing_res_by_pre_cuts in parsing_res_by_pre_cuts_list:
1593
-
1594
- doc_flag = False
1595
- median_width = _get_text_median_width(parsing_res_by_pre_cuts)
1596
- parsing_res_by_pre_cuts, projection_direction = _get_layout_property(
1597
- parsing_res_by_pre_cuts,
1598
- median_width,
1599
- no_mask_labels=no_mask_labels,
1600
- threshold=0.3,
1601
- )
1602
- # Convert bounding boxes to float and remove overlaps
1603
- (
1604
- double_text_blocks,
1605
- title_text_blocks,
1606
- title_blocks,
1607
- vision_blocks,
1608
- vision_title_blocks,
1609
- vision_footnote_blocks,
1610
- other_blocks,
1611
- ) = ([], [], [], [], [], [], [])
1612
-
1613
- drop_indexes = []
1614
-
1615
- for index, block in enumerate(parsing_res_by_pre_cuts):
1616
- label = block["sub_label"]
1617
- block["block_bbox"] = list(map(int, block["block_bbox"]))
1618
-
1619
- if label == "doc_title":
1620
- doc_flag = True
1621
-
1622
- if label in no_mask_labels:
1623
- if block["layout"] == "double":
1624
- double_text_blocks.append(block)
1625
- drop_indexes.append(index)
1626
- elif label == "title_text":
1627
- title_text_blocks.append(block)
1628
- drop_indexes.append(index)
1629
- elif label == "vision_footnote":
1630
- vision_footnote_blocks.append(block)
1631
- drop_indexes.append(index)
1632
- elif label in vision_title_labels:
1633
- vision_title_blocks.append(block)
1634
- drop_indexes.append(index)
1635
- elif label in title_labels:
1636
- title_blocks.append(block)
1637
- drop_indexes.append(index)
1638
- elif label in vision_labels:
1639
- vision_blocks.append(block)
1640
- drop_indexes.append(index)
1641
- else:
1642
- other_blocks.append(block)
1643
- drop_indexes.append(index)
1644
-
1645
- for index in sorted(drop_indexes, reverse=True):
1646
- del parsing_res_by_pre_cuts[index]
1647
-
1648
- if len(parsing_res_by_pre_cuts) > 0:
1649
- # single text label
1650
- if (
1651
- len(double_text_blocks) > len(parsing_res_by_pre_cuts)
1652
- or projection_direction
814
+ iner_block_idxes.append(block_idx)
815
+ elif overlap_ratio > REGION_SETTINGS.get(
816
+ "split_block_overlap_ratio_threshold", 0.4
1653
817
  ):
1654
- parsing_res_by_pre_cuts.extend(title_blocks + double_text_blocks)
1655
- title_blocks = []
1656
- double_text_blocks = []
1657
- block_bboxes = [
1658
- block["block_bbox"] for block in parsing_res_by_pre_cuts
1659
- ]
1660
- block_bboxes.sort(
1661
- key=lambda x: (
1662
- x[0] // max(20, median_width),
1663
- x[1],
1664
- ),
1665
- )
1666
- block_bboxes = np.array(block_bboxes)
1667
- sorted_indices = sort_by_xycut(block_bboxes, direction=1, min_gap=1)
1668
- else:
1669
- block_bboxes = [
1670
- block["block_bbox"] for block in parsing_res_by_pre_cuts
1671
- ]
1672
- block_bboxes.sort(key=lambda x: (x[0] // 20, x[1]))
1673
- block_bboxes = np.array(block_bboxes)
1674
- sorted_indices = sort_by_xycut(block_bboxes, direction=0, min_gap=20)
1675
-
1676
- sorted_boxes = block_bboxes[sorted_indices].tolist()
1677
-
1678
- for block in parsing_res_by_pre_cuts:
1679
- block["index"] = num_index + sorted_boxes.index(block["block_bbox"]) + 1
1680
- block["sub_index"] = (
1681
- num_sub_index + sorted_boxes.index(block["block_bbox"]) + 1
1682
- )
1683
-
1684
- def nearest_match_(input_blocks, distance_type="manhattan", is_add_index=True):
1685
- for block in input_blocks:
1686
- bbox = block["block_bbox"]
1687
- min_distance = float("inf")
1688
- min_distance_config = [
1689
- [float("inf"), float("inf")],
1690
- float("inf"),
1691
- float("inf"),
1692
- ] # for double text
1693
- nearest_gt_index = 0
1694
- for match_block in parsing_res_by_pre_cuts:
1695
- match_bbox = match_block["block_bbox"]
1696
- if distance_type == "nearest_iou_edge_distance":
1697
- distance, min_distance_config = _nearest_iou_edge_distance(
1698
- bbox,
1699
- match_bbox,
1700
- block["sub_label"],
1701
- vision_labels=vision_labels,
1702
- no_mask_labels=no_mask_labels,
1703
- median_width=median_width,
1704
- title_labels=title_labels,
1705
- title_text=block["title_text"],
1706
- sub_title=block["sub_title"],
1707
- min_distance_config=min_distance_config,
1708
- tolerance_len=10,
1709
- )
1710
- elif distance_type == "title_text":
1711
- if (
1712
- match_block["block_label"] in title_labels + ["abstract"]
1713
- and match_block["title_text"] != []
1714
- ):
1715
- iou_left_up = _calculate_overlap_area_div_minbox_area_ratio(
1716
- bbox,
1717
- match_block["title_text"][0][1],
1718
- )
1719
- iou_right_down = (
1720
- _calculate_overlap_area_div_minbox_area_ratio(
1721
- bbox,
1722
- match_block["title_text"][-1][1],
1723
- )
1724
- )
1725
- iou = 1 - max(iou_left_up, iou_right_down)
1726
- distance = _manhattan_distance(bbox, match_bbox) * iou
1727
- else:
1728
- distance = float("inf")
1729
- elif distance_type == "manhattan":
1730
- distance = _manhattan_distance(bbox, match_bbox)
1731
- elif distance_type == "vision_footnote":
1732
- if (
1733
- match_block["block_label"] in vision_labels
1734
- and match_block["vision_footnote"] != []
1735
- ):
1736
- iou_left_up = _calculate_overlap_area_div_minbox_area_ratio(
1737
- bbox,
1738
- match_block["vision_footnote"][0],
1739
- )
1740
- iou_right_down = (
1741
- _calculate_overlap_area_div_minbox_area_ratio(
1742
- bbox,
1743
- match_block["vision_footnote"][-1],
1744
- )
1745
- )
1746
- iou = 1 - max(iou_left_up, iou_right_down)
1747
- distance = _manhattan_distance(bbox, match_bbox) * iou
1748
- else:
1749
- distance = float("inf")
1750
- elif distance_type == "vision_body":
1751
- if (
1752
- match_block["block_label"] in vision_title_labels
1753
- and block["vision_footnote"] != []
1754
- ):
1755
- iou_left_up = _calculate_overlap_area_div_minbox_area_ratio(
1756
- match_bbox,
1757
- block["vision_footnote"][0],
1758
- )
1759
- iou_right_down = (
1760
- _calculate_overlap_area_div_minbox_area_ratio(
1761
- match_bbox,
1762
- block["vision_footnote"][-1],
1763
- )
1764
- )
1765
- iou = 1 - max(iou_left_up, iou_right_down)
1766
- distance = _manhattan_distance(bbox, match_bbox) * iou
1767
- else:
1768
- distance = float("inf")
1769
- # when reference block cross mulitple columns, its order should be after the blocks above it.
1770
- elif distance_type == "append":
1771
- if match_bbox[3] <= bbox[1]:
1772
- distance = -(match_bbox[2] * 10 + match_bbox[3])
1773
- else:
1774
- distance = float("inf")
1775
- else:
1776
- raise NotImplementedError
1777
-
1778
- if distance < min_distance:
1779
- min_distance = distance
1780
- if is_add_index:
1781
- nearest_gt_index = match_block.get("index", 999)
1782
- else:
1783
- nearest_gt_index = match_block.get("sub_index", 999)
1784
-
1785
- if is_add_index:
1786
- block["index"] = nearest_gt_index
1787
- else:
1788
- block["sub_index"] = nearest_gt_index
1789
-
1790
- parsing_res_by_pre_cuts.append(block)
1791
-
1792
- # double text label
1793
- double_text_blocks.sort(
1794
- key=lambda x: (
1795
- x["block_bbox"][1] // 10,
1796
- x["block_bbox"][0] // median_width,
1797
- x["block_bbox"][1] ** 2 + x["block_bbox"][0] ** 2,
1798
- ),
1799
- )
1800
- # filter the reference blocks from all blocks that cross mulitple columns.
1801
- # they should be ordered using "append".
1802
- double_text_reference_blocks = []
1803
- i = 0
1804
- while i < len(double_text_blocks):
1805
- if double_text_blocks[i]["block_label"] == "reference":
1806
- double_text_reference_blocks.append(double_text_blocks.pop(i))
1807
- else:
1808
- i += 1
1809
- nearest_match_(
1810
- double_text_blocks,
1811
- distance_type="nearest_iou_edge_distance",
1812
- )
1813
- nearest_match_(
1814
- double_text_reference_blocks,
1815
- distance_type="append",
1816
- )
1817
- parsing_res_by_pre_cuts.sort(
1818
- key=lambda x: (x["index"], x["block_bbox"][1], x["block_bbox"][0]),
1819
- )
1820
-
1821
- for idx, block in enumerate(parsing_res_by_pre_cuts):
1822
- block["index"] = num_index + idx + 1
1823
- block["sub_index"] = num_sub_index + idx + 1
1824
-
1825
- # title label
1826
- title_blocks.sort(
1827
- key=lambda x: (
1828
- x["block_bbox"][1] // 10,
1829
- x["block_bbox"][0] // median_width,
1830
- x["block_bbox"][1] ** 2 + x["block_bbox"][0] ** 2,
1831
- ),
1832
- )
1833
- nearest_match_(title_blocks, distance_type="nearest_iou_edge_distance")
1834
-
1835
- if doc_flag:
1836
- text_sort_labels = ["doc_title"]
1837
- text_label_priority = {
1838
- label: priority for priority, label in enumerate(text_sort_labels)
1839
- }
1840
- doc_titles = []
1841
- for i, block in enumerate(parsing_res_by_pre_cuts):
1842
- if block["block_label"] == "doc_title":
1843
- doc_titles.append(
1844
- (i, block["block_bbox"][1], block["block_bbox"][0]),
818
+ split_block_idxes.append(block_idx)
819
+
820
+ if len(iner_block_idxes) > 0:
821
+ if len(split_block_idxes) > 0:
822
+ for split_block_idx in split_block_idxes:
823
+ split_block_bbox = block_bboxes[split_block_idx]
824
+ x1, y1, x2, y2 = tmp_region_bbox
825
+ x1_prime, y1_prime, x2_prime, y2_prime = split_block_bbox
826
+ edge_distance_list = [
827
+ (x1_prime - x1) / image_width,
828
+ (y1_prime - y1) / image_height,
829
+ (x2 - x2_prime) / image_width,
830
+ (y2 - y2_prime) / image_height,
831
+ ]
832
+ max_distance = max(edge_distance_list)
833
+ src_index = edge_distance_list.index(max_distance)
834
+ dst_index = index_conversion_map[src_index]
835
+ tmp_region_bbox[dst_index] = split_block_bbox[src_index]
836
+ tmp_region_bbox, iner_idxes = shrink_supplement_region_bbox(
837
+ tmp_region_bbox,
838
+ ref_region_bbox,
839
+ image_width,
840
+ image_height,
841
+ iner_block_idxes,
842
+ block_bboxes,
1845
843
  )
1846
- doc_titles.sort(key=lambda x: (x[1], x[2]))
1847
- first_doc_title_index = doc_titles[0][0]
1848
- parsing_res_by_pre_cuts[first_doc_title_index]["index"] = 1
1849
- parsing_res_by_pre_cuts.sort(
1850
- key=lambda x: (
1851
- x["index"],
1852
- text_label_priority.get(x["block_label"], 9999),
1853
- x["block_bbox"][1],
1854
- x["block_bbox"][0],
1855
- ),
1856
- )
844
+ if len(iner_idxes) == 0:
845
+ continue
846
+ matched_bboxes = [block_bboxes[idx] for idx in iner_block_idxes]
847
+ supplement_region_bbox = calculate_minimum_enclosing_bbox(matched_bboxes)
848
+ break
1857
849
  else:
1858
- parsing_res_by_pre_cuts.sort(
1859
- key=lambda x: (
1860
- x["index"],
1861
- x["block_bbox"][1],
1862
- x["block_bbox"][0],
1863
- ),
1864
- )
1865
-
1866
- for idx, block in enumerate(parsing_res_by_pre_cuts):
1867
- block["index"] = num_index + idx + 1
1868
- block["sub_index"] = num_sub_index + idx + 1
1869
-
1870
- # title-text label
1871
- nearest_match_(title_text_blocks, distance_type="title_text")
1872
-
1873
- def hor_tb_and_ver_lr(x):
1874
- input_bbox = x["block_bbox"]
1875
- is_horizontal = _get_bbox_direction(input_bbox)
1876
- if is_horizontal:
1877
- return input_bbox[1]
1878
- else:
1879
- return input_bbox[0]
1880
-
1881
- parsing_res_by_pre_cuts.sort(
1882
- key=lambda x: (x["index"], hor_tb_and_ver_lr(x)),
1883
- )
1884
-
1885
- for idx, block in enumerate(parsing_res_by_pre_cuts):
1886
- block["index"] = num_index + idx + 1
1887
- block["sub_index"] = num_sub_index + idx + 1
1888
-
1889
- # image,figure,chart,seal label
1890
- nearest_match_(
1891
- vision_blocks,
1892
- distance_type="nearest_iou_edge_distance",
1893
- is_add_index=False,
1894
- )
1895
- parsing_res_by_pre_cuts.sort(
1896
- key=lambda x: (
1897
- x["sub_index"],
1898
- x["block_bbox"][1],
1899
- x["block_bbox"][0],
1900
- ),
1901
- )
1902
-
1903
- for idx, block in enumerate(parsing_res_by_pre_cuts):
1904
- block["sub_index"] = num_sub_index + idx + 1
1905
-
1906
- # image,figure,chart,seal title label
1907
- nearest_match_(
1908
- vision_title_blocks,
1909
- distance_type="nearest_iou_edge_distance",
1910
- is_add_index=False,
1911
- )
1912
- parsing_res_by_pre_cuts.sort(
1913
- key=lambda x: (
1914
- x["sub_index"],
1915
- x["block_bbox"][1],
1916
- x["block_bbox"][0],
1917
- ),
1918
- )
1919
-
1920
- for idx, block in enumerate(parsing_res_by_pre_cuts):
1921
- block["sub_index"] = num_sub_index + idx + 1
1922
-
1923
- # vision footnote label
1924
- nearest_match_(
1925
- vision_footnote_blocks,
1926
- distance_type="vision_footnote",
1927
- is_add_index=False,
1928
- )
1929
- text_label_priority = {"vision_footnote": 9999}
1930
- parsing_res_by_pre_cuts.sort(
1931
- key=lambda x: (
1932
- x["sub_index"],
1933
- text_label_priority.get(x["sub_label"], 0),
1934
- x["block_bbox"][1],
1935
- x["block_bbox"][0],
1936
- ),
1937
- )
1938
-
1939
- for idx, block in enumerate(parsing_res_by_pre_cuts):
1940
- block["sub_index"] = num_sub_index + idx + 1
1941
-
1942
- # header、footnote、header_image... label
1943
- nearest_match_(other_blocks, distance_type="manhattan", is_add_index=False)
1944
-
1945
- # add all parsing result
1946
- final_parsing_res_list.extend(parsing_res_by_pre_cuts)
1947
-
1948
- # update num index
1949
- num_sub_index += len(parsing_res_by_pre_cuts)
1950
- for parsing_res in parsing_res_by_pre_cuts:
1951
- if parsing_res.get("index"):
1952
- num_index += 1
1953
-
1954
- parsing_res_list = [
1955
- {
1956
- "block_label": parsing_res["block_label"],
1957
- "block_content": parsing_res["block_content"],
1958
- "block_bbox": parsing_res["block_bbox"],
1959
- "block_image": parsing_res.get("block_image", None),
1960
- "sub_label": parsing_res["sub_label"],
1961
- "sub_index": parsing_res["sub_index"],
1962
- "index": parsing_res.get("index", None),
1963
- "seg_start_coordinate": parsing_res.get(
1964
- "seg_start_coordinate", float("inf")
1965
- ),
1966
- "seg_end_coordinate": parsing_res.get("seg_end_coordinate", float("-inf")),
1967
- "num_of_lines": parsing_res.get("num_of_lines", 1),
1968
- }
1969
- for parsing_res in final_parsing_res_list
1970
- ]
1971
-
1972
- return parsing_res_list
850
+ edge_distance_list_tmp = [
851
+ x for x in edge_distance_list_tmp if x != min_distance
852
+ ]
853
+ min_distance = min(edge_distance_list_tmp)
854
+ src_index = index_conversion_map[edge_distance_list.index(min_distance)]
855
+ return supplement_region_bbox, iner_block_idxes
1973
856
 
1974
857
 
1975
- def _manhattan_distance(
1976
- point1: Tuple[float, float],
1977
- point2: Tuple[float, float],
1978
- weight_x: float = 1.0,
1979
- weight_y: float = 1.0,
1980
- ) -> float:
1981
- """
1982
- Calculate the weighted Manhattan distance between two points.
1983
-
1984
- Args:
1985
- point1 (Tuple[float, float]): The first point as (x, y).
1986
- point2 (Tuple[float, float]): The second point as (x, y).
1987
- weight_x (float): The weight for the x-axis distance. Default is 1.0.
1988
- weight_y (float): The weight for the y-axis distance. Default is 1.0.
1989
-
1990
- Returns:
1991
- float: The weighted Manhattan distance between the two points.
1992
- """
1993
- return weight_x * abs(point1[0] - point2[0]) + weight_y * abs(point1[1] - point2[1])
1994
-
1995
-
1996
- def _calculate_horizontal_distance(
1997
- input_bbox: List[int],
1998
- match_bbox: List[int],
1999
- height: int,
2000
- disperse: int,
2001
- title_text: List[Tuple[int, List[int]]],
2002
- ) -> float:
2003
- """
2004
- Calculate the horizontal distance between two bounding boxes, considering title text adjustments.
2005
-
2006
- Args:
2007
- input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2008
- match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2009
- height (int): The height of the input bounding box used for normalization.
2010
- disperse (int): The dispersion factor used to normalize the horizontal distance.
2011
- title_text (List[Tuple[int, List[int]]]): A list of tuples containing title text information and their bounding box coordinates.
2012
- Format: [(position_indicator, [x1, y1, x2, y2]), ...].
2013
-
2014
- Returns:
2015
- float: The calculated horizontal distance taking into account the title text adjustments.
2016
- """
2017
- x1, y1, x2, y2 = input_bbox
2018
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2019
-
2020
- # Determine vertical distance adjustment based on title text
2021
- if y2 < y1_prime:
2022
- if title_text and title_text[-1][0] == 2:
2023
- y2 += title_text[-1][1][3] - title_text[-1][1][1]
2024
- vertical_adjustment = (y1_prime - y2) * 0.5
2025
- else:
2026
- if title_text and title_text[0][0] == 1:
2027
- y1 -= title_text[0][1][3] - title_text[0][1][1]
2028
- vertical_adjustment = y1 - y2_prime
2029
-
2030
- # Calculate horizontal distance with adjustments
2031
- horizontal_distance = (
2032
- abs(x2_prime - x1) // disperse
2033
- + vertical_adjustment // height
2034
- + vertical_adjustment / 5000
2035
- )
2036
-
2037
- return horizontal_distance
2038
-
2039
-
2040
- def _calculate_vertical_distance(
2041
- input_bbox: List[int],
2042
- match_bbox: List[int],
2043
- width: int,
2044
- disperse: int,
2045
- title_text: List[Tuple[int, List[int]]],
2046
- ) -> float:
2047
- """
2048
- Calculate the vertical distance between two bounding boxes, considering title text adjustments.
2049
-
2050
- Args:
2051
- input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2052
- match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2053
- width (int): The width of the input bounding box used for normalization.
2054
- disperse (int): The dispersion factor used to normalize the vertical distance.
2055
- title_text (List[Tuple[int, List[int]]]): A list of tuples containing title text information and their bounding box coordinates.
2056
- Format: [(position_indicator, [x1, y1, x2, y2]), ...].
858
+ def update_region_box(bbox, region_box):
859
+ if region_box is None:
860
+ return bbox
2057
861
 
2058
- Returns:
2059
- float: The calculated vertical distance taking into account the title text adjustments.
2060
- """
2061
- x1, y1, x2, y2 = input_bbox
2062
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2063
-
2064
- # Determine horizontal distance adjustment based on title text
2065
- if x1 > x2_prime:
2066
- if title_text and title_text[0][0] == 3:
2067
- x1 -= title_text[0][1][2] - title_text[0][1][0]
2068
- horizontal_adjustment = (x1 - x2_prime) * 0.5
2069
- else:
2070
- if title_text and title_text[-1][0] == 4:
2071
- x2 += title_text[-1][1][2] - title_text[-1][1][0]
2072
- horizontal_adjustment = x1_prime - x2
2073
-
2074
- # Calculate vertical distance with adjustments
2075
- vertical_distance = (
2076
- abs(y2_prime - y1) // disperse
2077
- + horizontal_adjustment // width
2078
- + horizontal_adjustment / 5000
2079
- )
862
+ x1, y1, x2, y2 = bbox
863
+ x1_region, y1_region, x2_region, y2_region = region_box
2080
864
 
2081
- return vertical_distance
865
+ x1_region = int(min(x1, x1_region))
866
+ y1_region = int(min(y1, y1_region))
867
+ x2_region = int(max(x2, x2_region))
868
+ y2_region = int(max(y2, y2_region))
2082
869
 
870
+ region_box = [x1_region, y1_region, x2_region, y2_region]
2083
871
 
2084
- def _nearest_edge_distance(
2085
- input_bbox: List[int],
2086
- match_bbox: List[int],
2087
- weight: List[float] = [1.0, 1.0, 1.0, 1.0],
2088
- label: str = "text",
2089
- no_mask_labels: List[str] = [],
2090
- min_edge_distance_config: List[float] = [],
2091
- tolerance_len: float = 10.0,
2092
- ) -> Tuple[float, List[float]]:
2093
- """
2094
- Calculate the nearest edge distance between two bounding boxes, considering directional weights.
872
+ return region_box
2095
873
 
2096
- Args:
2097
- input_bbox (list): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2098
- match_bbox (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2099
- weight (list, optional): Directional weights for the edge distances [left, right, up, down]. Defaults to [1, 1, 1, 1].
2100
- label (str, optional): The label/type of the object in the bounding box (e.g., 'text'). Defaults to 'text'.
2101
- no_mask_labels (list, optional): Labels for which no masking is applied when calculating edge distances. Defaults to an empty list.
2102
- min_edge_distance_config (list, optional): Configuration for minimum edge distances [min_edge_distance_x, min_edge_distance_y].
2103
- Defaults to [float('inf'), float('inf')].
2104
- tolerance_len (float, optional): The tolerance length for adjusting edge distances. Defaults to 10.
2105
874
 
2106
- Returns:
2107
- Tuple[float, List[float]]: A tuple containing:
2108
- - The calculated minimum edge distance between the bounding boxes.
2109
- - A list with the minimum edge distances in the x and y directions.
2110
- """
2111
- match_bbox_iou = _calculate_overlap_area_div_minbox_area_ratio(
2112
- input_bbox,
2113
- match_bbox,
2114
- )
2115
- if match_bbox_iou > 0 and label not in no_mask_labels:
2116
- return 0, [0, 0]
2117
-
2118
- if not min_edge_distance_config:
2119
- min_edge_distance_config = [float("inf"), float("inf")]
2120
- min_edge_distance_x, min_edge_distance_y = min_edge_distance_config
2121
-
2122
- x1, y1, x2, y2 = input_bbox
2123
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2124
-
2125
- direction_num = 0
2126
- distance_x = float("inf")
2127
- distance_y = float("inf")
2128
- distance = [float("inf")] * 4
2129
-
2130
- # input_bbox is to the left of match_bbox
2131
- if x2 < x1_prime:
2132
- direction_num += 1
2133
- distance[0] = x1_prime - x2
2134
- if abs(distance[0] - min_edge_distance_x) <= tolerance_len:
2135
- distance_x = min_edge_distance_x * weight[0]
2136
- else:
2137
- distance_x = distance[0] * weight[0]
2138
- # input_bbox is to the right of match_bbox
2139
- elif x1 > x2_prime:
2140
- direction_num += 1
2141
- distance[1] = x1 - x2_prime
2142
- if abs(distance[1] - min_edge_distance_x) <= tolerance_len:
2143
- distance_x = min_edge_distance_x * weight[1]
2144
- else:
2145
- distance_x = distance[1] * weight[1]
2146
- elif match_bbox_iou > 0:
2147
- distance[0] = 0
2148
- distance_x = 0
2149
-
2150
- # input_bbox is above match_bbox
2151
- if y2 < y1_prime:
2152
- direction_num += 1
2153
- distance[2] = y1_prime - y2
2154
- if abs(distance[2] - min_edge_distance_y) <= tolerance_len:
2155
- distance_y = min_edge_distance_y * weight[2]
2156
- else:
2157
- distance_y = distance[2] * weight[2]
2158
- if label in no_mask_labels:
2159
- distance_y = max(0.1, distance_y) * 10 # for abstract
2160
- # input_bbox is below match_bbox
2161
- elif y1 > y2_prime:
2162
- direction_num += 1
2163
- distance[3] = y1 - y2_prime
2164
- if abs(distance[3] - min_edge_distance_y) <= tolerance_len:
2165
- distance_y = min_edge_distance_y * weight[3]
2166
- else:
2167
- distance_y = distance[3] * weight[3]
2168
- elif match_bbox_iou > 0:
2169
- distance[2] = 0
2170
- distance_y = 0
2171
-
2172
- if direction_num == 2:
2173
- return (distance_x + distance_y), [
2174
- min(distance[0], distance[1]),
2175
- min(distance[2], distance[3]),
2176
- ]
2177
- else:
2178
- return min(distance_x, distance_y), [
2179
- min(distance[0], distance[1]),
2180
- min(distance[2], distance[3]),
875
+ def convert_formula_res_to_ocr_format(formula_res_list: List, ocr_res: dict):
876
+ for formula_res in formula_res_list:
877
+ x_min, y_min, x_max, y_max = list(map(int, formula_res["dt_polys"]))
878
+ poly_points = [
879
+ (x_min, y_min),
880
+ (x_max, y_min),
881
+ (x_max, y_max),
882
+ (x_min, y_max),
2181
883
  ]
2182
-
2183
-
2184
- def _get_weights(label, horizontal):
2185
- """Define weights based on the label and orientation."""
2186
- if label == "doc_title":
2187
- return (
2188
- [1, 0.1, 0.1, 1] if horizontal else [0.2, 0.1, 1, 1]
2189
- ) # left-down , right-left
2190
- elif label in [
2191
- "paragraph_title",
2192
- "table_title",
2193
- "abstract",
2194
- "image",
2195
- "seal",
2196
- "chart",
2197
- "figure",
2198
- ]:
2199
- return [1, 1, 0.1, 1] # down
2200
- else:
2201
- return [1, 1, 1, 0.1] # up
2202
-
2203
-
2204
- def _nearest_iou_edge_distance(
2205
- input_bbox: List[int],
2206
- match_bbox: List[int],
2207
- label: str,
2208
- vision_labels: List[str],
2209
- no_mask_labels: List[str],
2210
- median_width: int = -1,
2211
- title_labels: List[str] = [],
2212
- title_text: List[Tuple[int, List[int]]] = [],
2213
- sub_title: List[List[int]] = [],
2214
- min_distance_config: List[float] = [],
2215
- tolerance_len: float = 10.0,
2216
- ) -> Tuple[float, List[float]]:
2217
- """
2218
- Calculate the nearest IOU edge distance between two bounding boxes, considering label types, title adjustments, and minimum distance configurations.
2219
- This function computes the edge distance between two bounding boxes while considering their overlap (IOU) and various adjustments based on label types,
2220
- title text, and subtitle information. It also applies minimum distance configurations and tolerance adjustments.
2221
-
2222
- Args:
2223
- input_bbox (List[int]): The bounding box coordinates [x1, y1, x2, y2] of the input object.
2224
- match_bbox (List[int]): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against.
2225
- label (str): The label/type of the object in the bounding box (e.g., 'image', 'text', etc.).
2226
- vision_labels (List[str]): List of labels for vision-related objects (e.g., images, icons).
2227
- no_mask_labels (List[str]): Labels for which no masking is applied when calculating edge distances.
2228
- median_width (int, optional): The median width for title dispersion calculation. Defaults to -1.
2229
- title_labels (List[str], optional): Labels that indicate the object is a title. Defaults to an empty list.
2230
- title_text (List[Tuple[int, List[int]]], optional): Text content associated with title labels, in the format [(position_indicator, [x1, y1, x2, y2]), ...].
2231
- sub_title (List[List[int]], optional): List of subtitle bounding boxes to adjust the input_bbox. Defaults to an empty list.
2232
- min_distance_config (List[float], optional): Configuration for minimum distances [min_edge_distance_config, up_edge_distances_config, total_distance].
2233
- tolerance_len (float, optional): The tolerance length for adjusting edge distances. Defaults to 10.0.
2234
-
2235
- Returns:
2236
- Tuple[float, List[float]]: A tuple containing:
2237
- - The calculated distance considering IOU and adjustments.
2238
- - The updated minimum distance configuration.
2239
- """
2240
-
2241
- x1, y1, x2, y2 = input_bbox
2242
- x1_prime, y1_prime, x2_prime, y2_prime = match_bbox
2243
-
2244
- min_edge_distance_config, up_edge_distances_config, total_distance = (
2245
- min_distance_config
2246
- )
2247
-
2248
- iou_distance = 0
2249
-
2250
- if label in vision_labels:
2251
- horizontal1 = horizontal2 = True
2252
- else:
2253
- horizontal1 = _get_bbox_direction(input_bbox)
2254
- horizontal2 = _get_bbox_direction(match_bbox, 3)
2255
-
2256
- if (
2257
- horizontal1 != horizontal2
2258
- or _get_projection_iou(input_bbox, match_bbox, horizontal1) < 0.01
2259
- ):
2260
- iou_distance = 1
2261
-
2262
- if label == "doc_title":
2263
- # Calculate distance for titles
2264
- disperse = max(1, median_width)
2265
- tolerance_len = max(tolerance_len, disperse)
2266
-
2267
- # Adjust input_bbox based on sub_title
2268
- if sub_title:
2269
- for sub in sub_title:
2270
- x1_, y1_, x2_, y2_ = sub
2271
- x1, y1, x2, y2 = (
2272
- min(x1, x1_),
2273
- min(y1, y1_),
2274
- min(x2, x2_),
2275
- max(y2, y2_),
884
+ ocr_res["dt_polys"].append(poly_points)
885
+ formula_res_text: str = formula_res["rec_formula"]
886
+ ocr_res["rec_texts"].append(formula_res_text)
887
+ if ocr_res["rec_boxes"].size == 0:
888
+ ocr_res["rec_boxes"] = np.array(formula_res["dt_polys"])
889
+ else:
890
+ ocr_res["rec_boxes"] = np.vstack(
891
+ (ocr_res["rec_boxes"], [formula_res["dt_polys"]])
2276
892
  )
2277
- input_bbox = [x1, y1, x2, y2]
2278
-
2279
- if title_text:
2280
- for sub in title_text:
2281
- x1_, y1_, x2_, y2_ = sub[1]
2282
- if horizontal1:
2283
- x1, y1, x2, y2 = (
2284
- min(x1, x1_),
2285
- min(y1, y1_),
2286
- min(x2, x2_),
2287
- max(y2, y2_),
2288
- )
2289
- else:
2290
- x1, y1, x2, y2 = (
2291
- min(x1, x1_),
2292
- min(y1, y1_),
2293
- max(x2, x2_),
2294
- min(y2, y2_),
2295
- )
2296
- input_bbox = [x1, y1, x2, y2]
2297
-
2298
- # Calculate edge distance
2299
- weight = _get_weights(label, horizontal1)
2300
- if label == "abstract":
2301
- tolerance_len *= 2
2302
-
2303
- edge_distance, edge_distance_config = _nearest_edge_distance(
2304
- input_bbox,
2305
- match_bbox,
2306
- weight,
2307
- label=label,
2308
- no_mask_labels=no_mask_labels,
2309
- min_edge_distance_config=min_edge_distance_config,
2310
- tolerance_len=tolerance_len,
2311
- )
2312
-
2313
- # Weights for combining distances
2314
- iou_edge_weight = [10**8, 10**4, 1, 0.0001]
2315
-
2316
- # Calculate up and left edge distances
2317
- up_edge_distance = y1_prime
2318
- left_edge_distance = x1_prime
2319
- if (
2320
- label in no_mask_labels or label in title_labels or label in vision_labels
2321
- ) and y1 > y2_prime:
2322
- up_edge_distance = -y2_prime
2323
- left_edge_distance = -x2_prime
2324
-
2325
- min_up_edge_distance = up_edge_distances_config
2326
- if abs(min_up_edge_distance - up_edge_distance) <= tolerance_len:
2327
- up_edge_distance = min_up_edge_distance
2328
-
2329
- # Calculate total distance
2330
- distance = (
2331
- iou_distance * iou_edge_weight[0]
2332
- + edge_distance * iou_edge_weight[1]
2333
- + up_edge_distance * iou_edge_weight[2]
2334
- + left_edge_distance * iou_edge_weight[3]
2335
- )
2336
-
2337
- # Update minimum distance configuration if a smaller distance is found
2338
- if total_distance > distance:
2339
- edge_distance_config = [
2340
- edge_distance_config[0],
2341
- edge_distance_config[1],
2342
- ]
2343
- min_distance_config = [
2344
- edge_distance_config,
2345
- up_edge_distance,
2346
- distance,
2347
- ]
2348
-
2349
- return distance, min_distance_config
2350
-
2351
-
2352
- def get_show_color(label: str) -> Tuple:
2353
- label_colors = {
2354
- # Medium Blue (from 'titles_list')
2355
- "paragraph_title": (102, 102, 255, 100),
2356
- "doc_title": (255, 248, 220, 100), # Cornsilk
2357
- # Light Yellow (from 'tables_caption_list')
2358
- "table_title": (255, 255, 102, 100),
2359
- # Sky Blue (from 'imgs_caption_list')
2360
- "figure_title": (102, 178, 255, 100),
2361
- "chart_title": (221, 160, 221, 100), # Plum
2362
- "vision_footnote": (144, 238, 144, 100), # Light Green
2363
- # Deep Purple (from 'texts_list')
2364
- "text": (153, 0, 76, 100),
2365
- # Bright Green (from 'interequations_list')
2366
- "formula": (0, 255, 0, 100),
2367
- "abstract": (255, 239, 213, 100), # Papaya Whip
2368
- # Medium Green (from 'lists_list' and 'indexs_list')
2369
- "content": (40, 169, 92, 100),
2370
- # Neutral Gray (from 'dropped_bbox_list')
2371
- "seal": (158, 158, 158, 100),
2372
- # Olive Yellow (from 'tables_body_list')
2373
- "table": (204, 204, 0, 100),
2374
- # Bright Green (from 'imgs_body_list')
2375
- "image": (153, 255, 51, 100),
2376
- # Bright Green (from 'imgs_body_list')
2377
- "figure": (153, 255, 51, 100),
2378
- "chart": (216, 191, 216, 100), # Thistle
2379
- # Pale Yellow-Green (from 'tables_footnote_list')
2380
- "reference": (229, 255, 204, 100),
2381
- "algorithm": (255, 250, 240, 100), # Floral White
2382
- }
893
+ ocr_res["rec_labels"].append("formula")
894
+ ocr_res["rec_polys"].append(poly_points)
895
+ ocr_res["rec_scores"].append(1)
896
+
897
+
898
+ def caculate_bbox_area(bbox):
899
+ x1, y1, x2, y2 = map(float, bbox)
900
+ area = abs((x2 - x1) * (y2 - y1))
901
+ return area
902
+
903
+
904
+ def get_show_color(label: str, order_label=False) -> Tuple:
905
+ if order_label:
906
+ label_colors = {
907
+ "doc_title": (255, 248, 220, 100), # Cornsilk
908
+ "doc_title_text": (255, 239, 213, 100),
909
+ "paragraph_title": (102, 102, 255, 100),
910
+ "sub_paragraph_title": (102, 178, 255, 100),
911
+ "vision": (153, 255, 51, 100),
912
+ "vision_title": (144, 238, 144, 100), # Light Green
913
+ "vision_footnote": (144, 238, 144, 100), # Light Green
914
+ "normal_text": (153, 0, 76, 100),
915
+ "cross_layout": (53, 218, 207, 100), # Thistle
916
+ "cross_reference": (221, 160, 221, 100), # Floral White
917
+ }
918
+ else:
919
+ label_colors = {
920
+ # Medium Blue (from 'titles_list')
921
+ "paragraph_title": (102, 102, 255, 100),
922
+ "doc_title": (255, 248, 220, 100), # Cornsilk
923
+ # Light Yellow (from 'tables_caption_list')
924
+ "table_title": (255, 255, 102, 100),
925
+ # Sky Blue (from 'imgs_caption_list')
926
+ "figure_title": (102, 178, 255, 100),
927
+ "chart_title": (221, 160, 221, 100), # Plum
928
+ "vision_footnote": (144, 238, 144, 100), # Light Green
929
+ # Deep Purple (from 'texts_list')
930
+ "text": (153, 0, 76, 100),
931
+ # Bright Green (from 'interequations_list')
932
+ "formula": (0, 255, 0, 100),
933
+ "abstract": (255, 239, 213, 100), # Papaya Whip
934
+ # Medium Green (from 'lists_list' and 'indexs_list')
935
+ "content": (40, 169, 92, 100),
936
+ # Neutral Gray (from 'dropped_bbox_list')
937
+ "seal": (158, 158, 158, 100),
938
+ # Olive Yellow (from 'tables_body_list')
939
+ "table": (204, 204, 0, 100),
940
+ # Bright Green (from 'imgs_body_list')
941
+ "image": (153, 255, 51, 100),
942
+ # Bright Green (from 'imgs_body_list')
943
+ "figure": (153, 255, 51, 100),
944
+ "chart": (216, 191, 216, 100), # Thistle
945
+ # Pale Yellow-Green (from 'tables_footnote_list')
946
+ "reference": (229, 255, 204, 100),
947
+ # "reference_content": (229, 255, 204, 100),
948
+ "algorithm": (255, 250, 240, 100), # Floral White
949
+ }
2383
950
  default_color = (158, 158, 158, 100)
2384
951
  return label_colors.get(label, default_color)