paddlex 3.0.0rc0__py3-none-any.whl → 3.0.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- paddlex/.version +1 -1
- paddlex/__init__.py +17 -34
- paddlex/__main__.py +1 -1
- paddlex/configs/modules/chart_parsing/PP-Chart2Table.yaml +13 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee-2B.yaml +14 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee-7B.yaml +14 -0
- paddlex/configs/modules/doc_vlm/PP-DocBee2-3B.yaml +14 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-L.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-M.yaml +40 -0
- paddlex/configs/modules/formula_recognition/PP-FormulaNet_plus-S.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocBlockLayout.yaml +40 -0
- paddlex/configs/modules/layout_detection/PP-DocLayout-L.yaml +2 -2
- paddlex/configs/modules/layout_detection/PP-DocLayout-M.yaml +2 -2
- paddlex/configs/modules/layout_detection/PP-DocLayout-S.yaml +2 -2
- paddlex/configs/modules/layout_detection/PP-DocLayout_plus-L.yaml +40 -0
- paddlex/configs/modules/open_vocabulary_detection/YOLO-Worldv2-L.yaml +13 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_mobile_det.yaml +40 -0
- paddlex/configs/modules/text_detection/PP-OCRv5_server_det.yaml +40 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_mobile_rec.yaml +39 -0
- paddlex/configs/modules/text_recognition/PP-OCRv5_server_rec.yaml +39 -0
- paddlex/configs/modules/textline_orientation/PP-LCNet_x1_0_textline_ori.yaml +41 -0
- paddlex/configs/pipelines/OCR.yaml +7 -6
- paddlex/configs/pipelines/PP-ChatOCRv3-doc.yaml +3 -1
- paddlex/configs/pipelines/PP-ChatOCRv4-doc.yaml +91 -34
- paddlex/configs/pipelines/PP-StructureV3.yaml +72 -72
- paddlex/configs/pipelines/anomaly_detection.yaml +1 -1
- paddlex/configs/pipelines/doc_understanding.yaml +9 -0
- paddlex/configs/pipelines/formula_recognition.yaml +2 -2
- paddlex/configs/pipelines/layout_parsing.yaml +3 -2
- paddlex/configs/pipelines/seal_recognition.yaml +1 -0
- paddlex/configs/pipelines/table_recognition.yaml +2 -1
- paddlex/configs/pipelines/table_recognition_v2.yaml +7 -1
- paddlex/configs/pipelines/ts_anomaly_detection.yaml +1 -1
- paddlex/configs/pipelines/ts_classification.yaml +1 -1
- paddlex/configs/pipelines/ts_forecast.yaml +1 -1
- paddlex/constants.py +17 -0
- paddlex/engine.py +7 -5
- paddlex/hpip_links.html +23 -11
- paddlex/inference/__init__.py +3 -3
- paddlex/inference/common/__init__.py +1 -1
- paddlex/inference/common/batch_sampler/__init__.py +5 -4
- paddlex/inference/common/batch_sampler/audio_batch_sampler.py +5 -6
- paddlex/inference/common/batch_sampler/base_batch_sampler.py +20 -16
- paddlex/inference/common/batch_sampler/det_3d_batch_sampler.py +4 -7
- paddlex/inference/common/batch_sampler/doc_vlm_batch_sampler.py +87 -0
- paddlex/inference/common/batch_sampler/image_batch_sampler.py +45 -60
- paddlex/inference/common/batch_sampler/ts_batch_sampler.py +9 -10
- paddlex/inference/common/batch_sampler/video_batch_sampler.py +2 -22
- paddlex/inference/common/reader/__init__.py +4 -4
- paddlex/inference/common/reader/audio_reader.py +3 -3
- paddlex/inference/common/reader/det_3d_reader.py +7 -5
- paddlex/inference/common/reader/image_reader.py +16 -12
- paddlex/inference/common/reader/ts_reader.py +3 -2
- paddlex/inference/common/reader/video_reader.py +3 -3
- paddlex/inference/common/result/__init__.py +7 -7
- paddlex/inference/common/result/base_cv_result.py +12 -2
- paddlex/inference/common/result/base_result.py +7 -5
- paddlex/inference/common/result/base_ts_result.py +1 -2
- paddlex/inference/common/result/base_video_result.py +2 -2
- paddlex/inference/common/result/mixin.py +31 -25
- paddlex/inference/models/__init__.py +41 -85
- paddlex/inference/models/anomaly_detection/__init__.py +1 -1
- paddlex/inference/models/anomaly_detection/predictor.py +9 -19
- paddlex/inference/models/anomaly_detection/processors.py +9 -2
- paddlex/inference/models/anomaly_detection/result.py +3 -2
- paddlex/inference/models/base/__init__.py +2 -2
- paddlex/inference/models/base/predictor/__init__.py +1 -2
- paddlex/inference/models/base/predictor/base_predictor.py +278 -39
- paddlex/inference/models/common/__init__.py +6 -15
- paddlex/inference/models/common/static_infer.py +724 -251
- paddlex/inference/models/common/tokenizer/__init__.py +7 -3
- paddlex/inference/models/common/tokenizer/bert_tokenizer.py +1 -1
- paddlex/inference/models/common/tokenizer/clip_tokenizer.py +609 -0
- paddlex/inference/models/common/tokenizer/gpt_tokenizer.py +9 -7
- paddlex/inference/models/common/tokenizer/qwen2_5_tokenizer.py +112 -0
- paddlex/inference/models/common/tokenizer/qwen2_tokenizer.py +438 -0
- paddlex/inference/models/common/tokenizer/qwen_tokenizer.py +288 -0
- paddlex/inference/models/common/tokenizer/tokenizer_utils.py +85 -77
- paddlex/inference/models/common/tokenizer/tokenizer_utils_base.py +339 -123
- paddlex/inference/models/common/tokenizer/utils.py +1 -1
- paddlex/inference/models/common/tokenizer/vocab.py +8 -8
- paddlex/inference/models/common/ts/__init__.py +1 -1
- paddlex/inference/models/common/ts/funcs.py +13 -6
- paddlex/inference/models/common/ts/processors.py +14 -5
- paddlex/inference/models/common/vision/__init__.py +3 -3
- paddlex/inference/models/common/vision/funcs.py +17 -12
- paddlex/inference/models/common/vision/processors.py +61 -46
- paddlex/inference/models/common/vlm/__init__.py +13 -0
- paddlex/inference/models/common/vlm/activations.py +189 -0
- paddlex/inference/models/common/vlm/bert_padding.py +127 -0
- paddlex/inference/models/common/vlm/conversion_utils.py +99 -0
- paddlex/inference/models/common/vlm/distributed.py +229 -0
- paddlex/inference/models/common/vlm/flash_attn_utils.py +119 -0
- paddlex/inference/models/common/vlm/fusion_ops.py +205 -0
- paddlex/inference/models/common/vlm/generation/__init__.py +34 -0
- paddlex/inference/models/common/vlm/generation/configuration_utils.py +533 -0
- paddlex/inference/models/common/vlm/generation/logits_process.py +730 -0
- paddlex/inference/models/common/vlm/generation/stopping_criteria.py +106 -0
- paddlex/inference/models/common/vlm/generation/utils.py +2162 -0
- paddlex/inference/models/common/vlm/transformers/__init__.py +16 -0
- paddlex/inference/models/common/vlm/transformers/configuration_utils.py +1037 -0
- paddlex/inference/models/common/vlm/transformers/conversion_utils.py +408 -0
- paddlex/inference/models/common/vlm/transformers/model_outputs.py +1612 -0
- paddlex/inference/models/common/vlm/transformers/model_utils.py +2014 -0
- paddlex/inference/models/common/vlm/transformers/utils.py +178 -0
- paddlex/inference/models/common/vlm/utils.py +109 -0
- paddlex/inference/models/doc_vlm/__init__.py +15 -0
- paddlex/inference/models/doc_vlm/modeling/GOT_ocr_2_0.py +830 -0
- paddlex/inference/models/doc_vlm/modeling/__init__.py +17 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2.py +1606 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_5_vl.py +3006 -0
- paddlex/inference/models/doc_vlm/modeling/qwen2_vl.py +2495 -0
- paddlex/inference/models/doc_vlm/predictor.py +253 -0
- paddlex/inference/models/doc_vlm/processors/GOT_ocr_2_0.py +97 -0
- paddlex/inference/models/doc_vlm/processors/__init__.py +17 -0
- paddlex/inference/models/doc_vlm/processors/common.py +561 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_5_vl.py +548 -0
- paddlex/inference/models/doc_vlm/processors/qwen2_vl.py +543 -0
- paddlex/inference/models/doc_vlm/result.py +21 -0
- paddlex/inference/models/face_feature/__init__.py +1 -1
- paddlex/inference/models/face_feature/predictor.py +2 -1
- paddlex/inference/models/formula_recognition/__init__.py +1 -1
- paddlex/inference/models/formula_recognition/predictor.py +18 -28
- paddlex/inference/models/formula_recognition/processors.py +126 -97
- paddlex/inference/models/formula_recognition/result.py +43 -35
- paddlex/inference/models/image_classification/__init__.py +1 -1
- paddlex/inference/models/image_classification/predictor.py +9 -19
- paddlex/inference/models/image_classification/processors.py +4 -2
- paddlex/inference/models/image_classification/result.py +4 -3
- paddlex/inference/models/image_feature/__init__.py +1 -1
- paddlex/inference/models/image_feature/predictor.py +9 -19
- paddlex/inference/models/image_feature/processors.py +7 -5
- paddlex/inference/models/image_feature/result.py +2 -3
- paddlex/inference/models/image_multilabel_classification/__init__.py +1 -1
- paddlex/inference/models/image_multilabel_classification/predictor.py +7 -6
- paddlex/inference/models/image_multilabel_classification/processors.py +6 -2
- paddlex/inference/models/image_multilabel_classification/result.py +4 -3
- paddlex/inference/models/image_unwarping/__init__.py +1 -1
- paddlex/inference/models/image_unwarping/predictor.py +8 -16
- paddlex/inference/models/image_unwarping/processors.py +6 -2
- paddlex/inference/models/image_unwarping/result.py +4 -2
- paddlex/inference/models/instance_segmentation/__init__.py +1 -1
- paddlex/inference/models/instance_segmentation/predictor.py +7 -15
- paddlex/inference/models/instance_segmentation/processors.py +4 -7
- paddlex/inference/models/instance_segmentation/result.py +11 -10
- paddlex/inference/models/keypoint_detection/__init__.py +1 -1
- paddlex/inference/models/keypoint_detection/predictor.py +5 -3
- paddlex/inference/models/keypoint_detection/processors.py +11 -3
- paddlex/inference/models/keypoint_detection/result.py +9 -4
- paddlex/inference/models/{3d_bev_detection → m_3d_bev_detection}/__init__.py +1 -1
- paddlex/inference/models/{3d_bev_detection → m_3d_bev_detection}/predictor.py +15 -26
- paddlex/inference/models/{3d_bev_detection → m_3d_bev_detection}/processors.py +26 -14
- paddlex/inference/models/{3d_bev_detection → m_3d_bev_detection}/result.py +15 -12
- paddlex/inference/models/{3d_bev_detection → m_3d_bev_detection}/visualizer_3d.py +77 -39
- paddlex/inference/models/multilingual_speech_recognition/__init__.py +1 -1
- paddlex/inference/models/multilingual_speech_recognition/predictor.py +11 -15
- paddlex/inference/models/multilingual_speech_recognition/processors.py +45 -53
- paddlex/inference/models/multilingual_speech_recognition/result.py +1 -1
- paddlex/inference/models/object_detection/__init__.py +1 -1
- paddlex/inference/models/object_detection/predictor.py +8 -12
- paddlex/inference/models/object_detection/processors.py +63 -33
- paddlex/inference/models/object_detection/result.py +5 -4
- paddlex/inference/models/object_detection/utils.py +3 -1
- paddlex/inference/models/open_vocabulary_detection/__init__.py +1 -1
- paddlex/inference/models/open_vocabulary_detection/predictor.py +31 -14
- paddlex/inference/models/open_vocabulary_detection/processors/__init__.py +3 -2
- paddlex/inference/models/open_vocabulary_detection/processors/common.py +114 -0
- paddlex/inference/models/open_vocabulary_detection/processors/groundingdino_processors.py +19 -8
- paddlex/inference/models/open_vocabulary_detection/processors/yoloworld_processors.py +209 -0
- paddlex/inference/models/open_vocabulary_segmentation/__init__.py +1 -1
- paddlex/inference/models/open_vocabulary_segmentation/predictor.py +6 -13
- paddlex/inference/models/open_vocabulary_segmentation/processors/__init__.py +1 -1
- paddlex/inference/models/open_vocabulary_segmentation/processors/sam_processer.py +12 -12
- paddlex/inference/models/open_vocabulary_segmentation/results/__init__.py +1 -1
- paddlex/inference/models/open_vocabulary_segmentation/results/sam_result.py +11 -9
- paddlex/inference/models/semantic_segmentation/__init__.py +1 -1
- paddlex/inference/models/semantic_segmentation/predictor.py +9 -18
- paddlex/inference/models/semantic_segmentation/processors.py +11 -8
- paddlex/inference/models/semantic_segmentation/result.py +4 -3
- paddlex/inference/models/table_structure_recognition/__init__.py +1 -1
- paddlex/inference/models/table_structure_recognition/predictor.py +8 -18
- paddlex/inference/models/table_structure_recognition/processors.py +23 -29
- paddlex/inference/models/table_structure_recognition/result.py +8 -15
- paddlex/inference/models/text_detection/__init__.py +1 -1
- paddlex/inference/models/text_detection/predictor.py +24 -24
- paddlex/inference/models/text_detection/processors.py +116 -44
- paddlex/inference/models/text_detection/result.py +8 -13
- paddlex/inference/models/text_recognition/__init__.py +1 -1
- paddlex/inference/models/text_recognition/predictor.py +11 -19
- paddlex/inference/models/text_recognition/processors.py +27 -13
- paddlex/inference/models/text_recognition/result.py +3 -2
- paddlex/inference/models/ts_anomaly_detection/__init__.py +1 -1
- paddlex/inference/models/ts_anomaly_detection/predictor.py +12 -17
- paddlex/inference/models/ts_anomaly_detection/processors.py +6 -2
- paddlex/inference/models/ts_anomaly_detection/result.py +21 -10
- paddlex/inference/models/ts_classification/__init__.py +1 -1
- paddlex/inference/models/ts_classification/predictor.py +14 -27
- paddlex/inference/models/ts_classification/processors.py +7 -2
- paddlex/inference/models/ts_classification/result.py +21 -12
- paddlex/inference/models/ts_forecasting/__init__.py +1 -1
- paddlex/inference/models/ts_forecasting/predictor.py +13 -18
- paddlex/inference/models/ts_forecasting/processors.py +12 -3
- paddlex/inference/models/ts_forecasting/result.py +24 -11
- paddlex/inference/models/video_classification/__init__.py +1 -1
- paddlex/inference/models/video_classification/predictor.py +9 -15
- paddlex/inference/models/video_classification/processors.py +24 -24
- paddlex/inference/models/video_classification/result.py +7 -3
- paddlex/inference/models/video_detection/__init__.py +1 -1
- paddlex/inference/models/video_detection/predictor.py +8 -15
- paddlex/inference/models/video_detection/processors.py +24 -11
- paddlex/inference/models/video_detection/result.py +10 -5
- paddlex/inference/pipelines/__init__.py +48 -37
- paddlex/inference/pipelines/_parallel.py +172 -0
- paddlex/inference/pipelines/anomaly_detection/__init__.py +1 -1
- paddlex/inference/pipelines/anomaly_detection/pipeline.py +29 -9
- paddlex/inference/pipelines/attribute_recognition/__init__.py +1 -1
- paddlex/inference/pipelines/attribute_recognition/pipeline.py +24 -9
- paddlex/inference/pipelines/attribute_recognition/result.py +10 -8
- paddlex/inference/pipelines/base.py +43 -13
- paddlex/inference/pipelines/components/__init__.py +14 -8
- paddlex/inference/pipelines/components/chat_server/__init__.py +1 -1
- paddlex/inference/pipelines/components/chat_server/base.py +2 -2
- paddlex/inference/pipelines/components/chat_server/openai_bot_chat.py +8 -8
- paddlex/inference/pipelines/components/common/__init__.py +5 -4
- paddlex/inference/pipelines/components/common/base_operator.py +2 -1
- paddlex/inference/pipelines/components/common/base_result.py +3 -2
- paddlex/inference/pipelines/components/common/convert_points_and_boxes.py +1 -2
- paddlex/inference/pipelines/components/common/crop_image_regions.py +11 -5
- paddlex/inference/pipelines/components/common/seal_det_warp.py +44 -13
- paddlex/inference/pipelines/components/common/sort_boxes.py +4 -2
- paddlex/inference/pipelines/components/common/warp_image.py +50 -0
- paddlex/inference/pipelines/components/faisser.py +10 -5
- paddlex/inference/pipelines/components/prompt_engineering/__init__.py +2 -2
- paddlex/inference/pipelines/components/prompt_engineering/base.py +2 -2
- paddlex/inference/pipelines/components/prompt_engineering/generate_ensemble_prompt.py +2 -1
- paddlex/inference/pipelines/components/prompt_engineering/generate_kie_prompt.py +2 -2
- paddlex/inference/pipelines/components/retriever/__init__.py +2 -2
- paddlex/inference/pipelines/components/retriever/base.py +18 -16
- paddlex/inference/pipelines/components/retriever/openai_bot_retriever.py +2 -2
- paddlex/inference/pipelines/components/retriever/qianfan_bot_retriever.py +87 -84
- paddlex/inference/pipelines/components/utils/__init__.py +1 -1
- paddlex/inference/pipelines/components/utils/mixin.py +7 -7
- paddlex/inference/pipelines/doc_preprocessor/__init__.py +1 -1
- paddlex/inference/pipelines/doc_preprocessor/pipeline.py +70 -51
- paddlex/inference/pipelines/doc_preprocessor/result.py +5 -10
- paddlex/inference/pipelines/doc_understanding/__init__.py +15 -0
- paddlex/inference/pipelines/doc_understanding/pipeline.py +71 -0
- paddlex/inference/pipelines/face_recognition/__init__.py +1 -1
- paddlex/inference/pipelines/face_recognition/pipeline.py +3 -1
- paddlex/inference/pipelines/face_recognition/result.py +3 -2
- paddlex/inference/pipelines/formula_recognition/__init__.py +1 -1
- paddlex/inference/pipelines/formula_recognition/pipeline.py +137 -93
- paddlex/inference/pipelines/formula_recognition/result.py +20 -29
- paddlex/inference/pipelines/image_classification/__init__.py +1 -1
- paddlex/inference/pipelines/image_classification/pipeline.py +30 -11
- paddlex/inference/pipelines/image_multilabel_classification/__init__.py +1 -1
- paddlex/inference/pipelines/image_multilabel_classification/pipeline.py +31 -12
- paddlex/inference/pipelines/instance_segmentation/__init__.py +1 -1
- paddlex/inference/pipelines/instance_segmentation/pipeline.py +30 -9
- paddlex/inference/pipelines/keypoint_detection/__init__.py +1 -1
- paddlex/inference/pipelines/keypoint_detection/pipeline.py +30 -9
- paddlex/inference/pipelines/layout_parsing/__init__.py +1 -1
- paddlex/inference/pipelines/layout_parsing/pipeline.py +54 -56
- paddlex/inference/pipelines/layout_parsing/pipeline_v2.py +904 -261
- paddlex/inference/pipelines/layout_parsing/result.py +9 -21
- paddlex/inference/pipelines/layout_parsing/result_v2.py +525 -250
- paddlex/inference/pipelines/layout_parsing/setting.py +87 -0
- paddlex/inference/pipelines/layout_parsing/utils.py +570 -2004
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/__init__.py +16 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/utils.py +1144 -0
- paddlex/inference/pipelines/layout_parsing/xycut_enhanced/xycuts.py +563 -0
- paddlex/inference/pipelines/{3d_bev_detection → m_3d_bev_detection}/__init__.py +1 -1
- paddlex/inference/pipelines/{3d_bev_detection → m_3d_bev_detection}/pipeline.py +17 -10
- paddlex/inference/pipelines/multilingual_speech_recognition/__init__.py +1 -1
- paddlex/inference/pipelines/multilingual_speech_recognition/pipeline.py +17 -6
- paddlex/inference/pipelines/object_detection/__init__.py +1 -1
- paddlex/inference/pipelines/object_detection/pipeline.py +29 -9
- paddlex/inference/pipelines/ocr/__init__.py +1 -1
- paddlex/inference/pipelines/ocr/pipeline.py +151 -77
- paddlex/inference/pipelines/ocr/result.py +31 -24
- paddlex/inference/pipelines/open_vocabulary_detection/__init__.py +1 -1
- paddlex/inference/pipelines/open_vocabulary_detection/pipeline.py +17 -6
- paddlex/inference/pipelines/open_vocabulary_segmentation/__init__.py +1 -1
- paddlex/inference/pipelines/open_vocabulary_segmentation/pipeline.py +17 -6
- paddlex/inference/pipelines/pp_chatocr/__init__.py +1 -1
- paddlex/inference/pipelines/pp_chatocr/pipeline_base.py +14 -5
- paddlex/inference/pipelines/pp_chatocr/pipeline_v3.py +22 -14
- paddlex/inference/pipelines/pp_chatocr/pipeline_v4.py +34 -16
- paddlex/inference/pipelines/pp_shitu_v2/__init__.py +1 -1
- paddlex/inference/pipelines/pp_shitu_v2/pipeline.py +12 -8
- paddlex/inference/pipelines/pp_shitu_v2/result.py +4 -4
- paddlex/inference/pipelines/rotated_object_detection/__init__.py +1 -1
- paddlex/inference/pipelines/rotated_object_detection/pipeline.py +30 -9
- paddlex/inference/pipelines/seal_recognition/__init__.py +1 -1
- paddlex/inference/pipelines/seal_recognition/pipeline.py +127 -63
- paddlex/inference/pipelines/seal_recognition/result.py +4 -2
- paddlex/inference/pipelines/semantic_segmentation/__init__.py +1 -1
- paddlex/inference/pipelines/semantic_segmentation/pipeline.py +30 -9
- paddlex/inference/pipelines/small_object_detection/__init__.py +1 -1
- paddlex/inference/pipelines/small_object_detection/pipeline.py +30 -9
- paddlex/inference/pipelines/table_recognition/__init__.py +1 -1
- paddlex/inference/pipelines/table_recognition/pipeline.py +61 -37
- paddlex/inference/pipelines/table_recognition/pipeline_v2.py +668 -65
- paddlex/inference/pipelines/table_recognition/result.py +12 -10
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing.py +12 -8
- paddlex/inference/pipelines/table_recognition/table_recognition_post_processing_v2.py +55 -37
- paddlex/inference/pipelines/table_recognition/utils.py +1 -1
- paddlex/inference/pipelines/ts_anomaly_detection/__init__.py +1 -1
- paddlex/inference/pipelines/ts_anomaly_detection/pipeline.py +16 -6
- paddlex/inference/pipelines/ts_classification/__init__.py +1 -1
- paddlex/inference/pipelines/ts_classification/pipeline.py +16 -6
- paddlex/inference/pipelines/ts_forecasting/__init__.py +1 -1
- paddlex/inference/pipelines/ts_forecasting/pipeline.py +16 -6
- paddlex/inference/pipelines/video_classification/__init__.py +1 -1
- paddlex/inference/pipelines/video_classification/pipeline.py +17 -6
- paddlex/inference/pipelines/video_detection/__init__.py +1 -1
- paddlex/inference/pipelines/video_detection/pipeline.py +20 -7
- paddlex/inference/serving/__init__.py +5 -1
- paddlex/inference/serving/basic_serving/__init__.py +1 -1
- paddlex/inference/serving/basic_serving/_app.py +31 -19
- paddlex/inference/serving/basic_serving/_pipeline_apps/__init__.py +7 -4
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/__init__.py +1 -1
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/common.py +12 -4
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/image_recognition.py +1 -1
- paddlex/inference/serving/basic_serving/_pipeline_apps/_common/ocr.py +7 -2
- paddlex/inference/serving/basic_serving/_pipeline_apps/anomaly_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/doc_preprocessor.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/doc_understanding.py +153 -0
- paddlex/inference/serving/basic_serving/_pipeline_apps/face_recognition.py +16 -13
- paddlex/inference/serving/basic_serving/_pipeline_apps/formula_recognition.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/human_keypoint_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_classification.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/image_multilabel_classification.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/instance_segmentation.py +13 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/layout_parsing.py +10 -8
- paddlex/inference/serving/basic_serving/_pipeline_apps/m_3d_bev_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/multilingual_speech_recognition.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/object_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/ocr.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/open_vocabulary_segmentation.py +13 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/pedestrian_attribute_recognition.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv3_doc.py +14 -12
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_chatocrv4_doc.py +17 -14
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_shituv2.py +16 -13
- paddlex/inference/serving/basic_serving/_pipeline_apps/pp_structurev3.py +16 -9
- paddlex/inference/serving/basic_serving/_pipeline_apps/rotated_object_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/seal_recognition.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/semantic_segmentation.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/small_object_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition.py +11 -12
- paddlex/inference/serving/basic_serving/_pipeline_apps/table_recognition_v2.py +14 -12
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_anomaly_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_classification.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/ts_forecast.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/vehicle_attribute_recognition.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_classification.py +10 -7
- paddlex/inference/serving/basic_serving/_pipeline_apps/video_detection.py +10 -7
- paddlex/inference/serving/basic_serving/_server.py +9 -4
- paddlex/inference/serving/infra/__init__.py +1 -1
- paddlex/inference/serving/infra/config.py +1 -1
- paddlex/inference/serving/infra/models.py +13 -6
- paddlex/inference/serving/infra/storage.py +9 -4
- paddlex/inference/serving/infra/utils.py +54 -28
- paddlex/inference/serving/schemas/__init__.py +1 -1
- paddlex/inference/serving/schemas/anomaly_detection.py +1 -1
- paddlex/inference/serving/schemas/doc_preprocessor.py +1 -1
- paddlex/inference/serving/schemas/doc_understanding.py +78 -0
- paddlex/inference/serving/schemas/face_recognition.py +1 -1
- paddlex/inference/serving/schemas/formula_recognition.py +2 -2
- paddlex/inference/serving/schemas/human_keypoint_detection.py +1 -1
- paddlex/inference/serving/schemas/image_classification.py +1 -1
- paddlex/inference/serving/schemas/image_multilabel_classification.py +1 -1
- paddlex/inference/serving/schemas/instance_segmentation.py +1 -1
- paddlex/inference/serving/schemas/layout_parsing.py +2 -3
- paddlex/inference/serving/schemas/m_3d_bev_detection.py +1 -1
- paddlex/inference/serving/schemas/multilingual_speech_recognition.py +1 -1
- paddlex/inference/serving/schemas/object_detection.py +1 -1
- paddlex/inference/serving/schemas/ocr.py +1 -1
- paddlex/inference/serving/schemas/open_vocabulary_detection.py +1 -1
- paddlex/inference/serving/schemas/open_vocabulary_segmentation.py +1 -1
- paddlex/inference/serving/schemas/pedestrian_attribute_recognition.py +1 -1
- paddlex/inference/serving/schemas/pp_chatocrv3_doc.py +2 -3
- paddlex/inference/serving/schemas/pp_chatocrv4_doc.py +3 -3
- paddlex/inference/serving/schemas/pp_shituv2.py +1 -1
- paddlex/inference/serving/schemas/pp_structurev3.py +11 -7
- paddlex/inference/serving/schemas/rotated_object_detection.py +1 -1
- paddlex/inference/serving/schemas/seal_recognition.py +2 -2
- paddlex/inference/serving/schemas/semantic_segmentation.py +1 -1
- paddlex/inference/serving/schemas/shared/__init__.py +1 -1
- paddlex/inference/serving/schemas/shared/classification.py +1 -1
- paddlex/inference/serving/schemas/shared/image_segmentation.py +1 -1
- paddlex/inference/serving/schemas/shared/object_detection.py +1 -1
- paddlex/inference/serving/schemas/shared/ocr.py +1 -1
- paddlex/inference/serving/schemas/small_object_detection.py +1 -1
- paddlex/inference/serving/schemas/table_recognition.py +3 -7
- paddlex/inference/serving/schemas/table_recognition_v2.py +6 -7
- paddlex/inference/serving/schemas/ts_anomaly_detection.py +1 -1
- paddlex/inference/serving/schemas/ts_classification.py +1 -1
- paddlex/inference/serving/schemas/ts_forecast.py +1 -1
- paddlex/inference/serving/schemas/vehicle_attribute_recognition.py +1 -1
- paddlex/inference/serving/schemas/video_classification.py +1 -1
- paddlex/inference/serving/schemas/video_detection.py +1 -1
- paddlex/inference/utils/__init__.py +1 -1
- paddlex/inference/utils/benchmark.py +332 -179
- paddlex/inference/utils/color_map.py +1 -1
- paddlex/inference/utils/get_pipeline_path.py +1 -1
- paddlex/inference/utils/hpi.py +258 -0
- paddlex/inference/utils/hpi_model_info_collection.json +2331 -0
- paddlex/inference/utils/io/__init__.py +11 -11
- paddlex/inference/utils/io/readers.py +31 -27
- paddlex/inference/utils/io/style.py +21 -14
- paddlex/inference/utils/io/tablepyxl.py +13 -5
- paddlex/inference/utils/io/writers.py +9 -10
- paddlex/inference/utils/mkldnn_blocklist.py +25 -0
- paddlex/inference/utils/model_paths.py +48 -0
- paddlex/inference/utils/{new_ir_blacklist.py → new_ir_blocklist.py} +1 -2
- paddlex/inference/utils/official_models.py +278 -262
- paddlex/inference/utils/pp_option.py +184 -92
- paddlex/inference/utils/trt_blocklist.py +43 -0
- paddlex/inference/utils/trt_config.py +420 -0
- paddlex/model.py +30 -12
- paddlex/modules/__init__.py +57 -80
- paddlex/modules/anomaly_detection/__init__.py +2 -2
- paddlex/modules/anomaly_detection/dataset_checker/__init__.py +2 -3
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +6 -3
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/check_dataset.py +8 -4
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +7 -4
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/split_dataset.py +2 -2
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/anomaly_detection/dataset_checker/dataset_src/utils/visualizer.py +7 -2
- paddlex/modules/anomaly_detection/evaluator.py +3 -3
- paddlex/modules/anomaly_detection/exportor.py +1 -1
- paddlex/modules/anomaly_detection/model_list.py +1 -1
- paddlex/modules/anomaly_detection/trainer.py +3 -4
- paddlex/modules/base/__init__.py +5 -5
- paddlex/modules/base/build_model.py +1 -2
- paddlex/modules/base/dataset_checker/__init__.py +2 -2
- paddlex/modules/base/dataset_checker/dataset_checker.py +4 -4
- paddlex/modules/base/dataset_checker/utils.py +1 -3
- paddlex/modules/base/evaluator.py +13 -13
- paddlex/modules/base/exportor.py +12 -13
- paddlex/modules/base/trainer.py +21 -11
- paddlex/modules/base/utils/__init__.py +13 -0
- paddlex/modules/base/utils/cinn_setting.py +89 -0
- paddlex/modules/base/utils/coco_eval.py +94 -0
- paddlex/modules/base/utils/topk_eval.py +118 -0
- paddlex/modules/doc_vlm/__init__.py +18 -0
- paddlex/modules/doc_vlm/dataset_checker.py +29 -0
- paddlex/modules/doc_vlm/evaluator.py +29 -0
- paddlex/modules/doc_vlm/exportor.py +29 -0
- paddlex/modules/doc_vlm/model_list.py +16 -0
- paddlex/modules/doc_vlm/trainer.py +41 -0
- paddlex/modules/face_recognition/__init__.py +2 -2
- paddlex/modules/face_recognition/dataset_checker/__init__.py +2 -2
- paddlex/modules/face_recognition/dataset_checker/dataset_src/__init__.py +1 -1
- paddlex/modules/face_recognition/dataset_checker/dataset_src/check_dataset.py +3 -5
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/face_recognition/dataset_checker/dataset_src/utils/visualizer.py +2 -5
- paddlex/modules/face_recognition/evaluator.py +3 -3
- paddlex/modules/face_recognition/exportor.py +1 -1
- paddlex/modules/face_recognition/model_list.py +1 -1
- paddlex/modules/face_recognition/trainer.py +1 -1
- paddlex/modules/formula_recognition/__init__.py +2 -2
- paddlex/modules/formula_recognition/dataset_checker/__init__.py +3 -3
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/analyse_dataset.py +13 -12
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/check_dataset.py +2 -6
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/convert_dataset.py +11 -10
- paddlex/modules/formula_recognition/dataset_checker/dataset_src/split_dataset.py +1 -2
- paddlex/modules/formula_recognition/evaluator.py +6 -3
- paddlex/modules/formula_recognition/exportor.py +1 -1
- paddlex/modules/formula_recognition/model_list.py +4 -1
- paddlex/modules/formula_recognition/trainer.py +5 -3
- paddlex/modules/general_recognition/__init__.py +2 -2
- paddlex/modules/general_recognition/dataset_checker/__init__.py +2 -2
- paddlex/modules/general_recognition/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/general_recognition/dataset_checker/dataset_src/analyse_dataset.py +7 -9
- paddlex/modules/general_recognition/dataset_checker/dataset_src/check_dataset.py +4 -5
- paddlex/modules/general_recognition/dataset_checker/dataset_src/convert_dataset.py +6 -5
- paddlex/modules/general_recognition/dataset_checker/dataset_src/split_dataset.py +1 -1
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/general_recognition/dataset_checker/dataset_src/utils/visualizer.py +2 -5
- paddlex/modules/general_recognition/evaluator.py +2 -2
- paddlex/modules/general_recognition/exportor.py +1 -1
- paddlex/modules/general_recognition/model_list.py +1 -1
- paddlex/modules/general_recognition/trainer.py +1 -1
- paddlex/modules/image_classification/__init__.py +2 -2
- paddlex/modules/image_classification/dataset_checker/__init__.py +2 -2
- paddlex/modules/image_classification/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/image_classification/dataset_checker/dataset_src/analyse_dataset.py +8 -9
- paddlex/modules/image_classification/dataset_checker/dataset_src/check_dataset.py +4 -3
- paddlex/modules/image_classification/dataset_checker/dataset_src/convert_dataset.py +4 -4
- paddlex/modules/image_classification/dataset_checker/dataset_src/split_dataset.py +1 -1
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/image_classification/dataset_checker/dataset_src/utils/visualizer.py +2 -5
- paddlex/modules/image_classification/evaluator.py +3 -3
- paddlex/modules/image_classification/exportor.py +1 -1
- paddlex/modules/image_classification/model_list.py +2 -1
- paddlex/modules/image_classification/trainer.py +3 -3
- paddlex/modules/image_unwarping/__init__.py +1 -1
- paddlex/modules/image_unwarping/model_list.py +1 -1
- paddlex/modules/instance_segmentation/__init__.py +2 -2
- paddlex/modules/instance_segmentation/dataset_checker/__init__.py +2 -3
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/analyse_dataset.py +9 -5
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/check_dataset.py +8 -5
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/convert_dataset.py +8 -8
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/split_dataset.py +7 -4
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/instance_segmentation/dataset_checker/dataset_src/utils/visualizer.py +10 -8
- paddlex/modules/instance_segmentation/evaluator.py +2 -2
- paddlex/modules/instance_segmentation/exportor.py +1 -1
- paddlex/modules/instance_segmentation/model_list.py +1 -1
- paddlex/modules/instance_segmentation/trainer.py +1 -1
- paddlex/modules/keypoint_detection/__init__.py +2 -2
- paddlex/modules/keypoint_detection/dataset_checker/__init__.py +2 -2
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/__init__.py +1 -1
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/check_dataset.py +10 -5
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/keypoint_detection/dataset_checker/dataset_src/utils/visualizer.py +8 -3
- paddlex/modules/keypoint_detection/evaluator.py +2 -2
- paddlex/modules/keypoint_detection/exportor.py +1 -1
- paddlex/modules/keypoint_detection/model_list.py +1 -1
- paddlex/modules/keypoint_detection/trainer.py +2 -2
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/__init__.py +2 -2
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/dataset_checker/__init__.py +3 -3
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/dataset_checker/dataset_src/analyse_dataset.py +8 -8
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/dataset_checker/dataset_src/check_dataset.py +1 -2
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/evaluator.py +3 -3
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/exportor.py +1 -1
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/model_list.py +1 -1
- paddlex/modules/{3d_bev_detection → m_3d_bev_detection}/trainer.py +5 -7
- paddlex/modules/multilabel_classification/__init__.py +2 -2
- paddlex/modules/multilabel_classification/dataset_checker/__init__.py +2 -2
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/analyse_dataset.py +8 -9
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/check_dataset.py +4 -3
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/convert_dataset.py +10 -7
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/split_dataset.py +1 -1
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/multilabel_classification/dataset_checker/dataset_src/utils/visualizer.py +1 -5
- paddlex/modules/multilabel_classification/evaluator.py +3 -3
- paddlex/modules/multilabel_classification/exportor.py +1 -1
- paddlex/modules/multilabel_classification/model_list.py +1 -1
- paddlex/modules/multilabel_classification/trainer.py +3 -3
- paddlex/modules/multilingual_speech_recognition/__init__.py +2 -2
- paddlex/modules/multilingual_speech_recognition/dataset_checker.py +3 -3
- paddlex/modules/multilingual_speech_recognition/evaluator.py +3 -3
- paddlex/modules/multilingual_speech_recognition/exportor.py +3 -3
- paddlex/modules/multilingual_speech_recognition/model_list.py +1 -1
- paddlex/modules/multilingual_speech_recognition/trainer.py +7 -5
- paddlex/modules/object_detection/__init__.py +2 -2
- paddlex/modules/object_detection/dataset_checker/__init__.py +2 -11
- paddlex/modules/object_detection/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/object_detection/dataset_checker/dataset_src/analyse_dataset.py +10 -8
- paddlex/modules/object_detection/dataset_checker/dataset_src/check_dataset.py +10 -5
- paddlex/modules/object_detection/dataset_checker/dataset_src/convert_dataset.py +17 -12
- paddlex/modules/object_detection/dataset_checker/dataset_src/split_dataset.py +8 -4
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/object_detection/dataset_checker/dataset_src/utils/visualizer.py +9 -8
- paddlex/modules/object_detection/evaluator.py +11 -6
- paddlex/modules/object_detection/exportor.py +1 -1
- paddlex/modules/object_detection/model_list.py +3 -1
- paddlex/modules/object_detection/trainer.py +4 -5
- paddlex/modules/open_vocabulary_detection/__init__.py +2 -2
- paddlex/modules/open_vocabulary_detection/dataset_checker.py +3 -3
- paddlex/modules/open_vocabulary_detection/evaluator.py +3 -3
- paddlex/modules/open_vocabulary_detection/exportor.py +3 -3
- paddlex/modules/open_vocabulary_detection/model_list.py +2 -4
- paddlex/modules/open_vocabulary_detection/trainer.py +7 -5
- paddlex/modules/open_vocabulary_segmentation/__init__.py +2 -2
- paddlex/modules/open_vocabulary_segmentation/dataset_checker.py +3 -3
- paddlex/modules/open_vocabulary_segmentation/evaluator.py +3 -3
- paddlex/modules/open_vocabulary_segmentation/exportor.py +3 -3
- paddlex/modules/open_vocabulary_segmentation/model_list.py +1 -1
- paddlex/modules/open_vocabulary_segmentation/trainer.py +7 -5
- paddlex/modules/semantic_segmentation/__init__.py +2 -2
- paddlex/modules/semantic_segmentation/dataset_checker/__init__.py +2 -3
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/analyse_dataset.py +6 -3
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/check_dataset.py +2 -2
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/convert_dataset.py +7 -4
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/split_dataset.py +2 -2
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/__init__.py +1 -1
- paddlex/modules/semantic_segmentation/dataset_checker/dataset_src/utils/visualizer.py +6 -2
- paddlex/modules/semantic_segmentation/evaluator.py +3 -3
- paddlex/modules/semantic_segmentation/exportor.py +1 -1
- paddlex/modules/semantic_segmentation/model_list.py +1 -1
- paddlex/modules/semantic_segmentation/trainer.py +3 -4
- paddlex/modules/table_recognition/__init__.py +2 -2
- paddlex/modules/table_recognition/dataset_checker/__init__.py +5 -5
- paddlex/modules/table_recognition/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/table_recognition/dataset_checker/dataset_src/analyse_dataset.py +3 -2
- paddlex/modules/table_recognition/dataset_checker/dataset_src/check_dataset.py +8 -7
- paddlex/modules/table_recognition/dataset_checker/dataset_src/split_dataset.py +2 -1
- paddlex/modules/table_recognition/evaluator.py +3 -3
- paddlex/modules/table_recognition/exportor.py +1 -1
- paddlex/modules/table_recognition/model_list.py +1 -1
- paddlex/modules/table_recognition/trainer.py +2 -5
- paddlex/modules/text_detection/__init__.py +2 -2
- paddlex/modules/text_detection/dataset_checker/__init__.py +4 -6
- paddlex/modules/text_detection/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/text_detection/dataset_checker/dataset_src/analyse_dataset.py +12 -9
- paddlex/modules/text_detection/dataset_checker/dataset_src/check_dataset.py +3 -3
- paddlex/modules/text_detection/dataset_checker/dataset_src/split_dataset.py +3 -3
- paddlex/modules/text_detection/evaluator.py +3 -3
- paddlex/modules/text_detection/exportor.py +1 -1
- paddlex/modules/text_detection/model_list.py +3 -1
- paddlex/modules/text_detection/trainer.py +2 -5
- paddlex/modules/text_recognition/__init__.py +2 -2
- paddlex/modules/text_recognition/dataset_checker/__init__.py +4 -5
- paddlex/modules/text_recognition/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/text_recognition/dataset_checker/dataset_src/analyse_dataset.py +13 -12
- paddlex/modules/text_recognition/dataset_checker/dataset_src/check_dataset.py +2 -5
- paddlex/modules/text_recognition/dataset_checker/dataset_src/convert_dataset.py +11 -10
- paddlex/modules/text_recognition/dataset_checker/dataset_src/split_dataset.py +1 -2
- paddlex/modules/text_recognition/evaluator.py +3 -3
- paddlex/modules/text_recognition/exportor.py +1 -1
- paddlex/modules/text_recognition/model_list.py +3 -1
- paddlex/modules/text_recognition/trainer.py +2 -3
- paddlex/modules/ts_anomaly_detection/__init__.py +2 -2
- paddlex/modules/ts_anomaly_detection/dataset_checker/__init__.py +4 -5
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/analyse_dataset.py +1 -9
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/check_dataset.py +2 -2
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/convert_dataset.py +2 -6
- paddlex/modules/ts_anomaly_detection/dataset_checker/dataset_src/split_dataset.py +4 -4
- paddlex/modules/ts_anomaly_detection/evaluator.py +3 -3
- paddlex/modules/ts_anomaly_detection/exportor.py +2 -3
- paddlex/modules/ts_anomaly_detection/model_list.py +1 -1
- paddlex/modules/ts_anomaly_detection/trainer.py +8 -8
- paddlex/modules/ts_classification/__init__.py +2 -2
- paddlex/modules/ts_classification/dataset_checker/__init__.py +4 -5
- paddlex/modules/ts_classification/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/ts_classification/dataset_checker/dataset_src/analyse_dataset.py +8 -5
- paddlex/modules/ts_classification/dataset_checker/dataset_src/check_dataset.py +2 -2
- paddlex/modules/ts_classification/dataset_checker/dataset_src/convert_dataset.py +2 -6
- paddlex/modules/ts_classification/dataset_checker/dataset_src/split_dataset.py +5 -5
- paddlex/modules/ts_classification/evaluator.py +3 -3
- paddlex/modules/ts_classification/exportor.py +2 -3
- paddlex/modules/ts_classification/model_list.py +1 -1
- paddlex/modules/ts_classification/trainer.py +7 -7
- paddlex/modules/ts_forecast/__init__.py +2 -2
- paddlex/modules/ts_forecast/dataset_checker/__init__.py +4 -5
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/analyse_dataset.py +1 -9
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/check_dataset.py +2 -2
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/convert_dataset.py +2 -6
- paddlex/modules/ts_forecast/dataset_checker/dataset_src/split_dataset.py +4 -4
- paddlex/modules/ts_forecast/evaluator.py +3 -3
- paddlex/modules/ts_forecast/exportor.py +2 -3
- paddlex/modules/ts_forecast/model_list.py +1 -1
- paddlex/modules/ts_forecast/trainer.py +7 -7
- paddlex/modules/video_classification/__init__.py +2 -2
- paddlex/modules/video_classification/dataset_checker/__init__.py +2 -2
- paddlex/modules/video_classification/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/video_classification/dataset_checker/dataset_src/analyse_dataset.py +9 -9
- paddlex/modules/video_classification/dataset_checker/dataset_src/check_dataset.py +2 -3
- paddlex/modules/video_classification/dataset_checker/dataset_src/split_dataset.py +1 -1
- paddlex/modules/video_classification/evaluator.py +3 -3
- paddlex/modules/video_classification/exportor.py +1 -1
- paddlex/modules/video_classification/model_list.py +1 -1
- paddlex/modules/video_classification/trainer.py +3 -3
- paddlex/modules/video_detection/__init__.py +2 -2
- paddlex/modules/video_detection/dataset_checker/__init__.py +2 -2
- paddlex/modules/video_detection/dataset_checker/dataset_src/__init__.py +2 -2
- paddlex/modules/video_detection/dataset_checker/dataset_src/analyse_dataset.py +8 -9
- paddlex/modules/video_detection/dataset_checker/dataset_src/check_dataset.py +3 -5
- paddlex/modules/video_detection/evaluator.py +3 -3
- paddlex/modules/video_detection/exportor.py +1 -1
- paddlex/modules/video_detection/model_list.py +1 -1
- paddlex/modules/video_detection/trainer.py +3 -3
- paddlex/ops/__init__.py +7 -4
- paddlex/ops/iou3d_nms/iou3d_cpu.cpp +8 -6
- paddlex/ops/iou3d_nms/iou3d_cpu.h +3 -2
- paddlex/ops/iou3d_nms/iou3d_nms.cpp +8 -6
- paddlex/ops/iou3d_nms/iou3d_nms.h +6 -4
- paddlex/ops/iou3d_nms/iou3d_nms_api.cpp +24 -18
- paddlex/ops/iou3d_nms/iou3d_nms_kernel.cu +9 -7
- paddlex/ops/setup.py +3 -3
- paddlex/ops/voxel/voxelize_op.cc +22 -19
- paddlex/ops/voxel/voxelize_op.cu +25 -25
- paddlex/paddlex_cli.py +104 -87
- paddlex/repo_apis/Paddle3D_api/__init__.py +1 -1
- paddlex/repo_apis/Paddle3D_api/bev_fusion/__init__.py +1 -1
- paddlex/repo_apis/Paddle3D_api/bev_fusion/config.py +1 -1
- paddlex/repo_apis/Paddle3D_api/bev_fusion/model.py +6 -6
- paddlex/repo_apis/Paddle3D_api/bev_fusion/register.py +2 -2
- paddlex/repo_apis/Paddle3D_api/bev_fusion/runner.py +1 -1
- paddlex/repo_apis/Paddle3D_api/pp3d_config.py +3 -2
- paddlex/repo_apis/PaddleClas_api/__init__.py +1 -1
- paddlex/repo_apis/PaddleClas_api/cls/__init__.py +3 -3
- paddlex/repo_apis/PaddleClas_api/cls/config.py +5 -4
- paddlex/repo_apis/PaddleClas_api/cls/model.py +4 -4
- paddlex/repo_apis/PaddleClas_api/cls/register.py +12 -3
- paddlex/repo_apis/PaddleClas_api/cls/runner.py +2 -3
- paddlex/repo_apis/PaddleClas_api/shitu_rec/__init__.py +2 -2
- paddlex/repo_apis/PaddleClas_api/shitu_rec/config.py +2 -2
- paddlex/repo_apis/PaddleClas_api/shitu_rec/model.py +1 -4
- paddlex/repo_apis/PaddleClas_api/shitu_rec/register.py +2 -2
- paddlex/repo_apis/PaddleClas_api/shitu_rec/runner.py +1 -6
- paddlex/repo_apis/PaddleDetection_api/__init__.py +2 -2
- paddlex/repo_apis/PaddleDetection_api/config_helper.py +3 -3
- paddlex/repo_apis/PaddleDetection_api/instance_seg/__init__.py +2 -2
- paddlex/repo_apis/PaddleDetection_api/instance_seg/config.py +2 -3
- paddlex/repo_apis/PaddleDetection_api/instance_seg/model.py +4 -4
- paddlex/repo_apis/PaddleDetection_api/instance_seg/register.py +2 -3
- paddlex/repo_apis/PaddleDetection_api/instance_seg/runner.py +2 -3
- paddlex/repo_apis/PaddleDetection_api/object_det/__init__.py +3 -3
- paddlex/repo_apis/PaddleDetection_api/object_det/config.py +5 -4
- paddlex/repo_apis/PaddleDetection_api/object_det/model.py +6 -7
- paddlex/repo_apis/PaddleDetection_api/object_det/official_categories.py +26 -1
- paddlex/repo_apis/PaddleDetection_api/object_det/register.py +32 -3
- paddlex/repo_apis/PaddleDetection_api/object_det/runner.py +2 -3
- paddlex/repo_apis/PaddleNLP_api/__init__.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/__init__.py +4 -3
- paddlex/repo_apis/PaddleOCR_api/config_utils.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/formula_rec/__init__.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/formula_rec/config.py +7 -6
- paddlex/repo_apis/PaddleOCR_api/formula_rec/model.py +9 -13
- paddlex/repo_apis/PaddleOCR_api/formula_rec/register.py +29 -3
- paddlex/repo_apis/PaddleOCR_api/formula_rec/runner.py +2 -3
- paddlex/repo_apis/PaddleOCR_api/table_rec/__init__.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/table_rec/config.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/table_rec/model.py +4 -4
- paddlex/repo_apis/PaddleOCR_api/table_rec/register.py +2 -3
- paddlex/repo_apis/PaddleOCR_api/table_rec/runner.py +3 -3
- paddlex/repo_apis/PaddleOCR_api/text_det/__init__.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/text_det/config.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/text_det/model.py +4 -4
- paddlex/repo_apis/PaddleOCR_api/text_det/register.py +20 -3
- paddlex/repo_apis/PaddleOCR_api/text_det/runner.py +3 -3
- paddlex/repo_apis/PaddleOCR_api/text_rec/__init__.py +1 -1
- paddlex/repo_apis/PaddleOCR_api/text_rec/config.py +7 -6
- paddlex/repo_apis/PaddleOCR_api/text_rec/model.py +9 -13
- paddlex/repo_apis/PaddleOCR_api/text_rec/register.py +20 -3
- paddlex/repo_apis/PaddleOCR_api/text_rec/runner.py +2 -3
- paddlex/repo_apis/PaddleSeg_api/__init__.py +1 -1
- paddlex/repo_apis/PaddleSeg_api/base_seg_config.py +2 -2
- paddlex/repo_apis/PaddleSeg_api/seg/__init__.py +1 -1
- paddlex/repo_apis/PaddleSeg_api/seg/config.py +3 -6
- paddlex/repo_apis/PaddleSeg_api/seg/model.py +6 -6
- paddlex/repo_apis/PaddleSeg_api/seg/register.py +2 -3
- paddlex/repo_apis/PaddleSeg_api/seg/runner.py +2 -3
- paddlex/repo_apis/PaddleTS_api/__init__.py +4 -3
- paddlex/repo_apis/PaddleTS_api/ts_ad/__init__.py +1 -1
- paddlex/repo_apis/PaddleTS_api/ts_ad/config.py +5 -6
- paddlex/repo_apis/PaddleTS_api/ts_ad/register.py +2 -2
- paddlex/repo_apis/PaddleTS_api/ts_ad/runner.py +2 -2
- paddlex/repo_apis/PaddleTS_api/ts_base/__init__.py +1 -1
- paddlex/repo_apis/PaddleTS_api/ts_base/config.py +2 -4
- paddlex/repo_apis/PaddleTS_api/ts_base/model.py +4 -4
- paddlex/repo_apis/PaddleTS_api/ts_base/runner.py +2 -2
- paddlex/repo_apis/PaddleTS_api/ts_cls/__init__.py +1 -1
- paddlex/repo_apis/PaddleTS_api/ts_cls/config.py +4 -5
- paddlex/repo_apis/PaddleTS_api/ts_cls/register.py +2 -2
- paddlex/repo_apis/PaddleTS_api/ts_cls/runner.py +2 -2
- paddlex/repo_apis/PaddleTS_api/ts_fc/__init__.py +1 -1
- paddlex/repo_apis/PaddleTS_api/ts_fc/config.py +6 -7
- paddlex/repo_apis/PaddleTS_api/ts_fc/register.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/__init__.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/config_utils.py +1 -1
- paddlex/repo_apis/PaddleVideo_api/video_cls/__init__.py +3 -3
- paddlex/repo_apis/PaddleVideo_api/video_cls/config.py +5 -4
- paddlex/repo_apis/PaddleVideo_api/video_cls/model.py +4 -4
- paddlex/repo_apis/PaddleVideo_api/video_cls/register.py +2 -3
- paddlex/repo_apis/PaddleVideo_api/video_cls/runner.py +2 -3
- paddlex/repo_apis/PaddleVideo_api/video_det/__init__.py +3 -3
- paddlex/repo_apis/PaddleVideo_api/video_det/config.py +5 -4
- paddlex/repo_apis/PaddleVideo_api/video_det/model.py +5 -5
- paddlex/repo_apis/PaddleVideo_api/video_det/register.py +2 -3
- paddlex/repo_apis/PaddleVideo_api/video_det/runner.py +2 -3
- paddlex/repo_apis/__init__.py +1 -1
- paddlex/repo_apis/base/__init__.py +4 -5
- paddlex/repo_apis/base/config.py +3 -4
- paddlex/repo_apis/base/model.py +11 -19
- paddlex/repo_apis/base/register.py +1 -1
- paddlex/repo_apis/base/runner.py +11 -12
- paddlex/repo_apis/base/utils/__init__.py +1 -1
- paddlex/repo_apis/base/utils/arg.py +1 -1
- paddlex/repo_apis/base/utils/subprocess.py +1 -1
- paddlex/repo_manager/__init__.py +2 -9
- paddlex/repo_manager/core.py +12 -30
- paddlex/repo_manager/meta.py +41 -31
- paddlex/repo_manager/repo.py +171 -161
- paddlex/repo_manager/utils.py +13 -224
- paddlex/utils/__init__.py +1 -1
- paddlex/utils/cache.py +8 -10
- paddlex/utils/config.py +6 -5
- paddlex/utils/{custom_device_whitelist.py → custom_device_list.py} +53 -199
- paddlex/utils/deps.py +249 -0
- paddlex/utils/device.py +87 -36
- paddlex/utils/download.py +4 -4
- paddlex/utils/env.py +37 -7
- paddlex/utils/errors/__init__.py +1 -1
- paddlex/utils/errors/dataset_checker.py +1 -1
- paddlex/utils/errors/others.py +2 -16
- paddlex/utils/file_interface.py +4 -5
- paddlex/utils/flags.py +17 -12
- paddlex/utils/fonts/__init__.py +36 -5
- paddlex/utils/func_register.py +1 -1
- paddlex/utils/install.py +87 -0
- paddlex/utils/interactive_get_pipeline.py +3 -3
- paddlex/utils/lazy_loader.py +3 -3
- paddlex/utils/logging.py +10 -1
- paddlex/utils/misc.py +6 -6
- paddlex/utils/pipeline_arguments.py +15 -7
- paddlex/utils/result_saver.py +4 -5
- paddlex/utils/subclass_register.py +2 -4
- paddlex/version.py +2 -1
- {paddlex-3.0.0rc0.dist-info → paddlex-3.0.1.dist-info}/METADATA +237 -102
- paddlex-3.0.1.dist-info/RECORD +1095 -0
- {paddlex-3.0.0rc0.dist-info → paddlex-3.0.1.dist-info}/WHEEL +1 -1
- paddlex/inference/models/base/predictor/basic_predictor.py +0 -139
- paddlex/paddle2onnx_requirements.txt +0 -1
- paddlex/repo_manager/requirements.txt +0 -21
- paddlex/serving_requirements.txt +0 -9
- paddlex-3.0.0rc0.dist-info/RECORD +0 -1015
- {paddlex-3.0.0rc0.dist-info → paddlex-3.0.1.dist-info}/entry_points.txt +0 -0
- {paddlex-3.0.0rc0.dist-info → paddlex-3.0.1.dist-info/licenses}/LICENSE +0 -0
- {paddlex-3.0.0rc0.dist-info → paddlex-3.0.1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,2495 @@
|
|
1
|
+
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
|
15
|
+
import math
|
16
|
+
import os
|
17
|
+
from dataclasses import dataclass
|
18
|
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
19
|
+
|
20
|
+
import paddle
|
21
|
+
import paddle.distributed.fleet.meta_parallel as mpu
|
22
|
+
import paddle.nn as nn
|
23
|
+
import paddle.nn.functional as F
|
24
|
+
from paddle import Tensor
|
25
|
+
from paddle.distributed import fleet
|
26
|
+
from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
|
27
|
+
from paddle.distributed.fleet.utils import recompute
|
28
|
+
|
29
|
+
from .....utils import logging
|
30
|
+
from ....utils.benchmark import (
|
31
|
+
benchmark,
|
32
|
+
get_inference_operations,
|
33
|
+
set_inference_operations,
|
34
|
+
)
|
35
|
+
from ...common.vlm.activations import ACT2FN
|
36
|
+
from ...common.vlm.bert_padding import index_first_axis, pad_input, unpad_input
|
37
|
+
from ...common.vlm.flash_attn_utils import has_flash_attn_func
|
38
|
+
from ...common.vlm.transformers import PretrainedConfig, PretrainedModel
|
39
|
+
from ...common.vlm.transformers.model_outputs import (
|
40
|
+
BaseModelOutputWithPast,
|
41
|
+
ModelOutput,
|
42
|
+
)
|
43
|
+
|
44
|
+
flash_attn_func, flash_attn_varlen_func = has_flash_attn_func()
|
45
|
+
_IS_NPU = "npu" in paddle.get_device()
|
46
|
+
|
47
|
+
Linear = nn.Linear
|
48
|
+
ColumnParallelLinear = mpu.ColumnParallelLinear
|
49
|
+
RowParallelLinear = mpu.RowParallelLinear
|
50
|
+
|
51
|
+
|
52
|
+
class Qwen2VLVisionConfig(PretrainedConfig):
|
53
|
+
model_type = "qwen2_vl"
|
54
|
+
|
55
|
+
def __init__(
|
56
|
+
self,
|
57
|
+
depth=32,
|
58
|
+
embed_dim=1280,
|
59
|
+
hidden_size=3584,
|
60
|
+
hidden_act="quick_gelu",
|
61
|
+
mlp_ratio=4,
|
62
|
+
num_heads=16,
|
63
|
+
in_channels=3,
|
64
|
+
patch_size=14,
|
65
|
+
spatial_merge_size=2,
|
66
|
+
temporal_patch_size=2,
|
67
|
+
attn_implementation="eager", # new added
|
68
|
+
**kwargs,
|
69
|
+
):
|
70
|
+
super().__init__(**kwargs)
|
71
|
+
|
72
|
+
self.depth = depth
|
73
|
+
self.embed_dim = embed_dim
|
74
|
+
self.hidden_size = hidden_size
|
75
|
+
self.hidden_act = hidden_act
|
76
|
+
self.mlp_ratio = mlp_ratio
|
77
|
+
self.num_heads = num_heads
|
78
|
+
self.in_channels = in_channels
|
79
|
+
self.patch_size = patch_size
|
80
|
+
self.spatial_merge_size = spatial_merge_size
|
81
|
+
self.temporal_patch_size = temporal_patch_size
|
82
|
+
self.attn_implementation = attn_implementation
|
83
|
+
|
84
|
+
@classmethod
|
85
|
+
def from_pretrained(
|
86
|
+
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
|
87
|
+
) -> "PretrainedConfig":
|
88
|
+
|
89
|
+
config_dict, kwargs = cls.get_config_dict(
|
90
|
+
pretrained_model_name_or_path, **kwargs
|
91
|
+
)
|
92
|
+
|
93
|
+
if config_dict.get("model_type") == "qwen2_vl":
|
94
|
+
config_dict = config_dict["vision_config"]
|
95
|
+
|
96
|
+
if (
|
97
|
+
"model_type" in config_dict
|
98
|
+
and hasattr(cls, "model_type")
|
99
|
+
and config_dict["model_type"] != cls.model_type
|
100
|
+
):
|
101
|
+
logging.warning(
|
102
|
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
103
|
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
104
|
+
)
|
105
|
+
|
106
|
+
return cls.from_dict(config_dict, **kwargs)
|
107
|
+
|
108
|
+
|
109
|
+
class Qwen2VLConfig(PretrainedConfig):
|
110
|
+
r"""
|
111
|
+
This is the configuration class to store the configuration of a [`Qwen2VLModel`]. It is used to instantiate a
|
112
|
+
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
113
|
+
with the defaults will yield a similar configuration to that of
|
114
|
+
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
115
|
+
|
116
|
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
117
|
+
documentation from [`PretrainedConfig`] for more information.
|
118
|
+
|
119
|
+
Args:
|
120
|
+
vocab_size (`int`, *optional*, defaults to 152064):
|
121
|
+
Vocabulary size of the Qwen2VL model. Defines the number of different tokens that can be represented by the
|
122
|
+
`inputs_ids` passed when calling [`Qwen2VLModel`]
|
123
|
+
hidden_size (`int`, *optional*, defaults to 8192):
|
124
|
+
Dimension of the hidden representations.
|
125
|
+
intermediate_size (`int`, *optional*, defaults to 29568):
|
126
|
+
Dimension of the MLP representations.
|
127
|
+
num_hidden_layers (`int`, *optional*, defaults to 80):
|
128
|
+
Number of hidden layers in the Transformer encoder.
|
129
|
+
num_attention_heads (`int`, *optional*, defaults to 64):
|
130
|
+
Number of attention heads for each attention layer in the Transformer encoder.
|
131
|
+
num_key_value_heads (`int`, *optional*, defaults to 8):
|
132
|
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
133
|
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
134
|
+
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
135
|
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
136
|
+
by meanpooling all the original heads within that group. For more details checkout [this
|
137
|
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
138
|
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
139
|
+
The non-linear activation function (function or string) in the decoder.
|
140
|
+
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
141
|
+
The maximum sequence length that this model might ever be used with.
|
142
|
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
143
|
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
144
|
+
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
145
|
+
The epsilon used by the rms normalization layers.
|
146
|
+
use_cache (`bool`, *optional*, defaults to `True`):
|
147
|
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
148
|
+
relevant if `config.is_decoder=True`.
|
149
|
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
150
|
+
Whether the model's input and output word embeddings should be tied.
|
151
|
+
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
152
|
+
The base period of the RoPE embeddings.
|
153
|
+
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
154
|
+
Whether to use sliding window attention.
|
155
|
+
sliding_window (`int`, *optional*, defaults to 4096):
|
156
|
+
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
157
|
+
max_window_layers (`int`, *optional*, defaults to 80):
|
158
|
+
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
159
|
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
160
|
+
The dropout ratio for the attention probabilities.
|
161
|
+
vision_config (`Dict`, *optional*):
|
162
|
+
The config for the visual encoder initialization.
|
163
|
+
rope_scaling (`Dict`, *optional*):
|
164
|
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
165
|
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
166
|
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
167
|
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
168
|
+
these scaling strategies behave:
|
169
|
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
170
|
+
experimental feature, subject to breaking API changes in future versions.
|
171
|
+
"""
|
172
|
+
|
173
|
+
model_type = "qwen2_vl"
|
174
|
+
keys_to_ignore_at_inference = ["past_key_values"]
|
175
|
+
|
176
|
+
def __init__(
|
177
|
+
self,
|
178
|
+
vocab_size=152064,
|
179
|
+
hidden_size=8192,
|
180
|
+
intermediate_size=29568,
|
181
|
+
num_hidden_layers=80,
|
182
|
+
num_attention_heads=64,
|
183
|
+
num_key_value_heads=8,
|
184
|
+
hidden_act="silu",
|
185
|
+
max_position_embeddings=32768,
|
186
|
+
initializer_range=0.02,
|
187
|
+
rms_norm_eps=1e-05,
|
188
|
+
use_cache=True,
|
189
|
+
tie_word_embeddings=False,
|
190
|
+
rope_theta=1000000.0,
|
191
|
+
use_sliding_window=False,
|
192
|
+
sliding_window=4096,
|
193
|
+
max_window_layers=80,
|
194
|
+
attention_dropout=0.0,
|
195
|
+
vision_config=None,
|
196
|
+
rope_scaling=None,
|
197
|
+
**kwargs,
|
198
|
+
):
|
199
|
+
if isinstance(vision_config, dict):
|
200
|
+
self.vision_config = Qwen2VLVisionConfig(**vision_config)
|
201
|
+
elif vision_config is None:
|
202
|
+
self.vision_config = Qwen2VLVisionConfig()
|
203
|
+
|
204
|
+
self.vocab_size = vocab_size
|
205
|
+
self.max_position_embeddings = max_position_embeddings
|
206
|
+
self.hidden_size = hidden_size
|
207
|
+
self.intermediate_size = intermediate_size
|
208
|
+
self.num_hidden_layers = num_hidden_layers
|
209
|
+
self.num_attention_heads = num_attention_heads
|
210
|
+
self.use_sliding_window = use_sliding_window
|
211
|
+
self.sliding_window = sliding_window
|
212
|
+
self.max_window_layers = max_window_layers
|
213
|
+
|
214
|
+
if num_key_value_heads is None:
|
215
|
+
num_key_value_heads = num_attention_heads
|
216
|
+
|
217
|
+
self.num_key_value_heads = num_key_value_heads
|
218
|
+
self.hidden_act = hidden_act
|
219
|
+
self.initializer_range = initializer_range
|
220
|
+
self.rms_norm_eps = rms_norm_eps
|
221
|
+
self.use_cache = use_cache
|
222
|
+
self.rope_theta = rope_theta
|
223
|
+
self.attention_dropout = attention_dropout
|
224
|
+
self.rope_scaling = rope_scaling
|
225
|
+
|
226
|
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
227
|
+
|
228
|
+
|
229
|
+
def get_triangle_upper_mask(x, mask=None):
|
230
|
+
if mask is not None:
|
231
|
+
return mask
|
232
|
+
shape = x.shape
|
233
|
+
shape[1] = 1
|
234
|
+
mask = paddle.full(shape, paddle.finfo(x.dtype).min, dtype=x.dtype)
|
235
|
+
mask = paddle.triu(mask, diagonal=1)
|
236
|
+
mask.stop_gradient = True
|
237
|
+
return mask
|
238
|
+
|
239
|
+
|
240
|
+
def parallel_matmul(
|
241
|
+
x: Tensor, y: Tensor, transpose_y=True, tensor_parallel_output=True
|
242
|
+
):
|
243
|
+
is_fleet_init = True
|
244
|
+
tensor_parallel_degree = 1
|
245
|
+
try:
|
246
|
+
hcg = fleet.get_hybrid_communicate_group()
|
247
|
+
model_parallel_group = hcg.get_model_parallel_group()
|
248
|
+
tensor_parallel_degree = hcg.get_model_parallel_world_size()
|
249
|
+
except:
|
250
|
+
is_fleet_init = False
|
251
|
+
|
252
|
+
if paddle.in_dynamic_mode():
|
253
|
+
y_is_distributed = y.is_distributed
|
254
|
+
else:
|
255
|
+
y_is_distributed = tensor_parallel_degree > 1
|
256
|
+
|
257
|
+
if is_fleet_init and tensor_parallel_degree > 1 and y_is_distributed:
|
258
|
+
|
259
|
+
input_parallel = paddle.distributed.collective._c_identity(
|
260
|
+
x, group=model_parallel_group
|
261
|
+
)
|
262
|
+
logits = paddle.matmul(input_parallel, y, transpose_y=transpose_y)
|
263
|
+
|
264
|
+
if tensor_parallel_output:
|
265
|
+
return logits
|
266
|
+
return paddle.distributed.collective._c_concat(
|
267
|
+
logits, group=model_parallel_group
|
268
|
+
)
|
269
|
+
|
270
|
+
else:
|
271
|
+
logits = paddle.matmul(x, y, transpose_y=transpose_y)
|
272
|
+
return logits
|
273
|
+
|
274
|
+
|
275
|
+
def _compute_default_rope_parameters(
|
276
|
+
config: Optional[PretrainedConfig] = None,
|
277
|
+
device: Optional["paddle.device"] = None,
|
278
|
+
seq_len: Optional[int] = None,
|
279
|
+
**rope_kwargs,
|
280
|
+
) -> Tuple["paddle.Tensor", float]:
|
281
|
+
"""
|
282
|
+
Computes the inverse frequencies according to the original RoPE implementation
|
283
|
+
Args:
|
284
|
+
config ([`~transformers.PretrainedConfig`]):
|
285
|
+
The model configuration.
|
286
|
+
device (`paddle.device`):
|
287
|
+
The device to use for initialization of the inverse frequencies.
|
288
|
+
seq_len (`int`, *optional*):
|
289
|
+
The current sequence length. Unused for this type of RoPE.
|
290
|
+
rope_kwargs (`Dict`, *optional*):
|
291
|
+
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
|
292
|
+
Returns:
|
293
|
+
Tuple of (`paddle.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
294
|
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
295
|
+
"""
|
296
|
+
if config is not None and len(rope_kwargs) > 0:
|
297
|
+
raise ValueError(
|
298
|
+
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
|
299
|
+
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
|
300
|
+
)
|
301
|
+
if len(rope_kwargs) > 0:
|
302
|
+
base = rope_kwargs["base"]
|
303
|
+
dim = rope_kwargs["dim"]
|
304
|
+
elif config is not None:
|
305
|
+
base = config.rope_theta
|
306
|
+
partial_rotary_factor = (
|
307
|
+
config.partial_rotary_factor
|
308
|
+
if hasattr(config, "partial_rotary_factor")
|
309
|
+
else 1.0
|
310
|
+
)
|
311
|
+
head_dim = getattr(
|
312
|
+
config, "head_dim", config.hidden_size // config.num_attention_heads
|
313
|
+
)
|
314
|
+
dim = int(head_dim * partial_rotary_factor)
|
315
|
+
|
316
|
+
attention_factor = 1.0
|
317
|
+
|
318
|
+
inv_freq = 1.0 / (
|
319
|
+
base ** (paddle.arange(0, dim, 2, dtype="int64").astype("float32") / dim)
|
320
|
+
)
|
321
|
+
return inv_freq, attention_factor
|
322
|
+
|
323
|
+
|
324
|
+
ROPE_INIT_FUNCTIONS = {
|
325
|
+
"default": _compute_default_rope_parameters,
|
326
|
+
}
|
327
|
+
|
328
|
+
|
329
|
+
def _get_unpad_data(attention_mask):
|
330
|
+
seqlens_in_batch = attention_mask.sum(axis=-1, dtype="int32")
|
331
|
+
indices = paddle.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
332
|
+
max_seqlen_in_batch = seqlens_in_batch.max().item() # [2, 1, 1323]
|
333
|
+
cu_seqlens = F.pad(
|
334
|
+
paddle.cumsum(seqlens_in_batch, axis=0), (1, 0), data_format="NCL"
|
335
|
+
)
|
336
|
+
return (
|
337
|
+
indices,
|
338
|
+
cu_seqlens,
|
339
|
+
max_seqlen_in_batch,
|
340
|
+
)
|
341
|
+
|
342
|
+
|
343
|
+
def is_casual_mask(attention_mask):
|
344
|
+
"""
|
345
|
+
Upper triangular of attention_mask equals to attention_mask is casual
|
346
|
+
"""
|
347
|
+
return (paddle.triu(attention_mask) == attention_mask).all().item()
|
348
|
+
|
349
|
+
|
350
|
+
def _make_causal_mask(input_ids_shape, past_key_values_length):
|
351
|
+
"""
|
352
|
+
Make causal mask used for self-attention
|
353
|
+
"""
|
354
|
+
batch_size, target_length = input_ids_shape
|
355
|
+
|
356
|
+
mask = paddle.tril(paddle.ones((target_length, target_length), dtype="bool"))
|
357
|
+
|
358
|
+
if past_key_values_length > 0:
|
359
|
+
mask = paddle.concat(
|
360
|
+
[paddle.ones([target_length, past_key_values_length], dtype="bool"), mask],
|
361
|
+
axis=-1,
|
362
|
+
)
|
363
|
+
|
364
|
+
return mask[None, None, :, :].expand(
|
365
|
+
[batch_size, 1, target_length, target_length + past_key_values_length]
|
366
|
+
)
|
367
|
+
|
368
|
+
|
369
|
+
def _expand_2d_mask(mask, dtype, tgt_length):
|
370
|
+
"""
|
371
|
+
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
372
|
+
"""
|
373
|
+
batch_size, src_length = mask.shape[0], mask.shape[-1]
|
374
|
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
375
|
+
|
376
|
+
mask = mask[:, None, None, :].astype("bool")
|
377
|
+
mask.stop_gradient = True
|
378
|
+
expanded_mask = mask.expand([batch_size, 1, tgt_length, src_length])
|
379
|
+
|
380
|
+
return expanded_mask
|
381
|
+
|
382
|
+
|
383
|
+
@dataclass
|
384
|
+
class Qwen2VLCausalLMOutputWithPast(ModelOutput):
|
385
|
+
"""
|
386
|
+
Base class for Qwen2VL causal language model (or autoregressive) outputs.
|
387
|
+
|
388
|
+
Args:
|
389
|
+
loss (`paddle.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
390
|
+
Language modeling loss (for next-token prediction).
|
391
|
+
logits (`paddle.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
392
|
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
393
|
+
past_key_values (`tuple(tuple(paddle.Tensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
394
|
+
Tuple of `tuple(paddle.Tensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
395
|
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
396
|
+
|
397
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
398
|
+
`past_key_values` input) to speed up sequential decoding.
|
399
|
+
hidden_states (`tuple(paddle.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
400
|
+
Tuple of `paddle.Tensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
401
|
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
402
|
+
|
403
|
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
404
|
+
attentions (`tuple(paddle.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
405
|
+
Tuple of `paddle.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
406
|
+
sequence_length)`.
|
407
|
+
|
408
|
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
409
|
+
heads.
|
410
|
+
rope_deltas (`paddle.Tensor` of shape `(batch_size, )`, *optional*):
|
411
|
+
The rope index difference between sequence length and multimodal rope.
|
412
|
+
"""
|
413
|
+
|
414
|
+
loss: Optional[paddle.Tensor] = None
|
415
|
+
logits: paddle.Tensor = None
|
416
|
+
past_key_values: Optional[List[paddle.Tensor]] = None
|
417
|
+
hidden_states: Optional[Tuple[paddle.Tensor]] = None
|
418
|
+
attentions: Optional[Tuple[paddle.Tensor]] = None
|
419
|
+
rope_deltas: Optional[paddle.Tensor] = None
|
420
|
+
|
421
|
+
|
422
|
+
class Qwen2VLRotaryEmbedding(nn.Layer):
|
423
|
+
def __init__(
|
424
|
+
self,
|
425
|
+
dim=None,
|
426
|
+
max_position_embeddings=2048,
|
427
|
+
base=10000,
|
428
|
+
device=None,
|
429
|
+
scaling_factor=1.0,
|
430
|
+
rope_type="default",
|
431
|
+
config: Optional[Qwen2VLConfig] = None,
|
432
|
+
):
|
433
|
+
super().__init__()
|
434
|
+
self.rope_kwargs = {}
|
435
|
+
if config is None:
|
436
|
+
self.rope_kwargs = {
|
437
|
+
"rope_type": rope_type,
|
438
|
+
"factor": scaling_factor,
|
439
|
+
"dim": dim,
|
440
|
+
"base": base,
|
441
|
+
"max_position_embeddings": max_position_embeddings,
|
442
|
+
}
|
443
|
+
self.rope_type = rope_type
|
444
|
+
self.max_seq_len_cached = max_position_embeddings
|
445
|
+
self.original_max_seq_len = max_position_embeddings
|
446
|
+
else:
|
447
|
+
# BC: "rope_type" was originally "type"
|
448
|
+
if config.rope_scaling is not None:
|
449
|
+
self.rope_type = config.rope_scaling.get(
|
450
|
+
"rope_type", config.rope_scaling.get("type")
|
451
|
+
)
|
452
|
+
else:
|
453
|
+
self.rope_type = "default"
|
454
|
+
self.max_seq_len_cached = config.max_position_embeddings
|
455
|
+
self.original_max_seq_len = config.max_position_embeddings
|
456
|
+
|
457
|
+
self.config = config
|
458
|
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
459
|
+
|
460
|
+
self.inv_freq, self.attention_scaling = self.rope_init_fn(
|
461
|
+
self.config, device, **self.rope_kwargs
|
462
|
+
)
|
463
|
+
self.original_inv_freq = self.inv_freq
|
464
|
+
|
465
|
+
self._set_cos_sin_cache(seq_len=max_position_embeddings)
|
466
|
+
|
467
|
+
def _set_cos_sin_cache(self, seq_len):
|
468
|
+
self.max_seq_len_cached = seq_len
|
469
|
+
t = paddle.arange(seq_len, dtype="float32")
|
470
|
+
freqs = paddle.einsum("i,j->ij", t, self.inv_freq)
|
471
|
+
emb = paddle.concat([freqs, freqs], axis=-1)
|
472
|
+
self.cos_cached = emb.cos()
|
473
|
+
self.sin_cached = emb.sin()
|
474
|
+
|
475
|
+
def _dynamic_frequency_update(self, position_ids, device):
|
476
|
+
"""
|
477
|
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
478
|
+
1 - growing beyond the cached sequence length (allow scaling)
|
479
|
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
480
|
+
"""
|
481
|
+
seq_len = paddle.max(position_ids) + 1
|
482
|
+
if seq_len > self.max_seq_len_cached: # growth
|
483
|
+
inv_freq, self.attention_scaling = self.rope_init_fn(
|
484
|
+
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
485
|
+
)
|
486
|
+
self.inv_freq = inv_freq
|
487
|
+
self.max_seq_len_cached = seq_len
|
488
|
+
|
489
|
+
if (
|
490
|
+
seq_len < self.original_max_seq_len
|
491
|
+
and self.max_seq_len_cached > self.original_max_seq_len
|
492
|
+
): # reset
|
493
|
+
self.inv_freq = self.original_inv_freq
|
494
|
+
self.max_seq_len_cached = self.original_max_seq_len
|
495
|
+
|
496
|
+
@paddle.no_grad()
|
497
|
+
def forward(self, x, position_ids):
|
498
|
+
if "dynamic" in self.rope_type:
|
499
|
+
self._dynamic_frequency_update(position_ids, device=x.device)
|
500
|
+
|
501
|
+
inv_freq_expanded = (
|
502
|
+
self.inv_freq[None, None, :, None]
|
503
|
+
.astype("float32")
|
504
|
+
.expand([3, position_ids.shape[1], -1, 1])
|
505
|
+
)
|
506
|
+
position_ids_expanded = position_ids[:, :, None, :].astype("float32")
|
507
|
+
device_type = paddle.get_device()
|
508
|
+
device_type = (
|
509
|
+
device_type
|
510
|
+
if isinstance(device_type, str) and device_type != "mps"
|
511
|
+
else "cpu"
|
512
|
+
)
|
513
|
+
with paddle.amp.auto_cast():
|
514
|
+
freqs = paddle.matmul(inv_freq_expanded, position_ids_expanded)
|
515
|
+
freqs = freqs.transpose([0, 1, 3, 2])
|
516
|
+
emb = paddle.concat((freqs, freqs), axis=-1)
|
517
|
+
cos = emb.cos()
|
518
|
+
sin = emb.sin()
|
519
|
+
|
520
|
+
cos = cos * self.attention_scaling
|
521
|
+
sin = sin * self.attention_scaling
|
522
|
+
|
523
|
+
return cos.astype(x.dtype), sin.astype(x.dtype)
|
524
|
+
|
525
|
+
|
526
|
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
527
|
+
def rotate_half(x):
|
528
|
+
"""Rotates half the hidden dims of the input."""
|
529
|
+
x1 = x[..., : x.shape[-1] // 2]
|
530
|
+
x2 = x[..., x.shape[-1] // 2 :]
|
531
|
+
return paddle.concat([-x2, x1], axis=-1)
|
532
|
+
|
533
|
+
|
534
|
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
535
|
+
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
536
|
+
|
537
|
+
Explanation:
|
538
|
+
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
539
|
+
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
540
|
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
|
541
|
+
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
542
|
+
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
543
|
+
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
544
|
+
difference with modern LLMs.
|
545
|
+
|
546
|
+
Args:
|
547
|
+
q (`paddle.Tensor`): The query tensor.
|
548
|
+
k (`paddle.Tensor`): The key tensor.
|
549
|
+
cos (`paddle.Tensor`): The cosine part of the rotary embedding.
|
550
|
+
sin (`paddle.Tensor`): The sine part of the rotary embedding.
|
551
|
+
position_ids (`paddle.Tensor`):
|
552
|
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
553
|
+
used to pass offsetted position ids when working with a KV-cache.
|
554
|
+
mrope_section(`List(int)`):
|
555
|
+
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
556
|
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
557
|
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
558
|
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
559
|
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
560
|
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
561
|
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
562
|
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
563
|
+
Returns:
|
564
|
+
`tuple(paddle.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
565
|
+
"""
|
566
|
+
|
567
|
+
mrope_section = mrope_section * 2
|
568
|
+
cos = paddle.concat(
|
569
|
+
x=[m[i % 3] for i, m in enumerate(cos.split(mrope_section, axis=-1))], axis=-1
|
570
|
+
).unsqueeze(axis=unsqueeze_dim)
|
571
|
+
sin = paddle.concat(
|
572
|
+
x=[m[i % 3] for i, m in enumerate(sin.split(mrope_section, axis=-1))], axis=-1
|
573
|
+
).unsqueeze(axis=unsqueeze_dim)
|
574
|
+
|
575
|
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
576
|
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
577
|
+
return q_embed, k_embed
|
578
|
+
|
579
|
+
|
580
|
+
def apply_rotary_pos_emb_vision(
|
581
|
+
tensor: paddle.Tensor, freqs: paddle.Tensor
|
582
|
+
) -> paddle.Tensor:
|
583
|
+
orig_dtype = tensor.dtype
|
584
|
+
|
585
|
+
with paddle.amp.auto_cast(False):
|
586
|
+
tensor = tensor.astype(dtype="float32")
|
587
|
+
cos = freqs.cos()
|
588
|
+
sin = freqs.sin()
|
589
|
+
cos = (
|
590
|
+
cos.unsqueeze(1)
|
591
|
+
.tile(repeat_times=[1, 1, 2])
|
592
|
+
.unsqueeze(0)
|
593
|
+
.astype(dtype="float32")
|
594
|
+
)
|
595
|
+
sin = (
|
596
|
+
sin.unsqueeze(1)
|
597
|
+
.tile(repeat_times=[1, 1, 2])
|
598
|
+
.unsqueeze(0)
|
599
|
+
.astype(dtype="float32")
|
600
|
+
)
|
601
|
+
output = tensor * cos + rotate_half(tensor) * sin
|
602
|
+
output = paddle.cast(output, orig_dtype)
|
603
|
+
return output
|
604
|
+
|
605
|
+
|
606
|
+
class VisionRotaryEmbedding(nn.Layer):
|
607
|
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
608
|
+
super().__init__()
|
609
|
+
self.inv_freq = 1.0 / theta ** (
|
610
|
+
paddle.arange(start=0, end=dim, step=2, dtype="float32") / dim
|
611
|
+
)
|
612
|
+
|
613
|
+
def forward(self, seqlen: int) -> paddle.Tensor:
|
614
|
+
seq = paddle.arange(seqlen).cast(self.inv_freq.dtype)
|
615
|
+
freqs = paddle.outer(x=seq, y=self.inv_freq)
|
616
|
+
return freqs
|
617
|
+
|
618
|
+
|
619
|
+
class PatchEmbed(nn.Layer):
|
620
|
+
def __init__(
|
621
|
+
self,
|
622
|
+
patch_size: int = 14,
|
623
|
+
temporal_patch_size: int = 2,
|
624
|
+
in_channels: int = 3,
|
625
|
+
embed_dim: int = 1152,
|
626
|
+
) -> None:
|
627
|
+
super().__init__()
|
628
|
+
self.patch_size = patch_size
|
629
|
+
self.temporal_patch_size = temporal_patch_size
|
630
|
+
self.in_channels = in_channels
|
631
|
+
self.embed_dim = embed_dim
|
632
|
+
|
633
|
+
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
634
|
+
self.proj = nn.Conv3D(
|
635
|
+
in_channels,
|
636
|
+
embed_dim,
|
637
|
+
kernel_size=kernel_size,
|
638
|
+
stride=kernel_size,
|
639
|
+
bias_attr=False,
|
640
|
+
)
|
641
|
+
|
642
|
+
def forward(self, hidden_states: paddle.Tensor) -> paddle.Tensor:
|
643
|
+
|
644
|
+
target_dtype = self.proj.weight.dtype
|
645
|
+
hidden_states = hidden_states.reshape(
|
646
|
+
[
|
647
|
+
-1,
|
648
|
+
self.in_channels,
|
649
|
+
self.temporal_patch_size,
|
650
|
+
self.patch_size,
|
651
|
+
self.patch_size,
|
652
|
+
]
|
653
|
+
)
|
654
|
+
# NOTE(changwenbin): AttributeError: 'Variable' object has no attribute 'to'.
|
655
|
+
# hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).reshape([-1, self.embed_dim])
|
656
|
+
# hidden_states = paddle.cast(hidden_states, dtype=target_dtype)
|
657
|
+
hidden_states = self.proj(
|
658
|
+
paddle.cast(hidden_states, dtype=target_dtype)
|
659
|
+
).reshape([-1, self.embed_dim])
|
660
|
+
return hidden_states
|
661
|
+
|
662
|
+
|
663
|
+
class PatchMerger(nn.Layer):
|
664
|
+
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
665
|
+
super().__init__()
|
666
|
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
667
|
+
self.ln_q = nn.LayerNorm(context_dim, epsilon=1e-6)
|
668
|
+
self.mlp = nn.Sequential(
|
669
|
+
nn.Linear(self.hidden_size, self.hidden_size),
|
670
|
+
nn.GELU(),
|
671
|
+
nn.Linear(self.hidden_size, dim),
|
672
|
+
)
|
673
|
+
|
674
|
+
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
|
675
|
+
x = self.mlp(self.ln_q(x).reshape([-1, self.hidden_size]))
|
676
|
+
return x
|
677
|
+
|
678
|
+
|
679
|
+
class VisionMlp(nn.Layer):
|
680
|
+
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
|
681
|
+
super().__init__()
|
682
|
+
self.fc1 = nn.Linear(dim, hidden_dim)
|
683
|
+
self.act = ACT2FN[hidden_act]
|
684
|
+
self.fc2 = nn.Linear(hidden_dim, dim)
|
685
|
+
|
686
|
+
def forward(self, x) -> paddle.Tensor:
|
687
|
+
return self.fc2(self.act(self.fc1(x)))
|
688
|
+
|
689
|
+
|
690
|
+
class VisionAttention(nn.Layer):
|
691
|
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
692
|
+
super().__init__()
|
693
|
+
self.num_heads = num_heads
|
694
|
+
self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
|
695
|
+
self.proj = nn.Linear(dim, dim)
|
696
|
+
self.head_dim = dim // num_heads # must added
|
697
|
+
|
698
|
+
def forward(
|
699
|
+
self,
|
700
|
+
hidden_states: paddle.Tensor,
|
701
|
+
cu_seqlens: paddle.Tensor,
|
702
|
+
rotary_pos_emb: paddle.Tensor = None,
|
703
|
+
) -> paddle.Tensor:
|
704
|
+
seq_length = hidden_states.shape[0]
|
705
|
+
q, k, v = (
|
706
|
+
self.qkv(hidden_states)
|
707
|
+
.reshape([seq_length, 3, self.num_heads, -1])
|
708
|
+
.transpose([1, 0, 2, 3])
|
709
|
+
.unbind(0)
|
710
|
+
)
|
711
|
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
712
|
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
713
|
+
|
714
|
+
attention_mask = paddle.zeros([1, seq_length, seq_length], dtype="bool")
|
715
|
+
for i in range(1, len(cu_seqlens)):
|
716
|
+
attention_mask[
|
717
|
+
...,
|
718
|
+
cu_seqlens[i - 1] : cu_seqlens[i],
|
719
|
+
cu_seqlens[i - 1] : cu_seqlens[i],
|
720
|
+
] = True
|
721
|
+
|
722
|
+
zero = paddle.zeros(attention_mask.shape, dtype=hidden_states.dtype)
|
723
|
+
neg_inf = paddle.full_like(
|
724
|
+
attention_mask,
|
725
|
+
paddle.finfo(hidden_states.dtype).min,
|
726
|
+
dtype=hidden_states.dtype,
|
727
|
+
)
|
728
|
+
attention_mask = paddle.where(attention_mask, zero, neg_inf)
|
729
|
+
|
730
|
+
q = q.transpose([1, 0, 2])
|
731
|
+
k = k.transpose([1, 0, 2])
|
732
|
+
v = v.transpose([1, 0, 2])
|
733
|
+
attn_weights = paddle.matmul(q, k.transpose([0, 2, 1])) / math.sqrt(
|
734
|
+
self.head_dim
|
735
|
+
)
|
736
|
+
attn_weights = attn_weights + attention_mask
|
737
|
+
attn_weights = nn.functional.softmax(attn_weights, axis=-1, dtype="float32")
|
738
|
+
attn_output = paddle.matmul(attn_weights, v)
|
739
|
+
attn_output = attn_output.transpose([1, 0, 2])
|
740
|
+
attn_output = attn_output.reshape([seq_length, -1])
|
741
|
+
attn_output = self.proj(attn_output)
|
742
|
+
return attn_output
|
743
|
+
|
744
|
+
|
745
|
+
class VisionFlashAttention2(nn.Layer):
|
746
|
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
747
|
+
super().__init__()
|
748
|
+
self.num_heads = num_heads
|
749
|
+
self.qkv = nn.Linear(dim, dim * 3, bias_attr=True)
|
750
|
+
self.proj = nn.Linear(dim, dim)
|
751
|
+
self.head_dim = dim // num_heads # must added
|
752
|
+
|
753
|
+
def forward(
|
754
|
+
self,
|
755
|
+
hidden_states: paddle.Tensor,
|
756
|
+
cu_seqlens: paddle.Tensor,
|
757
|
+
rotary_pos_emb: paddle.Tensor = None,
|
758
|
+
) -> paddle.Tensor:
|
759
|
+
seq_length = tuple(hidden_states.shape)[0]
|
760
|
+
qkv = (
|
761
|
+
self.qkv(hidden_states)
|
762
|
+
.reshape([seq_length, 3, self.num_heads, -1])
|
763
|
+
.transpose(perm=[1, 0, 2, 3])
|
764
|
+
)
|
765
|
+
q, k, v = qkv.unbind(axis=0)
|
766
|
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(axis=0), rotary_pos_emb).squeeze(
|
767
|
+
axis=0
|
768
|
+
)
|
769
|
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(axis=0), rotary_pos_emb).squeeze(
|
770
|
+
axis=0
|
771
|
+
)
|
772
|
+
|
773
|
+
if _IS_NPU:
|
774
|
+
attn_output = paddle.nn.functional.flash_attention_npu(
|
775
|
+
q.astype("bfloat16"),
|
776
|
+
k.astype("bfloat16"),
|
777
|
+
v.astype("bfloat16"),
|
778
|
+
is_varlen=True,
|
779
|
+
batch_size=1,
|
780
|
+
seq_length=seq_length,
|
781
|
+
).reshape([seq_length, -1])
|
782
|
+
else:
|
783
|
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
784
|
+
|
785
|
+
softmax_scale = self.head_dim**-0.5
|
786
|
+
attn_output = (
|
787
|
+
flash_attn_varlen_func(
|
788
|
+
q.astype("bfloat16"),
|
789
|
+
k.astype("bfloat16"),
|
790
|
+
v.astype("bfloat16"),
|
791
|
+
cu_seqlens,
|
792
|
+
cu_seqlens,
|
793
|
+
max_seqlen,
|
794
|
+
max_seqlen,
|
795
|
+
scale=softmax_scale,
|
796
|
+
)[0]
|
797
|
+
.squeeze(0)
|
798
|
+
.reshape([seq_length, -1])
|
799
|
+
)
|
800
|
+
if self.proj.weight.dtype == paddle.bfloat16:
|
801
|
+
attn_output = attn_output.astype(paddle.bfloat16)
|
802
|
+
elif self.proj.weight.dtype == paddle.float16:
|
803
|
+
attn_output = attn_output.astype(paddle.float16)
|
804
|
+
elif self.proj.weight.dtype == paddle.float32:
|
805
|
+
attn_output = attn_output.astype(paddle.float32)
|
806
|
+
attn_output = self.proj(attn_output)
|
807
|
+
return attn_output
|
808
|
+
|
809
|
+
|
810
|
+
def create_attention_module(config, module_type, layer_idx=None):
|
811
|
+
if flash_attn_func is not None:
|
812
|
+
if module_type == "qwen2vl":
|
813
|
+
return Qwen2VLFlashAttention2(config, layer_idx)
|
814
|
+
elif module_type == "vision":
|
815
|
+
return VisionFlashAttention2(config.embed_dim, num_heads=config.num_heads)
|
816
|
+
else:
|
817
|
+
logging.warning_once(
|
818
|
+
f"Warning: Flash Attention2 is not available for {module_type}, fallback to normal attention."
|
819
|
+
)
|
820
|
+
|
821
|
+
if module_type == "qwen2vl":
|
822
|
+
return Qwen2VLAttention(config, layer_idx)
|
823
|
+
elif module_type == "vision":
|
824
|
+
return VisionAttention(config.embed_dim, num_heads=config.num_heads)
|
825
|
+
|
826
|
+
|
827
|
+
class Qwen2VLVisionBlock(nn.Layer):
|
828
|
+
def __init__(self, config, attn_implementation: str = "flash_attention_2") -> None:
|
829
|
+
super().__init__()
|
830
|
+
self.norm1 = nn.LayerNorm(config.embed_dim, epsilon=1e-6)
|
831
|
+
self.norm2 = nn.LayerNorm(config.embed_dim, epsilon=1e-6)
|
832
|
+
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
833
|
+
|
834
|
+
self.attn = create_attention_module(config, "vision")
|
835
|
+
self.mlp = VisionMlp(
|
836
|
+
dim=config.embed_dim,
|
837
|
+
hidden_dim=mlp_hidden_dim,
|
838
|
+
hidden_act=config.hidden_act,
|
839
|
+
)
|
840
|
+
|
841
|
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> paddle.Tensor:
|
842
|
+
hidden_states = hidden_states + self.attn(
|
843
|
+
self.norm1(hidden_states),
|
844
|
+
cu_seqlens=cu_seqlens,
|
845
|
+
rotary_pos_emb=rotary_pos_emb,
|
846
|
+
)
|
847
|
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
848
|
+
return hidden_states
|
849
|
+
|
850
|
+
|
851
|
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
852
|
+
attention_mask: paddle.Tensor,
|
853
|
+
sequence_length: int,
|
854
|
+
target_length: int,
|
855
|
+
dtype: paddle.dtype,
|
856
|
+
min_dtype: float,
|
857
|
+
cache_position: paddle.Tensor,
|
858
|
+
batch_size: int,
|
859
|
+
):
|
860
|
+
"""
|
861
|
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
862
|
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
863
|
+
|
864
|
+
Args:
|
865
|
+
attention_mask (`paddle.Tensor`):
|
866
|
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
867
|
+
sequence_length (`int`):
|
868
|
+
The sequence length being processed.
|
869
|
+
target_length (`int`):
|
870
|
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
871
|
+
dtype (`paddle.dtype`):
|
872
|
+
The dtype to use for the 4D attention mask.
|
873
|
+
min_dtype (`float`):
|
874
|
+
The minimum value representable with the dtype `dtype`.
|
875
|
+
cache_position (`paddle.Tensor`):
|
876
|
+
Indices depicting the position of the input sequence tokens in the sequence.
|
877
|
+
batch_size (`paddle.Tensor`):
|
878
|
+
Batch size.
|
879
|
+
"""
|
880
|
+
if attention_mask is not None and attention_mask.dim() == 4:
|
881
|
+
causal_mask = attention_mask
|
882
|
+
else:
|
883
|
+
causal_mask = paddle.full(
|
884
|
+
[sequence_length, target_length], fill_value=min_dtype, dtype=dtype
|
885
|
+
)
|
886
|
+
if sequence_length != 1:
|
887
|
+
causal_mask = paddle.triu(x=causal_mask, diagonal=1)
|
888
|
+
causal_mask *= paddle.arange(target_length) > cache_position.reshape([-1, 1])
|
889
|
+
causal_mask = causal_mask[None, None, :, :].expand(
|
890
|
+
shape=[batch_size, 1, -1, -1]
|
891
|
+
)
|
892
|
+
if attention_mask is not None:
|
893
|
+
causal_mask = causal_mask.clone()
|
894
|
+
mask_length = tuple(attention_mask.shape)[-1]
|
895
|
+
padding_mask = (
|
896
|
+
causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
897
|
+
)
|
898
|
+
padding_mask = padding_mask == 0
|
899
|
+
causal_mask[:, :, :, :mask_length] = causal_mask[
|
900
|
+
:, :, :, :mask_length
|
901
|
+
].masked_fill(mask=padding_mask, value=min_dtype)
|
902
|
+
|
903
|
+
return causal_mask
|
904
|
+
|
905
|
+
|
906
|
+
class Qwen2RMSNorm(nn.Layer):
|
907
|
+
def __init__(self, config: Qwen2VLConfig, hidden_size, eps=1e-6):
|
908
|
+
"""
|
909
|
+
Qwen2RMSNorm is equivalent to T5LayerNorm
|
910
|
+
"""
|
911
|
+
super().__init__()
|
912
|
+
self.weight = paddle.create_parameter(
|
913
|
+
shape=[hidden_size],
|
914
|
+
dtype=paddle.get_default_dtype(),
|
915
|
+
default_initializer=nn.initializer.Constant(1.0),
|
916
|
+
)
|
917
|
+
self.variance_epsilon = eps
|
918
|
+
|
919
|
+
def forward(self, hidden_states):
|
920
|
+
if paddle.in_dynamic_mode():
|
921
|
+
with paddle.amp.auto_cast(False):
|
922
|
+
variance = hidden_states.astype("float32").pow(2).mean(-1, keepdim=True)
|
923
|
+
hidden_states = (
|
924
|
+
paddle.rsqrt(variance + self.variance_epsilon) * hidden_states
|
925
|
+
)
|
926
|
+
else:
|
927
|
+
variance = hidden_states.astype("float32").pow(2).mean(-1, keepdim=True)
|
928
|
+
hidden_states = (
|
929
|
+
paddle.rsqrt(variance + self.variance_epsilon) * hidden_states
|
930
|
+
)
|
931
|
+
|
932
|
+
if self.weight.dtype in [paddle.float16, paddle.bfloat16]:
|
933
|
+
hidden_states = paddle.cast(hidden_states, self.weight.dtype)
|
934
|
+
return hidden_states * self.weight
|
935
|
+
|
936
|
+
|
937
|
+
class Qwen2MLP(nn.Layer):
|
938
|
+
def __init__(self, config):
|
939
|
+
super().__init__()
|
940
|
+
self.hidden_size = config.hidden_size
|
941
|
+
self.intermediate_size = config.intermediate_size
|
942
|
+
self.fuse_attention_ffn = config.fuse_attention_ffn
|
943
|
+
self.tensor_parallel_degree = config.tensor_parallel_degree
|
944
|
+
|
945
|
+
if config.tensor_parallel_degree > 1:
|
946
|
+
|
947
|
+
self.gate_proj = ColumnParallelLinear(
|
948
|
+
self.hidden_size,
|
949
|
+
self.intermediate_size,
|
950
|
+
gather_output=False,
|
951
|
+
has_bias=False,
|
952
|
+
)
|
953
|
+
self.up_proj = ColumnParallelLinear(
|
954
|
+
self.hidden_size,
|
955
|
+
self.intermediate_size,
|
956
|
+
gather_output=False,
|
957
|
+
has_bias=False,
|
958
|
+
)
|
959
|
+
self.down_proj = RowParallelLinear(
|
960
|
+
self.intermediate_size,
|
961
|
+
self.hidden_size,
|
962
|
+
input_is_parallel=True,
|
963
|
+
has_bias=False,
|
964
|
+
)
|
965
|
+
else:
|
966
|
+
self.gate_proj = Linear(
|
967
|
+
self.hidden_size, self.intermediate_size, bias_attr=False
|
968
|
+
) # w1
|
969
|
+
self.up_proj = Linear(
|
970
|
+
self.hidden_size, self.intermediate_size, bias_attr=False
|
971
|
+
) # w3
|
972
|
+
self.down_proj = Linear(
|
973
|
+
self.intermediate_size, self.hidden_size, bias_attr=False
|
974
|
+
) # w2
|
975
|
+
|
976
|
+
self.act_fn = ACT2FN[config.hidden_act]
|
977
|
+
self.fuse_swiglu = False
|
978
|
+
|
979
|
+
def forward(self, x):
|
980
|
+
x, y = self.gate_proj(x), self.up_proj(x)
|
981
|
+
if self.fuse_swiglu:
|
982
|
+
x = self.act_fn(x, y)
|
983
|
+
else:
|
984
|
+
x = self.act_fn(x) * y
|
985
|
+
|
986
|
+
return self.down_proj(x)
|
987
|
+
|
988
|
+
|
989
|
+
# Copied from transformers.models.llama.modeling_llama.repeat_kv
|
990
|
+
def repeat_kv(hidden_states: paddle.Tensor, n_rep: int) -> paddle.Tensor:
|
991
|
+
"""
|
992
|
+
This is the equivalent of paddle.repeat_interleave(x, axis=1, repeats=n_rep). The hidden states go from (batch,
|
993
|
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
994
|
+
"""
|
995
|
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
996
|
+
if n_rep == 1:
|
997
|
+
return hidden_states
|
998
|
+
hidden_states = hidden_states[:, :, None, :, :].expand(
|
999
|
+
[batch, num_key_value_heads, n_rep, slen, head_dim]
|
1000
|
+
)
|
1001
|
+
return hidden_states.reshape([batch, num_key_value_heads * n_rep, slen, head_dim])
|
1002
|
+
|
1003
|
+
|
1004
|
+
class Qwen2VLAttention(nn.Layer):
|
1005
|
+
"""
|
1006
|
+
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
1007
|
+
and "Generating Long Sequences with Sparse Transformers".
|
1008
|
+
"""
|
1009
|
+
|
1010
|
+
def __init__(self, config: Qwen2VLConfig, layer_idx: Optional[int] = None):
|
1011
|
+
super().__init__()
|
1012
|
+
self.config = config
|
1013
|
+
self.layer_idx = layer_idx
|
1014
|
+
if layer_idx is None:
|
1015
|
+
logging.warning_once(
|
1016
|
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
1017
|
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
1018
|
+
"when creating this class."
|
1019
|
+
)
|
1020
|
+
|
1021
|
+
self.hidden_size = config.hidden_size
|
1022
|
+
self.num_heads = config.num_attention_heads
|
1023
|
+
self.head_dim = self.hidden_size // self.num_heads
|
1024
|
+
self.num_key_value_heads = config.num_key_value_heads
|
1025
|
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
1026
|
+
self.max_position_embeddings = config.max_position_embeddings
|
1027
|
+
self.rope_theta = config.rope_theta
|
1028
|
+
self.is_causal = True
|
1029
|
+
self.attention_dropout = config.attention_dropout
|
1030
|
+
self.rope_scaling = config.rope_scaling
|
1031
|
+
# self.sequence_parallel = config.sequence_parallel
|
1032
|
+
|
1033
|
+
if config.tensor_parallel_degree > 1:
|
1034
|
+
assert (
|
1035
|
+
self.num_heads % config.tensor_parallel_degree == 0
|
1036
|
+
), f"num_heads: {self.num_heads}, tensor_parallel_degree: {config.tensor_parallel_degree}"
|
1037
|
+
self.num_heads = self.num_heads // config.tensor_parallel_degree
|
1038
|
+
|
1039
|
+
assert (
|
1040
|
+
self.num_key_value_heads % config.tensor_parallel_degree == 0
|
1041
|
+
), f"num_key_value_heads: {self.num_key_value_heads}, tensor_parallel_degree: {config.tensor_parallel_degree}"
|
1042
|
+
self.num_key_value_heads = (
|
1043
|
+
self.num_key_value_heads // config.tensor_parallel_degree
|
1044
|
+
)
|
1045
|
+
|
1046
|
+
if config.tensor_parallel_degree > 1:
|
1047
|
+
self.q_proj = ColumnParallelLinear(
|
1048
|
+
self.hidden_size, self.hidden_size, has_bias=True, gather_output=False
|
1049
|
+
)
|
1050
|
+
self.k_proj = ColumnParallelLinear(self.hidden_size, self.config.num_key_value_heads * self.head_dim, has_bias=True, gather_output=False) # fmt:skip
|
1051
|
+
self.v_proj = ColumnParallelLinear(self.hidden_size, self.config.num_key_value_heads * self.head_dim, has_bias=True, gather_output=False) # fmt:skip
|
1052
|
+
self.o_proj = RowParallelLinear(
|
1053
|
+
self.hidden_size,
|
1054
|
+
self.hidden_size,
|
1055
|
+
has_bias=False,
|
1056
|
+
input_is_parallel=True,
|
1057
|
+
)
|
1058
|
+
else:
|
1059
|
+
self.q_proj = Linear(self.hidden_size, self.hidden_size, bias_attr=True)
|
1060
|
+
self.k_proj = Linear(
|
1061
|
+
self.hidden_size,
|
1062
|
+
self.config.num_key_value_heads * self.head_dim,
|
1063
|
+
bias_attr=True,
|
1064
|
+
)
|
1065
|
+
self.v_proj = Linear(
|
1066
|
+
self.hidden_size,
|
1067
|
+
self.config.num_key_value_heads * self.head_dim,
|
1068
|
+
bias_attr=True,
|
1069
|
+
)
|
1070
|
+
self.o_proj = Linear(self.hidden_size, self.hidden_size, bias_attr=False)
|
1071
|
+
|
1072
|
+
self.rotary_emb = Qwen2VLRotaryEmbedding(
|
1073
|
+
self.head_dim,
|
1074
|
+
max_position_embeddings=self.max_position_embeddings,
|
1075
|
+
base=self.rope_theta,
|
1076
|
+
)
|
1077
|
+
|
1078
|
+
def forward(
|
1079
|
+
self,
|
1080
|
+
hidden_states: paddle.Tensor,
|
1081
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1082
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1083
|
+
past_key_value: Optional[Tuple[paddle.Tensor]] = None,
|
1084
|
+
output_attentions: bool = False,
|
1085
|
+
use_cache: bool = False, # default true
|
1086
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1087
|
+
) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
|
1088
|
+
bsz, q_len, _ = hidden_states.shape
|
1089
|
+
|
1090
|
+
try:
|
1091
|
+
query_states = self.q_proj(hidden_states)
|
1092
|
+
key_states = self.k_proj(hidden_states)
|
1093
|
+
value_states = self.v_proj(hidden_states)
|
1094
|
+
except:
|
1095
|
+
hidden_states = hidden_states.astype(self.config.dtype)
|
1096
|
+
query_states = self.q_proj(hidden_states)
|
1097
|
+
key_states = self.k_proj(hidden_states)
|
1098
|
+
value_states = self.v_proj(hidden_states)
|
1099
|
+
|
1100
|
+
target_query_shape = [0, 0, self.num_heads, self.head_dim]
|
1101
|
+
target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
|
1102
|
+
query_states = query_states.reshape(shape=target_query_shape)
|
1103
|
+
key_states = key_states.reshape(shape=target_key_value_shape)
|
1104
|
+
value_states = value_states.reshape(shape=target_key_value_shape)
|
1105
|
+
|
1106
|
+
new_perm = [0, 2, 1, 3]
|
1107
|
+
query_states = query_states.transpose(new_perm)
|
1108
|
+
key_states = key_states.transpose(new_perm)
|
1109
|
+
value_states = value_states.transpose(new_perm)
|
1110
|
+
|
1111
|
+
kv_seq_len = key_states.shape[-2]
|
1112
|
+
if past_key_value is not None:
|
1113
|
+
kv_seq_len += cache_position[0] + 1
|
1114
|
+
|
1115
|
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
1116
|
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
1117
|
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
1118
|
+
)
|
1119
|
+
|
1120
|
+
if past_key_value is not None:
|
1121
|
+
key_states = paddle.concat([past_key_value[0], key_states], axis=2)
|
1122
|
+
value_states = paddle.concat([past_key_value[1], value_states], axis=2)
|
1123
|
+
past_key_value = (key_states, value_states) if use_cache else None
|
1124
|
+
|
1125
|
+
# repeat k/v heads if n_kv_heads < n_heads
|
1126
|
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
1127
|
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
1128
|
+
|
1129
|
+
query_states = query_states.astype("float32")
|
1130
|
+
key_states = key_states.astype("float32")
|
1131
|
+
value_states = value_states.astype("float32")
|
1132
|
+
|
1133
|
+
attn_weights = paddle.matmul(
|
1134
|
+
query_states, key_states.transpose([0, 1, 3, 2])
|
1135
|
+
) / math.sqrt(self.head_dim)
|
1136
|
+
|
1137
|
+
if attention_mask is not None:
|
1138
|
+
attn_weights = attn_weights + attention_mask
|
1139
|
+
attn_weights = nn.functional.softmax(attn_weights, axis=-1, dtype="float32")
|
1140
|
+
attn_weights = nn.functional.dropout(
|
1141
|
+
x=attn_weights, p=self.attention_dropout, training=self.training
|
1142
|
+
)
|
1143
|
+
attn_output = paddle.matmul(
|
1144
|
+
attn_weights.cast(self.config.dtype), value_states.cast(self.config.dtype)
|
1145
|
+
)
|
1146
|
+
|
1147
|
+
if attn_output.shape != [bsz, self.num_heads, q_len, self.head_dim]:
|
1148
|
+
raise ValueError(
|
1149
|
+
f"`attn_output` should be of size {(bsz, q_len, self.num_heads, self.head_dim)}, but is"
|
1150
|
+
f" {attn_output.shape}"
|
1151
|
+
)
|
1152
|
+
|
1153
|
+
attn_output = attn_output.transpose([0, 2, 1, 3])
|
1154
|
+
attn_output = attn_output.reshape([bsz, q_len, -1])
|
1155
|
+
|
1156
|
+
if self.o_proj.weight.dtype == paddle.bfloat16:
|
1157
|
+
attn_output = attn_output.astype(paddle.bfloat16)
|
1158
|
+
elif self.o_proj.weight.dtype == paddle.float16:
|
1159
|
+
attn_output = attn_output.astype(paddle.float16)
|
1160
|
+
elif self.o_proj.weight.dtype == paddle.float32:
|
1161
|
+
attn_output = attn_output.astype(paddle.float32)
|
1162
|
+
|
1163
|
+
attn_output = self.o_proj(attn_output)
|
1164
|
+
if not output_attentions:
|
1165
|
+
attn_weights = None
|
1166
|
+
return attn_output, attn_weights, past_key_value
|
1167
|
+
|
1168
|
+
|
1169
|
+
class Qwen2VLFlashAttention2(Qwen2VLAttention):
|
1170
|
+
"""
|
1171
|
+
Qwen2VL flash attention module, following Qwen2VL attention module. This module inherits from `Qwen2VLAttention`
|
1172
|
+
as the weights of the module stays untouched. The only required change would be on the forward pass
|
1173
|
+
where it needs to correctly call the public API of flash attention and deal with padding tokens
|
1174
|
+
in case the input contains any of them. Additionally, for sliding window attention, we apply SWA only to the bottom
|
1175
|
+
config.max_window_layers layers.
|
1176
|
+
"""
|
1177
|
+
|
1178
|
+
def __init__(self, *args, **kwargs):
|
1179
|
+
super().__init__(*args, **kwargs)
|
1180
|
+
|
1181
|
+
def forward(
|
1182
|
+
self,
|
1183
|
+
hidden_states: paddle.Tensor,
|
1184
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1185
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1186
|
+
past_key_value: Optional[Tuple[paddle.Tensor]] = None,
|
1187
|
+
output_attentions: bool = False,
|
1188
|
+
use_cache: bool = False, # default true
|
1189
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1190
|
+
) -> Tuple[paddle.Tensor, Optional[paddle.Tensor], Optional[Tuple[paddle.Tensor]]]:
|
1191
|
+
bsz, q_len, _ = tuple(hidden_states.shape)
|
1192
|
+
|
1193
|
+
try:
|
1194
|
+
query_states = self.q_proj(hidden_states)
|
1195
|
+
key_states = self.k_proj(hidden_states)
|
1196
|
+
value_states = self.v_proj(hidden_states)
|
1197
|
+
except:
|
1198
|
+
hidden_states = hidden_states.astype("bfloat16")
|
1199
|
+
query_states = self.q_proj(hidden_states)
|
1200
|
+
key_states = self.k_proj(hidden_states)
|
1201
|
+
value_states = self.v_proj(hidden_states)
|
1202
|
+
|
1203
|
+
target_query_shape = [0, 0, self.num_heads, self.head_dim]
|
1204
|
+
target_key_value_shape = [0, 0, self.num_key_value_heads, self.head_dim]
|
1205
|
+
query_states = query_states.reshape(shape=target_query_shape)
|
1206
|
+
key_states = key_states.reshape(shape=target_key_value_shape)
|
1207
|
+
value_states = value_states.reshape(shape=target_key_value_shape)
|
1208
|
+
|
1209
|
+
new_perm = [0, 2, 1, 3]
|
1210
|
+
query_states = query_states.transpose(new_perm)
|
1211
|
+
key_states = key_states.transpose(new_perm)
|
1212
|
+
value_states = value_states.transpose(new_perm)
|
1213
|
+
|
1214
|
+
kv_seq_len = key_states.shape[-2]
|
1215
|
+
if past_key_value is not None:
|
1216
|
+
kv_seq_len += cache_position[0] + 1
|
1217
|
+
|
1218
|
+
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
1219
|
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
1220
|
+
query_states, key_states = apply_multimodal_rotary_pos_emb(
|
1221
|
+
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
1222
|
+
)
|
1223
|
+
|
1224
|
+
if past_key_value is not None:
|
1225
|
+
key_states = paddle.concat([past_key_value[0], key_states], axis=2)
|
1226
|
+
value_states = paddle.concat([past_key_value[1], value_states], axis=2)
|
1227
|
+
past_key_value = (key_states, value_states) if use_cache else None
|
1228
|
+
|
1229
|
+
# repeat k/v heads if n_kv_heads < n_heads
|
1230
|
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
1231
|
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
1232
|
+
|
1233
|
+
# Reashape to the expected shape for Flash Attention
|
1234
|
+
# [1, 3599, 12, 128]
|
1235
|
+
query_states = query_states.transpose(perm=[0, 2, 1, 3])
|
1236
|
+
key_states = key_states.transpose(perm=[0, 2, 1, 3])
|
1237
|
+
value_states = value_states.transpose(perm=[0, 2, 1, 3])
|
1238
|
+
|
1239
|
+
attn_output = self._flash_attention_forward(
|
1240
|
+
query_states, key_states, value_states, attention_mask, q_len
|
1241
|
+
)
|
1242
|
+
|
1243
|
+
attn_output = attn_output.reshape([bsz, q_len, -1])
|
1244
|
+
attn_output = self.o_proj(attn_output)
|
1245
|
+
if not output_attentions:
|
1246
|
+
attn_weights = None
|
1247
|
+
return attn_output, attn_weights, past_key_value
|
1248
|
+
|
1249
|
+
def _flash_attention_forward(
|
1250
|
+
self,
|
1251
|
+
query_states,
|
1252
|
+
key_states,
|
1253
|
+
value_states,
|
1254
|
+
attention_mask,
|
1255
|
+
query_length,
|
1256
|
+
dropout=0.0,
|
1257
|
+
softmax_scale=None,
|
1258
|
+
):
|
1259
|
+
"""
|
1260
|
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
1261
|
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
1262
|
+
|
1263
|
+
Args:
|
1264
|
+
query_states (`paddle.Tensor`):
|
1265
|
+
Input query states to be passed to Flash Attention API
|
1266
|
+
key_states (`paddle.Tensor`):
|
1267
|
+
Input key states to be passed to Flash Attention API
|
1268
|
+
value_states (`paddle.Tensor`):
|
1269
|
+
Input value states to be passed to Flash Attention API
|
1270
|
+
attention_mask (`paddle.Tensor`):
|
1271
|
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
1272
|
+
position of padding tokens and 1 for the position of non-padding tokens.
|
1273
|
+
dropout (`int`, *optional*):
|
1274
|
+
Attention dropout
|
1275
|
+
softmax_scale (`float`, *optional*):
|
1276
|
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
1277
|
+
"""
|
1278
|
+
# Contains at least one padding token in the sequence
|
1279
|
+
causal = self.is_causal and query_length != 1
|
1280
|
+
|
1281
|
+
if _IS_NPU:
|
1282
|
+
if attention_mask is not None:
|
1283
|
+
attn_output = paddle.nn.functional.flash_attention_npu( # TODO: flash_attn_unpadded
|
1284
|
+
query_states,
|
1285
|
+
key_states,
|
1286
|
+
value_states,
|
1287
|
+
attn_mask=attention_mask,
|
1288
|
+
dropout=dropout,
|
1289
|
+
causal=causal,
|
1290
|
+
is_varlen=True,
|
1291
|
+
)
|
1292
|
+
else:
|
1293
|
+
dtype = query_states.dtype
|
1294
|
+
attn_output = paddle.nn.functional.flash_attention_npu( # TODO: flash_attn_unpadded
|
1295
|
+
query_states.astype("bfloat16"),
|
1296
|
+
key_states.astype("bfloat16"),
|
1297
|
+
value_states.astype("bfloat16"),
|
1298
|
+
attn_mask=attention_mask,
|
1299
|
+
dropout=dropout,
|
1300
|
+
causal=causal,
|
1301
|
+
)
|
1302
|
+
attn_output = attn_output.astype(dtype)
|
1303
|
+
else:
|
1304
|
+
head_dim = query_states.shape[-1]
|
1305
|
+
softmax_scale = head_dim**-0.5 # TODO: 需要手动加上
|
1306
|
+
|
1307
|
+
if attention_mask is not None:
|
1308
|
+
batch_size = query_states.shape[0]
|
1309
|
+
(
|
1310
|
+
query_states,
|
1311
|
+
key_states,
|
1312
|
+
value_states,
|
1313
|
+
indices_q,
|
1314
|
+
cu_seq_lens,
|
1315
|
+
max_seq_lens,
|
1316
|
+
) = self._unpad_input(
|
1317
|
+
query_states, key_states, value_states, attention_mask, query_length
|
1318
|
+
)
|
1319
|
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
1320
|
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
1321
|
+
|
1322
|
+
attn_output_unpad = flash_attn_varlen_func(
|
1323
|
+
query_states,
|
1324
|
+
key_states,
|
1325
|
+
value_states,
|
1326
|
+
cu_seqlens_q=cu_seqlens_q,
|
1327
|
+
cu_seqlens_k=cu_seqlens_k,
|
1328
|
+
max_seqlen_q=max_seqlen_in_batch_q,
|
1329
|
+
max_seqlen_k=max_seqlen_in_batch_k,
|
1330
|
+
scale=softmax_scale, # not softmax_scale=
|
1331
|
+
dropout=dropout,
|
1332
|
+
causal=causal,
|
1333
|
+
)[0]
|
1334
|
+
|
1335
|
+
attn_output = pad_input(
|
1336
|
+
attn_output_unpad, indices_q, batch_size, query_length
|
1337
|
+
)
|
1338
|
+
else:
|
1339
|
+
attn_output = flash_attn_func(
|
1340
|
+
query_states,
|
1341
|
+
key_states,
|
1342
|
+
value_states,
|
1343
|
+
dropout,
|
1344
|
+
causal=causal,
|
1345
|
+
)[0]
|
1346
|
+
|
1347
|
+
return attn_output
|
1348
|
+
|
1349
|
+
def _unpad_input(
|
1350
|
+
self, query_layer, key_layer, value_layer, attention_mask, query_length
|
1351
|
+
):
|
1352
|
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
1353
|
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
1354
|
+
|
1355
|
+
# TODO:cuda error
|
1356
|
+
key_layer = index_first_axis(
|
1357
|
+
key_layer.reshape([batch_size * kv_seq_len, num_key_value_heads, head_dim]),
|
1358
|
+
indices_k,
|
1359
|
+
)
|
1360
|
+
value_layer = index_first_axis(
|
1361
|
+
value_layer.reshape(
|
1362
|
+
[batch_size * kv_seq_len, num_key_value_heads, head_dim]
|
1363
|
+
),
|
1364
|
+
indices_k,
|
1365
|
+
)
|
1366
|
+
|
1367
|
+
if query_length == kv_seq_len:
|
1368
|
+
query_layer = index_first_axis(
|
1369
|
+
query_layer.reshape(
|
1370
|
+
[batch_size * kv_seq_len, self.num_heads, head_dim]
|
1371
|
+
),
|
1372
|
+
indices_k,
|
1373
|
+
)
|
1374
|
+
cu_seqlens_q = cu_seqlens_k
|
1375
|
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
1376
|
+
indices_q = indices_k
|
1377
|
+
elif query_length == 1:
|
1378
|
+
max_seqlen_in_batch_q = 1
|
1379
|
+
cu_seqlens_q = paddle.arange(
|
1380
|
+
batch_size + 1, dtype=paddle.int32
|
1381
|
+
) # There is a memcpy here, that is very bad.
|
1382
|
+
indices_q = cu_seqlens_q[:-1]
|
1383
|
+
query_layer = query_layer.squeeze(1)
|
1384
|
+
else:
|
1385
|
+
# The -q_len: slice assumes left padding.
|
1386
|
+
attention_mask = attention_mask[:, -query_length:]
|
1387
|
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
1388
|
+
query_layer, attention_mask
|
1389
|
+
)
|
1390
|
+
|
1391
|
+
return (
|
1392
|
+
query_layer,
|
1393
|
+
key_layer,
|
1394
|
+
value_layer,
|
1395
|
+
indices_q.to(paddle.int64),
|
1396
|
+
(cu_seqlens_q, cu_seqlens_k),
|
1397
|
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
1398
|
+
)
|
1399
|
+
|
1400
|
+
|
1401
|
+
class Qwen2VLDecoderLayer(nn.Layer):
|
1402
|
+
def __init__(self, config: Qwen2VLConfig, layer_idx: int):
|
1403
|
+
super().__init__()
|
1404
|
+
self.hidden_size = config.hidden_size
|
1405
|
+
|
1406
|
+
# use_sliding_window false
|
1407
|
+
if (
|
1408
|
+
config.use_sliding_window
|
1409
|
+
and config.attn_implementation != "flash_attention_2"
|
1410
|
+
):
|
1411
|
+
logging.warning_once(
|
1412
|
+
f"Sliding Window Attention is enabled but not implemented for `{config.attn_implementation}`; "
|
1413
|
+
"unexpected results may be encountered."
|
1414
|
+
)
|
1415
|
+
|
1416
|
+
self.self_attn = create_attention_module(config, "qwen2vl", layer_idx=layer_idx)
|
1417
|
+
# self.self_attn = Qwen2VLAttention(config, layer_idx)
|
1418
|
+
self.mlp = Qwen2MLP(config)
|
1419
|
+
self.input_layernorm = Qwen2RMSNorm(
|
1420
|
+
config, config.hidden_size, eps=config.rms_norm_eps
|
1421
|
+
)
|
1422
|
+
self.post_attention_layernorm = Qwen2RMSNorm(
|
1423
|
+
config, config.hidden_size, eps=config.rms_norm_eps
|
1424
|
+
)
|
1425
|
+
|
1426
|
+
def forward(
|
1427
|
+
self,
|
1428
|
+
hidden_states: paddle.Tensor,
|
1429
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1430
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1431
|
+
past_key_value: Optional[Tuple[paddle.Tensor]] = None,
|
1432
|
+
output_attentions: Optional[bool] = False,
|
1433
|
+
use_cache: Optional[bool] = False,
|
1434
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1435
|
+
**kwargs,
|
1436
|
+
):
|
1437
|
+
"""
|
1438
|
+
Args:
|
1439
|
+
hidden_states (`paddle.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
1440
|
+
attention_mask (`paddle.Tensor`, *optional*): attention mask of size
|
1441
|
+
`(batch, sequence_length)` where padding elements are indicated by 0.
|
1442
|
+
output_attentions (`bool`, *optional*):
|
1443
|
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1444
|
+
returned tensors for more detail.
|
1445
|
+
use_cache (`bool`, *optional*):
|
1446
|
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1447
|
+
(see `past_key_values`).
|
1448
|
+
past_key_value (`Tuple(paddle.Tensor)`, *optional*): cached past key and value projection states
|
1449
|
+
cache_position (`paddle.Tensor` of shape `(sequence_length)`, *optional*):
|
1450
|
+
Indices depicting the position of the input sequence tokens in the sequence.
|
1451
|
+
kwargs (`dict`, *optional*):
|
1452
|
+
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
|
1453
|
+
into the model
|
1454
|
+
"""
|
1455
|
+
|
1456
|
+
residual = hidden_states
|
1457
|
+
|
1458
|
+
hidden_states = self.input_layernorm(hidden_states)
|
1459
|
+
|
1460
|
+
# Self Attention
|
1461
|
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
1462
|
+
hidden_states=hidden_states,
|
1463
|
+
attention_mask=attention_mask,
|
1464
|
+
position_ids=position_ids,
|
1465
|
+
past_key_value=past_key_value,
|
1466
|
+
output_attentions=output_attentions,
|
1467
|
+
use_cache=use_cache,
|
1468
|
+
cache_position=cache_position,
|
1469
|
+
)
|
1470
|
+
hidden_states = residual + hidden_states
|
1471
|
+
|
1472
|
+
# Fully Connected
|
1473
|
+
residual = hidden_states
|
1474
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
1475
|
+
hidden_states = self.mlp(hidden_states)
|
1476
|
+
hidden_states = residual + hidden_states
|
1477
|
+
|
1478
|
+
outputs = (hidden_states,)
|
1479
|
+
|
1480
|
+
if output_attentions:
|
1481
|
+
outputs += (self_attn_weights,)
|
1482
|
+
|
1483
|
+
if use_cache:
|
1484
|
+
outputs += (present_key_value,)
|
1485
|
+
|
1486
|
+
return outputs
|
1487
|
+
|
1488
|
+
|
1489
|
+
class Qwen2VLPreTrainedModel(PretrainedModel):
|
1490
|
+
config_class = Qwen2VLConfig
|
1491
|
+
base_model_prefix = "model"
|
1492
|
+
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"]
|
1493
|
+
_skip_keys_device_placement = "past_key_values"
|
1494
|
+
|
1495
|
+
def _init_weights(self, layer):
|
1496
|
+
std = 0.2
|
1497
|
+
if isinstance(layer, (nn.Linear, nn.Conv3D)):
|
1498
|
+
nn.initializer.Normal(mean=0.0, std=std)(layer.weight)
|
1499
|
+
if layer.bias is not None:
|
1500
|
+
nn.initializer.Constant(0.0)(layer.bias)
|
1501
|
+
elif isinstance(layer, nn.Embedding):
|
1502
|
+
nn.initializer.Normal(mean=0.0, std=std)(layer.weight)
|
1503
|
+
if layer._padding_idx is not None:
|
1504
|
+
with paddle.no_grad():
|
1505
|
+
layer.weight[layer._padding_idx] = 0.0
|
1506
|
+
|
1507
|
+
|
1508
|
+
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
1509
|
+
config_class = Qwen2VLVisionConfig
|
1510
|
+
_no_split_modules = ["Qwen2VLVisionBlock"]
|
1511
|
+
|
1512
|
+
def __init__(self, config) -> None:
|
1513
|
+
super().__init__(config)
|
1514
|
+
self.spatial_merge_size = config.spatial_merge_size
|
1515
|
+
|
1516
|
+
self.patch_embed = PatchEmbed(
|
1517
|
+
patch_size=config.patch_size,
|
1518
|
+
temporal_patch_size=config.temporal_patch_size,
|
1519
|
+
in_channels=config.in_channels,
|
1520
|
+
embed_dim=config.embed_dim,
|
1521
|
+
)
|
1522
|
+
|
1523
|
+
head_dim = config.embed_dim // config.num_heads
|
1524
|
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
1525
|
+
|
1526
|
+
self.blocks = nn.LayerList(
|
1527
|
+
[Qwen2VLVisionBlock(config) for _ in range(config.depth)]
|
1528
|
+
)
|
1529
|
+
self.merger = PatchMerger(dim=config.hidden_size, context_dim=config.embed_dim)
|
1530
|
+
self.enable_recompute = False
|
1531
|
+
|
1532
|
+
def get_dtype(self) -> paddle.dtype:
|
1533
|
+
return self.blocks[0].mlp.fc2.weight.dtype
|
1534
|
+
|
1535
|
+
def rot_pos_emb(self, grid_thw):
|
1536
|
+
pos_ids = []
|
1537
|
+
for t, h, w in grid_thw:
|
1538
|
+
hpos_ids = paddle.arange(h).unsqueeze(1).expand([-1, w])
|
1539
|
+
hpos_ids = hpos_ids.reshape(
|
1540
|
+
[
|
1541
|
+
h // self.spatial_merge_size,
|
1542
|
+
self.spatial_merge_size,
|
1543
|
+
w // self.spatial_merge_size,
|
1544
|
+
self.spatial_merge_size,
|
1545
|
+
]
|
1546
|
+
)
|
1547
|
+
hpos_ids = hpos_ids.transpose(perm=[0, 2, 1, 3])
|
1548
|
+
hpos_ids = hpos_ids.flatten()
|
1549
|
+
|
1550
|
+
wpos_ids = paddle.arange(w).unsqueeze(0).expand([h, -1])
|
1551
|
+
wpos_ids = wpos_ids.reshape(
|
1552
|
+
[
|
1553
|
+
h // self.spatial_merge_size,
|
1554
|
+
self.spatial_merge_size,
|
1555
|
+
w // self.spatial_merge_size,
|
1556
|
+
self.spatial_merge_size,
|
1557
|
+
]
|
1558
|
+
)
|
1559
|
+
wpos_ids = wpos_ids.transpose([0, 2, 1, 3])
|
1560
|
+
wpos_ids = wpos_ids.flatten()
|
1561
|
+
pos_ids.append(
|
1562
|
+
paddle.stack(x=[hpos_ids, wpos_ids], axis=-1).tile(repeat_times=[t, 1])
|
1563
|
+
)
|
1564
|
+
pos_ids = paddle.concat(x=pos_ids, axis=0)
|
1565
|
+
max_grid_size = grid_thw[:, 1:].max()
|
1566
|
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
1567
|
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(start_axis=1)
|
1568
|
+
return rotary_pos_emb
|
1569
|
+
|
1570
|
+
@paddle.jit.not_to_static
|
1571
|
+
def recompute_training_full(
|
1572
|
+
self,
|
1573
|
+
layer_module: nn.Layer,
|
1574
|
+
hidden_states: paddle.Tensor,
|
1575
|
+
cu_seqlens_now: paddle.Tensor,
|
1576
|
+
rotary_pos_emb: paddle.Tensor,
|
1577
|
+
):
|
1578
|
+
def create_custom_forward(module):
|
1579
|
+
def custom_forward(*inputs):
|
1580
|
+
return module(*inputs)
|
1581
|
+
|
1582
|
+
return custom_forward
|
1583
|
+
|
1584
|
+
hidden_states = recompute(
|
1585
|
+
create_custom_forward(layer_module),
|
1586
|
+
hidden_states,
|
1587
|
+
cu_seqlens_now,
|
1588
|
+
rotary_pos_emb,
|
1589
|
+
# use_reentrant=self.config.recompute_use_reentrant,
|
1590
|
+
)
|
1591
|
+
return hidden_states
|
1592
|
+
|
1593
|
+
def forward(
|
1594
|
+
self, hidden_states: paddle.Tensor, grid_thw: paddle.Tensor
|
1595
|
+
) -> paddle.Tensor:
|
1596
|
+
# breakpoint()
|
1597
|
+
hidden_states = self.patch_embed(hidden_states)
|
1598
|
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
1599
|
+
|
1600
|
+
cu_seqlens = paddle.repeat_interleave(
|
1601
|
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
1602
|
+
).cumsum(axis=0, dtype="int32")
|
1603
|
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
1604
|
+
|
1605
|
+
for idx, blk in enumerate(self.blocks):
|
1606
|
+
if self.enable_recompute and self.training:
|
1607
|
+
hidden_states = self.recompute_training_full(
|
1608
|
+
blk, hidden_states, cu_seqlens, rotary_pos_emb
|
1609
|
+
)
|
1610
|
+
else:
|
1611
|
+
hidden_states = blk(
|
1612
|
+
hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
1613
|
+
)
|
1614
|
+
|
1615
|
+
return self.merger(hidden_states)
|
1616
|
+
|
1617
|
+
|
1618
|
+
class Qwen2VLModel(Qwen2VLPreTrainedModel):
|
1619
|
+
def __init__(self, config: Qwen2VLConfig):
|
1620
|
+
super().__init__(config)
|
1621
|
+
self.padding_idx = config.pad_token_id
|
1622
|
+
self.vocab_size = config.vocab_size
|
1623
|
+
self.hidden_size = config.hidden_size
|
1624
|
+
# Recompute defaults to False and is controlled by Trainer
|
1625
|
+
|
1626
|
+
if (
|
1627
|
+
config.tensor_parallel_degree > 1
|
1628
|
+
and config.vocab_size % config.tensor_parallel_degree == 0
|
1629
|
+
):
|
1630
|
+
self.embed_tokens = mpu.VocabParallelEmbedding(
|
1631
|
+
self.vocab_size,
|
1632
|
+
self.hidden_size,
|
1633
|
+
weight_attr=paddle.ParamAttr(initializer=nn.initializer.XavierNormal()),
|
1634
|
+
)
|
1635
|
+
else:
|
1636
|
+
self.embed_tokens = nn.Embedding(
|
1637
|
+
self.vocab_size,
|
1638
|
+
self.hidden_size,
|
1639
|
+
)
|
1640
|
+
|
1641
|
+
# self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1642
|
+
self.layers = nn.LayerList(
|
1643
|
+
[
|
1644
|
+
Qwen2VLDecoderLayer(config, layer_idx)
|
1645
|
+
for layer_idx in range(config.num_hidden_layers)
|
1646
|
+
]
|
1647
|
+
)
|
1648
|
+
self.norm = Qwen2RMSNorm(config, config.hidden_size, eps=config.rms_norm_eps)
|
1649
|
+
|
1650
|
+
self.enamble_recompute = False
|
1651
|
+
|
1652
|
+
def get_input_embeddings(self):
|
1653
|
+
return self.embed_tokens
|
1654
|
+
|
1655
|
+
def set_input_embeddings(self, value):
|
1656
|
+
self.embed_tokens = value
|
1657
|
+
|
1658
|
+
@staticmethod
|
1659
|
+
def _prepare_decoder_attention_mask(
|
1660
|
+
attention_mask, input_shape, past_key_values_length, dtype
|
1661
|
+
):
|
1662
|
+
if attention_mask is not None:
|
1663
|
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1664
|
+
if len(attention_mask.shape) == 2:
|
1665
|
+
expanded_attn_mask = _expand_2d_mask(
|
1666
|
+
attention_mask, dtype, tgt_length=input_shape[-1]
|
1667
|
+
)
|
1668
|
+
# For decoding phase in generation, seq_length = 1, we don't need to add causal mask
|
1669
|
+
if input_shape[-1] > 1:
|
1670
|
+
combined_attention_mask = _make_causal_mask(
|
1671
|
+
input_shape,
|
1672
|
+
past_key_values_length=past_key_values_length,
|
1673
|
+
)
|
1674
|
+
expanded_attn_mask = expanded_attn_mask & combined_attention_mask
|
1675
|
+
# [bsz, seq_len, seq_len] -> [bsz, 1, seq_len, seq_len]
|
1676
|
+
elif len(attention_mask.shape) == 3:
|
1677
|
+
expanded_attn_mask = attention_mask.unsqueeze(1).astype("bool")
|
1678
|
+
# if attention_mask is already 4-D, do nothing
|
1679
|
+
else:
|
1680
|
+
expanded_attn_mask = attention_mask
|
1681
|
+
else:
|
1682
|
+
expanded_attn_mask = _make_causal_mask(
|
1683
|
+
input_shape,
|
1684
|
+
past_key_values_length=past_key_values_length,
|
1685
|
+
)
|
1686
|
+
# Convert bool attention_mask to float attention mask, which will be added to attention_scores later
|
1687
|
+
expanded_attn_mask = paddle.where(
|
1688
|
+
expanded_attn_mask, 0.0, paddle.finfo(dtype).min
|
1689
|
+
).astype(dtype)
|
1690
|
+
return expanded_attn_mask
|
1691
|
+
|
1692
|
+
@paddle.jit.not_to_static
|
1693
|
+
def recompute_training_full(
|
1694
|
+
self,
|
1695
|
+
layer_module: nn.Layer,
|
1696
|
+
hidden_states: paddle.Tensor,
|
1697
|
+
attention_mask: paddle.Tensor,
|
1698
|
+
position_ids: Optional[paddle.Tensor],
|
1699
|
+
past_key_value: paddle.Tensor,
|
1700
|
+
output_attentions: bool,
|
1701
|
+
use_cache: bool,
|
1702
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1703
|
+
):
|
1704
|
+
def create_custom_forward(module):
|
1705
|
+
def custom_forward(*inputs):
|
1706
|
+
return module(*inputs)
|
1707
|
+
|
1708
|
+
return custom_forward
|
1709
|
+
|
1710
|
+
hidden_states = recompute(
|
1711
|
+
create_custom_forward(layer_module),
|
1712
|
+
hidden_states,
|
1713
|
+
attention_mask,
|
1714
|
+
position_ids,
|
1715
|
+
past_key_value,
|
1716
|
+
output_attentions,
|
1717
|
+
use_cache,
|
1718
|
+
cache_position,
|
1719
|
+
use_reentrant=self.config.recompute_use_reentrant,
|
1720
|
+
)
|
1721
|
+
return hidden_states
|
1722
|
+
|
1723
|
+
def forward(
|
1724
|
+
self,
|
1725
|
+
input_ids: paddle.Tensor = None,
|
1726
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1727
|
+
position_ids: Optional[paddle.Tensor] = None,
|
1728
|
+
past_key_values: Optional[List[paddle.Tensor]] = None,
|
1729
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
1730
|
+
use_cache: Optional[bool] = None,
|
1731
|
+
output_attentions: Optional[bool] = None,
|
1732
|
+
output_hidden_states: Optional[bool] = None,
|
1733
|
+
return_dict: Optional[bool] = None,
|
1734
|
+
cache_position: Optional[paddle.Tensor] = None,
|
1735
|
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1736
|
+
output_attentions = (
|
1737
|
+
output_attentions
|
1738
|
+
if output_attentions is not None
|
1739
|
+
else self.config.output_attentions
|
1740
|
+
)
|
1741
|
+
output_hidden_states = (
|
1742
|
+
output_hidden_states
|
1743
|
+
if output_hidden_states is not None
|
1744
|
+
else self.config.output_hidden_states
|
1745
|
+
)
|
1746
|
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1747
|
+
|
1748
|
+
return_dict = (
|
1749
|
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1750
|
+
)
|
1751
|
+
|
1752
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1753
|
+
raise ValueError(
|
1754
|
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1755
|
+
)
|
1756
|
+
elif input_ids is not None:
|
1757
|
+
batch_size, seq_length = input_ids.shape
|
1758
|
+
elif inputs_embeds is not None:
|
1759
|
+
batch_size, seq_length, _ = inputs_embeds.shape
|
1760
|
+
else:
|
1761
|
+
raise ValueError(
|
1762
|
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
1763
|
+
)
|
1764
|
+
|
1765
|
+
if past_key_values is None:
|
1766
|
+
past_key_values = tuple([None] * len(self.layers))
|
1767
|
+
# NOTE: to make cache can be clear in-time
|
1768
|
+
past_key_values = list(past_key_values)
|
1769
|
+
|
1770
|
+
seq_length_with_past = seq_length
|
1771
|
+
cache_length = 0
|
1772
|
+
if past_key_values[0] is not None:
|
1773
|
+
cache_length = past_key_values[0][0].shape[2] # shape[1] in qwen2
|
1774
|
+
seq_length_with_past += cache_length
|
1775
|
+
|
1776
|
+
if inputs_embeds is None:
|
1777
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
1778
|
+
|
1779
|
+
# embed positions
|
1780
|
+
if attention_mask is None:
|
1781
|
+
# [bs, seq_len]
|
1782
|
+
attention_mask = paddle.ones(
|
1783
|
+
(batch_size, seq_length_with_past), dtype=paddle.bool
|
1784
|
+
)
|
1785
|
+
|
1786
|
+
if flash_attn_varlen_func:
|
1787
|
+
causal_mask = attention_mask
|
1788
|
+
else:
|
1789
|
+
causal_mask = self._prepare_decoder_attention_mask(
|
1790
|
+
attention_mask,
|
1791
|
+
(batch_size, seq_length),
|
1792
|
+
cache_length,
|
1793
|
+
inputs_embeds.dtype,
|
1794
|
+
) # [bs, 1, seq_len, seq_len]
|
1795
|
+
|
1796
|
+
if cache_position is None:
|
1797
|
+
past_seen_tokens = (
|
1798
|
+
past_key_values[0][0].shape[2] if past_key_values[0] is not None else 0
|
1799
|
+
)
|
1800
|
+
cache_position = paddle.arange(
|
1801
|
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1]
|
1802
|
+
)
|
1803
|
+
|
1804
|
+
if position_ids is None:
|
1805
|
+
# the hard coded `3` is for temporal, height and width.
|
1806
|
+
position_ids = cache_position.reshape([1, 1, -1]).expand(
|
1807
|
+
[3, inputs_embeds.shape[0], -1]
|
1808
|
+
)
|
1809
|
+
|
1810
|
+
hidden_states = inputs_embeds
|
1811
|
+
|
1812
|
+
# decoder layers
|
1813
|
+
all_hidden_states = () if output_hidden_states else None
|
1814
|
+
all_self_attns = () if output_attentions else None
|
1815
|
+
next_decoder_cache = ()
|
1816
|
+
|
1817
|
+
for idx, (decoder_layer) in enumerate(self.layers):
|
1818
|
+
if output_hidden_states:
|
1819
|
+
all_hidden_states += (hidden_states,)
|
1820
|
+
|
1821
|
+
past_key_value = (
|
1822
|
+
past_key_values[idx] if past_key_values is not None else None
|
1823
|
+
)
|
1824
|
+
|
1825
|
+
if self.enamble_recompute and self.training:
|
1826
|
+
layer_outputs = self.recompute_training_full(
|
1827
|
+
decoder_layer,
|
1828
|
+
hidden_states,
|
1829
|
+
causal_mask,
|
1830
|
+
position_ids,
|
1831
|
+
past_key_value,
|
1832
|
+
output_attentions,
|
1833
|
+
use_cache,
|
1834
|
+
cache_position,
|
1835
|
+
)
|
1836
|
+
else:
|
1837
|
+
layer_outputs = decoder_layer(
|
1838
|
+
hidden_states,
|
1839
|
+
attention_mask=causal_mask,
|
1840
|
+
position_ids=position_ids,
|
1841
|
+
past_key_value=past_key_value,
|
1842
|
+
output_attentions=output_attentions, # False
|
1843
|
+
use_cache=use_cache, # True
|
1844
|
+
cache_position=cache_position,
|
1845
|
+
)
|
1846
|
+
|
1847
|
+
# NOTE: clear outdate cache after it has been used for memory saving
|
1848
|
+
past_key_value = past_key_values[idx] = None
|
1849
|
+
|
1850
|
+
hidden_states = layer_outputs[0]
|
1851
|
+
|
1852
|
+
next_decoder_cache = (
|
1853
|
+
next_decoder_cache + (layer_outputs[-1],) if use_cache else None
|
1854
|
+
)
|
1855
|
+
|
1856
|
+
if output_attentions:
|
1857
|
+
all_self_attns += (layer_outputs[1],)
|
1858
|
+
|
1859
|
+
hidden_states = self.norm(hidden_states)
|
1860
|
+
|
1861
|
+
# add hidden states from the last decoder layer
|
1862
|
+
if output_hidden_states:
|
1863
|
+
all_hidden_states += (hidden_states,)
|
1864
|
+
|
1865
|
+
next_cache = next_decoder_cache if use_cache else None
|
1866
|
+
|
1867
|
+
if not return_dict:
|
1868
|
+
return tuple(
|
1869
|
+
v
|
1870
|
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1871
|
+
if v is not None
|
1872
|
+
)
|
1873
|
+
return BaseModelOutputWithPast(
|
1874
|
+
last_hidden_state=hidden_states,
|
1875
|
+
past_key_values=next_cache,
|
1876
|
+
hidden_states=all_hidden_states,
|
1877
|
+
attentions=all_self_attns,
|
1878
|
+
)
|
1879
|
+
|
1880
|
+
|
1881
|
+
class Qwen2LMHead(nn.Layer):
|
1882
|
+
def __init__(self, config, embedding_weights=None, transpose_y=False):
|
1883
|
+
super(Qwen2LMHead, self).__init__()
|
1884
|
+
self.config = config
|
1885
|
+
if (
|
1886
|
+
config.tensor_parallel_degree > 1
|
1887
|
+
and config.vocab_size % config.tensor_parallel_degree == 0
|
1888
|
+
):
|
1889
|
+
vocab_size = config.vocab_size // config.tensor_parallel_degree
|
1890
|
+
else:
|
1891
|
+
vocab_size = config.vocab_size
|
1892
|
+
|
1893
|
+
self.transpose_y = transpose_y
|
1894
|
+
if transpose_y:
|
1895
|
+
# only for weight from embedding_weights
|
1896
|
+
if embedding_weights is not None:
|
1897
|
+
self.weight = embedding_weights
|
1898
|
+
else:
|
1899
|
+
self.weight = self.create_parameter(
|
1900
|
+
shape=[vocab_size, config.hidden_size],
|
1901
|
+
dtype=paddle.get_default_dtype(),
|
1902
|
+
)
|
1903
|
+
else:
|
1904
|
+
|
1905
|
+
if vocab_size != config.vocab_size:
|
1906
|
+
with get_rng_state_tracker().rng_state():
|
1907
|
+
self.weight = self.create_parameter(
|
1908
|
+
shape=[config.hidden_size, vocab_size],
|
1909
|
+
dtype=paddle.get_default_dtype(),
|
1910
|
+
)
|
1911
|
+
else:
|
1912
|
+
self.weight = self.create_parameter(
|
1913
|
+
shape=[config.hidden_size, vocab_size],
|
1914
|
+
dtype=paddle.get_default_dtype(),
|
1915
|
+
)
|
1916
|
+
|
1917
|
+
# Must set distributed attr for Tensor Parallel !
|
1918
|
+
self.weight.is_distributed = (
|
1919
|
+
True if (vocab_size != config.vocab_size) else False
|
1920
|
+
)
|
1921
|
+
if self.weight.is_distributed:
|
1922
|
+
# for tie_word_embeddings
|
1923
|
+
self.weight.split_axis = 0 if self.transpose_y else 1
|
1924
|
+
|
1925
|
+
def forward(self, hidden_states, tensor_parallel_output=None):
|
1926
|
+
if tensor_parallel_output is None:
|
1927
|
+
tensor_parallel_output = self.config.tensor_parallel_output
|
1928
|
+
|
1929
|
+
# 确保数据类型一致
|
1930
|
+
if self.weight.dtype != hidden_states.dtype:
|
1931
|
+
hidden_states = paddle.cast(hidden_states, self.weight.dtype)
|
1932
|
+
|
1933
|
+
logits = parallel_matmul(
|
1934
|
+
hidden_states,
|
1935
|
+
self.weight,
|
1936
|
+
transpose_y=self.transpose_y,
|
1937
|
+
tensor_parallel_output=tensor_parallel_output,
|
1938
|
+
)
|
1939
|
+
return logits
|
1940
|
+
|
1941
|
+
|
1942
|
+
class Qwen2VLForConditionalGeneration(Qwen2VLPreTrainedModel):
|
1943
|
+
_tied_weights_keys = ["lm_head.weight"]
|
1944
|
+
|
1945
|
+
def __init__(self, config, attn_implementation="flash_attention_2"):
|
1946
|
+
super().__init__(config)
|
1947
|
+
config._attn_implementation = attn_implementation
|
1948
|
+
config.vision_config._attn_implementation = attn_implementation
|
1949
|
+
|
1950
|
+
self.visual = Qwen2VisionTransformerPretrainedModel._from_config(
|
1951
|
+
config.vision_config
|
1952
|
+
)
|
1953
|
+
self.model = Qwen2VLModel(config)
|
1954
|
+
self.vocab_size = config.vocab_size
|
1955
|
+
|
1956
|
+
if config.tie_word_embeddings:
|
1957
|
+
self.lm_head = Qwen2LMHead(
|
1958
|
+
config,
|
1959
|
+
embedding_weights=self.model.embed_tokens.weight,
|
1960
|
+
transpose_y=True,
|
1961
|
+
)
|
1962
|
+
self.tie_weights()
|
1963
|
+
else:
|
1964
|
+
self.lm_head = Qwen2LMHead(config)
|
1965
|
+
self.padding_side = "left" # set it to left by default, user can use setter to change padding_sides
|
1966
|
+
|
1967
|
+
def get_input_embeddings(self):
|
1968
|
+
return self.model.embed_tokens
|
1969
|
+
|
1970
|
+
def set_input_embeddings(self, value):
|
1971
|
+
self.model.embed_tokens = value
|
1972
|
+
|
1973
|
+
def get_output_embeddings(self):
|
1974
|
+
return self.lm_head
|
1975
|
+
|
1976
|
+
def set_output_embeddings(self, new_embeddings):
|
1977
|
+
self.lm_head = new_embeddings
|
1978
|
+
|
1979
|
+
def set_decoder(self, decoder):
|
1980
|
+
self.model = decoder
|
1981
|
+
|
1982
|
+
def get_decoder(self):
|
1983
|
+
return self.model
|
1984
|
+
|
1985
|
+
@staticmethod
|
1986
|
+
def get_rope_index(
|
1987
|
+
spatial_merge_size,
|
1988
|
+
image_token_id,
|
1989
|
+
video_token_id,
|
1990
|
+
vision_start_token_id,
|
1991
|
+
input_ids: paddle.Tensor,
|
1992
|
+
image_grid_thw: Optional[paddle.Tensor] = None,
|
1993
|
+
video_grid_thw: Optional[paddle.Tensor] = None,
|
1994
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
1995
|
+
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
1996
|
+
"""
|
1997
|
+
Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
|
1998
|
+
|
1999
|
+
Explanation:
|
2000
|
+
Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
|
2001
|
+
|
2002
|
+
For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
|
2003
|
+
Examples:
|
2004
|
+
input_ids: [T T T T T], here T is for text.
|
2005
|
+
temporal position_ids: [0, 1, 2, 3, 4]
|
2006
|
+
height position_ids: [0, 1, 2, 3, 4]
|
2007
|
+
width position_ids: [0, 1, 2, 3, 4]
|
2008
|
+
|
2009
|
+
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
2010
|
+
and 1D rotary position embedding for text part.
|
2011
|
+
Examples:
|
2012
|
+
Assume we have a video input with 3 temporal patches, 2 height patches and 2 width patches.
|
2013
|
+
input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
|
2014
|
+
vision temporal position_ids: [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2]
|
2015
|
+
vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
|
2016
|
+
vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
|
2017
|
+
text temporal position_ids: [3, 4, 5, 6, 7]
|
2018
|
+
text height position_ids: [3, 4, 5, 6, 7]
|
2019
|
+
text width position_ids: [3, 4, 5, 6, 7]
|
2020
|
+
Here we calculate the text start position_ids as the max vision position_ids plus 1.
|
2021
|
+
|
2022
|
+
Args:
|
2023
|
+
input_ids (`paddle.Tensor` of shape `(batch_size, sequence_length)`):
|
2024
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
2025
|
+
it.
|
2026
|
+
image_grid_thw (`paddle.Tensor` of shape `(num_images, 3)`, *optional*):
|
2027
|
+
The temporal, height and width of feature shape of each image in LLM.
|
2028
|
+
video_grid_thw (`paddle.Tensor` of shape `(num_videos, 3)`, *optional*):
|
2029
|
+
The temporal, height and width of feature shape of each video in LLM.
|
2030
|
+
attention_mask (`paddle.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2031
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
2032
|
+
|
2033
|
+
- 1 for tokens that are **not masked**,
|
2034
|
+
- 0 for tokens that are **masked**.
|
2035
|
+
|
2036
|
+
Returns:
|
2037
|
+
position_ids (`paddle.Tensor` of shape `(3, batch_size, sequence_length)`)
|
2038
|
+
mrope_position_deltas (`paddle.Tensor` of shape `(batch_size)`)
|
2039
|
+
"""
|
2040
|
+
mrope_position_deltas = []
|
2041
|
+
if image_grid_thw is not None or video_grid_thw is not None:
|
2042
|
+
total_input_ids = input_ids
|
2043
|
+
position_ids = paddle.ones(
|
2044
|
+
[3, input_ids.shape[0], input_ids.shape[1]], dtype=input_ids.dtype
|
2045
|
+
)
|
2046
|
+
image_index, video_index = 0, 0
|
2047
|
+
for i, input_ids in enumerate(total_input_ids):
|
2048
|
+
# TODO: CUDA error in some paddle version
|
2049
|
+
if attention_mask is not None:
|
2050
|
+
input_ids = paddle.to_tensor(
|
2051
|
+
input_ids.cpu()[attention_mask[i].cpu() == 1]
|
2052
|
+
) # NOTE 原始写法
|
2053
|
+
|
2054
|
+
image_nums, video_nums = 0, 0
|
2055
|
+
vision_start_indices = paddle.nonzero(
|
2056
|
+
input_ids == vision_start_token_id
|
2057
|
+
).squeeze(
|
2058
|
+
1
|
2059
|
+
) # NOTE 原始写法
|
2060
|
+
|
2061
|
+
vision_tokens = input_ids[vision_start_indices + 1]
|
2062
|
+
image_nums = (
|
2063
|
+
(vision_tokens == image_token_id).sum()
|
2064
|
+
if vision_tokens.numel() > 0
|
2065
|
+
else 0
|
2066
|
+
)
|
2067
|
+
video_nums = (
|
2068
|
+
(vision_tokens == video_token_id).sum()
|
2069
|
+
if vision_tokens.numel() > 0
|
2070
|
+
else 0
|
2071
|
+
)
|
2072
|
+
input_tokens = input_ids.tolist()
|
2073
|
+
llm_pos_ids_list: list = []
|
2074
|
+
st = 0
|
2075
|
+
remain_images, remain_videos = image_nums, video_nums
|
2076
|
+
for _ in range(image_nums + video_nums):
|
2077
|
+
if image_token_id in input_tokens and remain_images > 0:
|
2078
|
+
ed_image = input_tokens.index(image_token_id, st)
|
2079
|
+
else:
|
2080
|
+
ed_image = len(input_tokens) + 1
|
2081
|
+
if video_token_id in input_tokens and remain_videos > 0:
|
2082
|
+
ed_video = input_tokens.index(video_token_id, st)
|
2083
|
+
else:
|
2084
|
+
ed_video = len(input_tokens) + 1
|
2085
|
+
if ed_image < ed_video:
|
2086
|
+
t, h, w = (
|
2087
|
+
image_grid_thw[image_index][0],
|
2088
|
+
image_grid_thw[image_index][1],
|
2089
|
+
image_grid_thw[image_index][2],
|
2090
|
+
)
|
2091
|
+
image_index += 1
|
2092
|
+
remain_images -= 1
|
2093
|
+
ed = ed_image
|
2094
|
+
else:
|
2095
|
+
t, h, w = (
|
2096
|
+
video_grid_thw[video_index][0],
|
2097
|
+
video_grid_thw[video_index][1],
|
2098
|
+
video_grid_thw[video_index][2],
|
2099
|
+
)
|
2100
|
+
video_index += 1
|
2101
|
+
remain_videos -= 1
|
2102
|
+
ed = ed_video
|
2103
|
+
llm_grid_t, llm_grid_h, llm_grid_w = (
|
2104
|
+
t.item(),
|
2105
|
+
h.item() // spatial_merge_size,
|
2106
|
+
w.item() // spatial_merge_size,
|
2107
|
+
)
|
2108
|
+
text_len = ed - st
|
2109
|
+
|
2110
|
+
st_idx = (
|
2111
|
+
llm_pos_ids_list[-1].max() + 1
|
2112
|
+
if len(llm_pos_ids_list) > 0
|
2113
|
+
else 0
|
2114
|
+
)
|
2115
|
+
llm_pos_ids_list.append(
|
2116
|
+
paddle.arange(text_len).reshape([1, -1]).expand([3, -1])
|
2117
|
+
+ st_idx
|
2118
|
+
)
|
2119
|
+
|
2120
|
+
t_index = (
|
2121
|
+
paddle.arange(llm_grid_t)
|
2122
|
+
.reshape([-1, 1])
|
2123
|
+
.expand([-1, llm_grid_h * llm_grid_w])
|
2124
|
+
.flatten()
|
2125
|
+
)
|
2126
|
+
h_index = (
|
2127
|
+
paddle.arange(llm_grid_h)
|
2128
|
+
.reshape([1, -1, 1])
|
2129
|
+
.expand([llm_grid_t, -1, llm_grid_w])
|
2130
|
+
.flatten()
|
2131
|
+
)
|
2132
|
+
w_index = (
|
2133
|
+
paddle.arange(llm_grid_w)
|
2134
|
+
.reshape([1, 1, -1])
|
2135
|
+
.expand([llm_grid_t, llm_grid_h, -1])
|
2136
|
+
.flatten()
|
2137
|
+
)
|
2138
|
+
llm_pos_ids_list.append(
|
2139
|
+
paddle.stack([t_index, h_index, w_index]) + text_len + st_idx
|
2140
|
+
)
|
2141
|
+
st = ed + llm_grid_t * llm_grid_h * llm_grid_w
|
2142
|
+
|
2143
|
+
if st < len(input_tokens):
|
2144
|
+
st_idx = (
|
2145
|
+
llm_pos_ids_list[-1].max() + 1
|
2146
|
+
if len(llm_pos_ids_list) > 0
|
2147
|
+
else 0
|
2148
|
+
)
|
2149
|
+
text_len = len(input_tokens) - st
|
2150
|
+
llm_pos_ids_list.append(
|
2151
|
+
paddle.arange(text_len).reshape([1, -1]).expand([3, -1])
|
2152
|
+
+ st_idx
|
2153
|
+
)
|
2154
|
+
|
2155
|
+
llm_positions = paddle.concat(llm_pos_ids_list, axis=1).reshape([3, -1])
|
2156
|
+
if _IS_NPU:
|
2157
|
+
bool_indices = (
|
2158
|
+
(attention_mask[i] == 1)
|
2159
|
+
.unsqueeze(0)
|
2160
|
+
.tile([position_ids.shape[0], 1])
|
2161
|
+
)
|
2162
|
+
position_ids[:, i] = paddle.index_put(
|
2163
|
+
position_ids[:, i], [bool_indices], llm_positions.reshape([-1])
|
2164
|
+
)
|
2165
|
+
else:
|
2166
|
+
position_ids[..., i, attention_mask[i] == 1] = llm_positions
|
2167
|
+
mrope_position_deltas.append(
|
2168
|
+
llm_positions.max() + 1 - len(total_input_ids[i])
|
2169
|
+
)
|
2170
|
+
mrope_position_deltas = paddle.to_tensor(mrope_position_deltas).unsqueeze(1)
|
2171
|
+
else:
|
2172
|
+
if attention_mask is not None:
|
2173
|
+
position_ids = paddle.cast(attention_mask, dtype="int64").cumsum(-1) - 1
|
2174
|
+
position_ids.masked_fill_(mask=attention_mask == 0, value=1)
|
2175
|
+
position_ids = position_ids.unsqueeze(0).expand([3, -1, -1])
|
2176
|
+
max_position_ids = position_ids.max(0, keepdim=False)[0].max(
|
2177
|
+
-1, keepdim=True
|
2178
|
+
)[0]
|
2179
|
+
mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
|
2180
|
+
else:
|
2181
|
+
position_ids = (
|
2182
|
+
paddle.arange(input_ids.shape[1])
|
2183
|
+
.reshape([1, 1, -1])
|
2184
|
+
.expand(shape=[3, input_ids.shape[0], -1])
|
2185
|
+
)
|
2186
|
+
mrope_position_deltas = paddle.zeros(
|
2187
|
+
[input_ids.shape[0], 1], dtype=input_ids.dtype
|
2188
|
+
)
|
2189
|
+
|
2190
|
+
return position_ids, mrope_position_deltas
|
2191
|
+
|
2192
|
+
def update_model_kwargs_for_generation(
|
2193
|
+
self,
|
2194
|
+
outputs: ModelOutput,
|
2195
|
+
model_kwargs: Dict[str, Any],
|
2196
|
+
is_encoder_decoder: bool = False,
|
2197
|
+
# num_new_tokens: int = 1,
|
2198
|
+
) -> Dict[str, Any]:
|
2199
|
+
model_kwargs = super().update_model_kwargs_for_generation(
|
2200
|
+
outputs=outputs,
|
2201
|
+
model_kwargs=model_kwargs,
|
2202
|
+
is_encoder_decoder=is_encoder_decoder,
|
2203
|
+
)
|
2204
|
+
|
2205
|
+
if getattr(outputs, "rope_deltas", None) is not None:
|
2206
|
+
model_kwargs["rope_deltas"] = outputs.rope_deltas
|
2207
|
+
|
2208
|
+
return model_kwargs
|
2209
|
+
|
2210
|
+
def forward(
|
2211
|
+
self,
|
2212
|
+
input_ids: paddle.Tensor = None,
|
2213
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
2214
|
+
position_ids: Optional[paddle.Tensor] = None,
|
2215
|
+
past_key_values: Optional[List[paddle.Tensor]] = None,
|
2216
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
2217
|
+
labels: Optional[paddle.Tensor] = None,
|
2218
|
+
use_cache: Optional[bool] = None,
|
2219
|
+
output_attentions: Optional[bool] = None,
|
2220
|
+
output_hidden_states: Optional[bool] = None,
|
2221
|
+
return_dict: Optional[bool] = None,
|
2222
|
+
pixel_values: Optional[paddle.Tensor] = None,
|
2223
|
+
pixel_values_videos: Optional[paddle.Tensor] = None,
|
2224
|
+
image_grid_thw: Optional[paddle.Tensor] = None,
|
2225
|
+
video_grid_thw: Optional[paddle.Tensor] = None,
|
2226
|
+
rope_deltas: Optional[paddle.Tensor] = None,
|
2227
|
+
):
|
2228
|
+
"""
|
2229
|
+
Args:
|
2230
|
+
labels (`paddle.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2231
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
2232
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
2233
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
2234
|
+
"""
|
2235
|
+
output_attentions = (
|
2236
|
+
output_attentions
|
2237
|
+
if output_attentions is not None
|
2238
|
+
else self.config.output_attentions
|
2239
|
+
)
|
2240
|
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # fmt:skip
|
2241
|
+
|
2242
|
+
return_dict = True # return_dict if return_dict is not None else self.config.use_return_dict
|
2243
|
+
|
2244
|
+
if inputs_embeds is None:
|
2245
|
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
2246
|
+
|
2247
|
+
if pixel_values is not None:
|
2248
|
+
pixel_values = paddle.cast(pixel_values, inputs_embeds.dtype)
|
2249
|
+
|
2250
|
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
2251
|
+
image_embeds = paddle.cast(image_embeds, inputs_embeds.dtype)
|
2252
|
+
|
2253
|
+
image_mask = input_ids == self.config.image_token_id
|
2254
|
+
if self.training:
|
2255
|
+
inputs_embeds = inputs_embeds.clone()
|
2256
|
+
inputs_embeds[image_mask] = image_embeds
|
2257
|
+
if pixel_values_videos is not None:
|
2258
|
+
pixel_values_videos = paddle.cast(
|
2259
|
+
pixel_values_videos, inputs_embeds.dtype
|
2260
|
+
)
|
2261
|
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
2262
|
+
video_embeds = paddle.cast(video_embeds, inputs_embeds.dtype)
|
2263
|
+
video_mask = input_ids == self.config.video_token_id
|
2264
|
+
inputs_embeds[video_mask] = video_embeds
|
2265
|
+
if attention_mask is not None:
|
2266
|
+
attention_mask = attention_mask
|
2267
|
+
|
2268
|
+
outputs = self.model(
|
2269
|
+
input_ids=None,
|
2270
|
+
position_ids=position_ids,
|
2271
|
+
attention_mask=attention_mask,
|
2272
|
+
past_key_values=past_key_values,
|
2273
|
+
inputs_embeds=inputs_embeds,
|
2274
|
+
use_cache=use_cache,
|
2275
|
+
output_attentions=output_attentions,
|
2276
|
+
output_hidden_states=output_hidden_states,
|
2277
|
+
return_dict=return_dict,
|
2278
|
+
)
|
2279
|
+
|
2280
|
+
hidden_states = outputs[0]
|
2281
|
+
|
2282
|
+
tensor_parallel_output = (
|
2283
|
+
self.config.tensor_parallel_output
|
2284
|
+
and self.config.tensor_parallel_degree > 1
|
2285
|
+
)
|
2286
|
+
|
2287
|
+
logits = self.lm_head(
|
2288
|
+
hidden_states, tensor_parallel_output=tensor_parallel_output
|
2289
|
+
)
|
2290
|
+
|
2291
|
+
logits = paddle.cast(logits, "float32")
|
2292
|
+
|
2293
|
+
loss = None
|
2294
|
+
if labels is not None:
|
2295
|
+
# Shift so that tokens < n predict n
|
2296
|
+
shift_logits = logits[..., :-1, :]
|
2297
|
+
shift_labels = labels[..., 1:]
|
2298
|
+
# Flatten the tokens
|
2299
|
+
shift_logits = shift_logits.reshape([-1, self.config.vocab_size])
|
2300
|
+
shift_labels = shift_labels.reshape([-1])
|
2301
|
+
if _IS_NPU:
|
2302
|
+
tmp = F.log_softmax(shift_logits, axis=1)
|
2303
|
+
loss = F.nll_loss(tmp, shift_labels, reduction="sum")
|
2304
|
+
else:
|
2305
|
+
loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
2306
|
+
loss = loss_fct(shift_logits, shift_labels)
|
2307
|
+
label_sum = paddle.sum(shift_labels != -100).cast("float32")
|
2308
|
+
loss = loss / label_sum
|
2309
|
+
|
2310
|
+
if not return_dict:
|
2311
|
+
output = (logits,) + tuple(outputs[1:])
|
2312
|
+
return (loss,) + output if loss is not None else output
|
2313
|
+
|
2314
|
+
return Qwen2VLCausalLMOutputWithPast(
|
2315
|
+
loss=loss,
|
2316
|
+
logits=logits,
|
2317
|
+
past_key_values=outputs.past_key_values,
|
2318
|
+
hidden_states=outputs.hidden_states,
|
2319
|
+
attentions=outputs.attentions,
|
2320
|
+
rope_deltas=rope_deltas,
|
2321
|
+
)
|
2322
|
+
|
2323
|
+
def prepare_inputs_for_generation(
|
2324
|
+
self,
|
2325
|
+
input_ids,
|
2326
|
+
past_key_values=None,
|
2327
|
+
attention_mask=None,
|
2328
|
+
inputs_embeds=None,
|
2329
|
+
cache_position=None,
|
2330
|
+
position_ids=None,
|
2331
|
+
use_cache=True,
|
2332
|
+
pixel_values=None,
|
2333
|
+
pixel_values_videos=None,
|
2334
|
+
image_grid_thw=None,
|
2335
|
+
video_grid_thw=None,
|
2336
|
+
**kwargs,
|
2337
|
+
):
|
2338
|
+
|
2339
|
+
batch_size, seq_length = input_ids.shape
|
2340
|
+
if past_key_values is None:
|
2341
|
+
cache_position = paddle.arange(input_ids.shape[1])
|
2342
|
+
else:
|
2343
|
+
cache_position = paddle.to_tensor([seq_length - 1])
|
2344
|
+
|
2345
|
+
if past_key_values is not None:
|
2346
|
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
2347
|
+
|
2348
|
+
rope_deltas = kwargs.get("rope_deltas", None)
|
2349
|
+
|
2350
|
+
if attention_mask is not None and position_ids is None:
|
2351
|
+
if cache_position is None or (
|
2352
|
+
cache_position is not None and cache_position[0] == 0
|
2353
|
+
):
|
2354
|
+
position_ids, rope_deltas = self.get_rope_index(
|
2355
|
+
self.config.vision_config.spatial_merge_size,
|
2356
|
+
self.config.image_token_id,
|
2357
|
+
self.config.video_token_id,
|
2358
|
+
self.config.vision_start_token_id,
|
2359
|
+
input_ids,
|
2360
|
+
image_grid_thw,
|
2361
|
+
video_grid_thw,
|
2362
|
+
attention_mask,
|
2363
|
+
)
|
2364
|
+
else:
|
2365
|
+
batch_size, seq_length = input_ids.shape
|
2366
|
+
delta = (
|
2367
|
+
cache_position[0] + rope_deltas
|
2368
|
+
if cache_position is not None and rope_deltas is not None
|
2369
|
+
else 0
|
2370
|
+
)
|
2371
|
+
position_ids = paddle.arange(seq_length)
|
2372
|
+
position_ids = position_ids.reshape([1, -1]).expand([batch_size, -1])
|
2373
|
+
position_ids = position_ids + delta
|
2374
|
+
position_ids = position_ids.unsqueeze(axis=0).expand([3, -1, -1])
|
2375
|
+
|
2376
|
+
if cache_position[0] != 0:
|
2377
|
+
pixel_values = None
|
2378
|
+
pixel_values_videos = None
|
2379
|
+
|
2380
|
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
2381
|
+
if inputs_embeds is not None and cache_position[0] == 0:
|
2382
|
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
2383
|
+
else:
|
2384
|
+
model_inputs = {"input_ids": input_ids}
|
2385
|
+
|
2386
|
+
model_inputs.update(
|
2387
|
+
{
|
2388
|
+
"position_ids": position_ids, # [3, 1, 3602]
|
2389
|
+
"past_key_values": past_key_values, # DynamicCache()
|
2390
|
+
"use_cache": use_cache, # 1
|
2391
|
+
"attention_mask": attention_mask, # [1, 3602]
|
2392
|
+
"pixel_values": pixel_values, # [14308, 1176]
|
2393
|
+
"pixel_values_videos": pixel_values_videos,
|
2394
|
+
"image_grid_thw": image_grid_thw, # [[ 1, 98, 146]]
|
2395
|
+
"video_grid_thw": video_grid_thw,
|
2396
|
+
"rope_deltas": rope_deltas, # [[-3504]]
|
2397
|
+
}
|
2398
|
+
)
|
2399
|
+
return model_inputs
|
2400
|
+
|
2401
|
+
def gme_qwen2_vl_forward(
|
2402
|
+
self,
|
2403
|
+
input_ids: paddle.Tensor = None,
|
2404
|
+
attention_mask: Optional[paddle.Tensor] = None,
|
2405
|
+
position_ids: Optional[paddle.Tensor] = None,
|
2406
|
+
past_key_values: Optional[List[paddle.Tensor]] = None,
|
2407
|
+
inputs_embeds: Optional[paddle.Tensor] = None,
|
2408
|
+
labels: Optional[paddle.Tensor] = None,
|
2409
|
+
use_cache: Optional[bool] = None,
|
2410
|
+
output_attentions: Optional[bool] = None,
|
2411
|
+
output_hidden_states: Optional[bool] = None,
|
2412
|
+
return_dict: Optional[bool] = None,
|
2413
|
+
pixel_values: Optional[paddle.Tensor] = None,
|
2414
|
+
pixel_values_videos: Optional[paddle.Tensor] = None,
|
2415
|
+
image_grid_thw: Optional[paddle.Tensor] = None,
|
2416
|
+
video_grid_thw: Optional[paddle.Tensor] = None,
|
2417
|
+
rope_deltas: Optional[paddle.Tensor] = None,
|
2418
|
+
):
|
2419
|
+
|
2420
|
+
output_attentions = (
|
2421
|
+
output_attentions
|
2422
|
+
if output_attentions is not None
|
2423
|
+
else self.config.output_attentions
|
2424
|
+
)
|
2425
|
+
output_hidden_states = (
|
2426
|
+
output_hidden_states
|
2427
|
+
if output_hidden_states is not None
|
2428
|
+
else self.config.output_hidden_states
|
2429
|
+
)
|
2430
|
+
return_dict = True # return_dict if return_dict is not None else self.config.use_return_dict
|
2431
|
+
|
2432
|
+
if inputs_embeds is None:
|
2433
|
+
inputs_embeds = self.model.embed_tokens(input_ids)
|
2434
|
+
if pixel_values is not None:
|
2435
|
+
# 确保 pixel_values 和 inputs_embeds 使用相同的数据类型
|
2436
|
+
pixel_values = paddle.cast(pixel_values, inputs_embeds.dtype)
|
2437
|
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
2438
|
+
# 确保 image_embeds 和 inputs_embeds 使用相同的数据类型
|
2439
|
+
image_embeds = paddle.cast(image_embeds, inputs_embeds.dtype)
|
2440
|
+
image_mask = input_ids == self.config.image_token_id
|
2441
|
+
if self.training:
|
2442
|
+
inputs_embeds = inputs_embeds.clone()
|
2443
|
+
|
2444
|
+
inputs_embeds[image_mask] = image_embeds
|
2445
|
+
|
2446
|
+
if pixel_values_videos is not None:
|
2447
|
+
# 确保 pixel_values_videos 和 inputs_embeds 使用相同的数据类型
|
2448
|
+
pixel_values_videos = paddle.cast(
|
2449
|
+
pixel_values_videos, inputs_embeds.dtype
|
2450
|
+
)
|
2451
|
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
2452
|
+
# 确保 video_embeds 和 inputs_embeds 使用相同的数据类型
|
2453
|
+
video_embeds = paddle.cast(video_embeds, inputs_embeds.dtype)
|
2454
|
+
video_mask = input_ids == self.config.video_token_id
|
2455
|
+
inputs_embeds[video_mask] = video_embeds
|
2456
|
+
if attention_mask is not None:
|
2457
|
+
attention_mask = attention_mask
|
2458
|
+
|
2459
|
+
outputs = self.model(
|
2460
|
+
input_ids=None,
|
2461
|
+
position_ids=position_ids,
|
2462
|
+
attention_mask=attention_mask,
|
2463
|
+
past_key_values=past_key_values,
|
2464
|
+
inputs_embeds=inputs_embeds,
|
2465
|
+
use_cache=use_cache,
|
2466
|
+
output_attentions=output_attentions,
|
2467
|
+
output_hidden_states=output_hidden_states,
|
2468
|
+
return_dict=return_dict,
|
2469
|
+
)
|
2470
|
+
|
2471
|
+
hidden_states = outputs[0]
|
2472
|
+
# get last hidden state
|
2473
|
+
last_hidden_state = hidden_states[:, -1, :]
|
2474
|
+
return last_hidden_state
|
2475
|
+
|
2476
|
+
|
2477
|
+
class PPDocBeeInference(Qwen2VLForConditionalGeneration):
|
2478
|
+
set_inference_operations(get_inference_operations() + ["docbee_generate"])
|
2479
|
+
|
2480
|
+
@benchmark.timeit_with_options(name="docbee_generate")
|
2481
|
+
def generate(self, inputs, **kwargs):
|
2482
|
+
max_new_tokens = kwargs.get("max_new_tokens", 2048)
|
2483
|
+
temperature = kwargs.get("temperature", 0.1)
|
2484
|
+
top_p = kwargs.get("top_p", 0.001)
|
2485
|
+
top_k = kwargs.get("top_k", 1)
|
2486
|
+
with paddle.no_grad():
|
2487
|
+
generated_ids = super().generate(
|
2488
|
+
**inputs,
|
2489
|
+
max_new_tokens=max_new_tokens,
|
2490
|
+
temperature=temperature,
|
2491
|
+
top_p=top_p,
|
2492
|
+
top_k=top_k,
|
2493
|
+
)
|
2494
|
+
|
2495
|
+
return generated_ids
|