owlplanner 2025.5.30__py3-none-any.whl → 2025.6.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
owlplanner/abcapi.py CHANGED
@@ -16,9 +16,9 @@ solvers for comparison.
16
16
  This approach has been successful with the MOSEK and the HiGHS solvers.
17
17
  A for matrix, B for bounds, C for constraints. Thus the name ABCAPI.
18
18
 
19
- Copyright (C) 2024 -- Martin-D. Lacasse
19
+ Copyright © 2024 - Martin-D. Lacasse
20
20
 
21
- Disclaimer: This program comes with no guarantee. Use at your own risk.
21
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
22
22
 
23
23
  """
24
24
 
owlplanner/config.py CHANGED
@@ -4,9 +4,10 @@ Owl/conftoml
4
4
 
5
5
  This file contains utility functions to save case parameters.
6
6
 
7
- Copyright (C) 2024 -- Martin-D. Lacasse
7
+ Copyright © 2024 - Martin-D. Lacasse
8
+
9
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
8
10
 
9
- Disclaimer: This program comes with no guarantee. Use at your own risk.
10
11
  """
11
12
 
12
13
  import toml as toml
owlplanner/mylogging.py CHANGED
@@ -4,9 +4,9 @@ Owl/logging
4
4
 
5
5
  This file contains routines for handling error messages.
6
6
 
7
- Copyright (C) 2024 -- Martin-D. Lacasse
7
+ Copyright © 2024 - Martin-D. Lacasse
8
8
 
9
- Disclaimer: This program comes with no guarantee. Use at your own risk.
9
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
10
10
 
11
11
  """
12
12
 
owlplanner/plan.py CHANGED
@@ -8,9 +8,10 @@ A retirement planner using linear programming optimization.
8
8
  See companion PDF document for an explanation of the underlying
9
9
  mathematical model and a description of all variables and parameters.
10
10
 
11
- Copyright (C) 2024 -- Martin-D. Lacasse
11
+ Copyright © 2024 - Martin-D. Lacasse
12
+
13
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
12
14
 
13
- Disclaimer: This program comes with no guarantee. Use at your own risk.
14
15
  """
15
16
 
16
17
  ###########################################################################
@@ -303,11 +304,11 @@ class Plan(object):
303
304
  # Parameters from timeLists initialized to zero.
304
305
  self.omega_in = np.zeros((self.N_i, self.N_n))
305
306
  self.Lambda_in = np.zeros((self.N_i, self.N_n))
306
- self.myRothX_in = np.zeros((self.N_i, self.N_n))
307
- self.kappa_ijn = np.zeros((self.N_i, self.N_j, self.N_n))
307
+ self.myRothX_in = np.zeros((self.N_i, self.N_n + 5))
308
+ self.kappa_ijn = np.zeros((self.N_i, self.N_j, self.N_n + 5))
308
309
 
309
310
  # Previous 3 years for Medicare.
310
- self.prevMAGI = np.zeros((3))
311
+ self.prevMAGI = np.zeros((2))
311
312
 
312
313
  # Init previous balance to none.
313
314
  self.beta_ij = None
@@ -498,7 +499,7 @@ class Plan(object):
498
499
  def setBeneficiaryFractions(self, phi):
499
500
  """
500
501
  Set fractions of savings accounts that is left to surviving spouse.
501
- Default is [1, 1, 1] for taxable, tax-deferred, adn tax-exempt accounts.
502
+ Default is [1, 1, 1] for taxable, tax-deferred, and tax-free accounts.
502
503
  """
503
504
  if len(phi) != self.N_j:
504
505
  raise ValueError(f"Fractions must have {self.N_j} entries.")
@@ -901,7 +902,7 @@ class Plan(object):
901
902
  try:
902
903
  filename, self.timeLists = timelists.read(filename, self.inames, self.horizons, self.mylog)
903
904
  except Exception as e:
904
- raise Exception(f"Unsuccessful read of contributions: {e}") from e
905
+ raise Exception(f"Unsuccessful read of Wages and Contributions: {e}") from e
905
906
 
906
907
  self.timeListsFileName = filename
907
908
  self.setContributions()
@@ -909,6 +910,9 @@ class Plan(object):
909
910
  return True
910
911
 
911
912
  def setContributions(self, timeLists=None):
913
+ """
914
+ If no argument is given, use the values that have been stored in self.timeLists.
915
+ """
912
916
  if timeLists is not None:
913
917
  timelists.check(timeLists, self.inames, self.horizons)
914
918
  self.timeLists = timeLists
@@ -916,14 +920,17 @@ class Plan(object):
916
920
  # Now fill in parameters which are in $.
917
921
  for i, iname in enumerate(self.inames):
918
922
  h = self.horizons[i]
919
- self.omega_in[i, :h] = self.timeLists[iname]["anticipated wages"].iloc[:h]
920
- self.kappa_ijn[i, 0, :h] = self.timeLists[iname]["taxable ctrb"].iloc[:h]
921
- self.kappa_ijn[i, 1, :h] = self.timeLists[iname]["401k ctrb"].iloc[:h]
922
- self.kappa_ijn[i, 2, :h] = self.timeLists[iname]["Roth 401k ctrb"].iloc[:h]
923
- self.kappa_ijn[i, 1, :h] += self.timeLists[iname]["IRA ctrb"].iloc[:h]
924
- self.kappa_ijn[i, 2, :h] += self.timeLists[iname]["Roth IRA ctrb"].iloc[:h]
925
- self.myRothX_in[i, :h] = self.timeLists[iname]["Roth conv"].iloc[:h]
926
- self.Lambda_in[i, :h] = self.timeLists[iname]["big-ticket items"].iloc[:h]
923
+ self.omega_in[i, :h] = self.timeLists[iname]["anticipated wages"].iloc[5:5+h]
924
+ self.Lambda_in[i, :h] = self.timeLists[iname]["big-ticket items"].iloc[5:5+h]
925
+
926
+ # Values for last 5 years of Roth conversion and contributions stored at the end
927
+ # of array and accessed with negative index.
928
+ self.kappa_ijn[i, 0, :h+5] = np.roll(self.timeLists[iname]["taxable ctrb"], -5)
929
+ self.kappa_ijn[i, 1, :h+5] = np.roll(self.timeLists[iname]["401k ctrb"], -5)
930
+ self.kappa_ijn[i, 1, :h+5] += np.roll(self.timeLists[iname]["IRA ctrb"], -5)
931
+ self.kappa_ijn[i, 2, :h+5] = np.roll(self.timeLists[iname]["Roth 401k ctrb"], -5)
932
+ self.kappa_ijn[i, 2, :h+5] += np.roll(self.timeLists[iname]["Roth IRA ctrb"], -5)
933
+ self.myRothX_in[i, :h+5] = np.roll(self.timeLists[iname]["Roth conv"], -5)
927
934
 
928
935
  self.caseStatus = "modified"
929
936
 
@@ -980,8 +987,9 @@ class Plan(object):
980
987
  ]
981
988
  for i, iname in enumerate(self.inames):
982
989
  h = self.horizons[i]
983
- df = pd.DataFrame(0, index=np.arange(h), columns=cols)
984
- df["year"] = self.year_n[:h]
990
+ df = pd.DataFrame(0, index=np.arange(0, h+5), columns=cols)
991
+ # df["year"] = self.year_n[:h]
992
+ df["year"] = np.arange(self.year_n[0] - 5, self.year_n[h-1]+1)
985
993
  self.timeLists[iname] = df
986
994
 
987
995
  self.caseStatus = "modified"
@@ -1074,8 +1082,6 @@ class Plan(object):
1074
1082
  Utility function that builds constraint matrix and vectors.
1075
1083
  Refactored for clarity and maintainability.
1076
1084
  """
1077
- self._setup_constraint_shortcuts(options)
1078
-
1079
1085
  self.A = abc.ConstraintMatrix(self.nvars)
1080
1086
  self.B = abc.Bounds(self.nvars, self.nbins)
1081
1087
 
@@ -1084,6 +1090,7 @@ class Plan(object):
1084
1090
  self._add_standard_exemption_bounds()
1085
1091
  self._add_defunct_constraints()
1086
1092
  self._add_roth_conversion_constraints(options)
1093
+ self._add_roth_maturation_constraints()
1087
1094
  self._add_withdrawal_limits()
1088
1095
  self._add_conversion_limits()
1089
1096
  self._add_objective_constraints(objective, options)
@@ -1098,12 +1105,6 @@ class Plan(object):
1098
1105
 
1099
1106
  return None
1100
1107
 
1101
- def _setup_constraint_shortcuts(self, options):
1102
- # Set up all the local variables as attributes for use in helpers.
1103
- oppCostX = options.get("oppCostX", 0.)
1104
- self.xnet = 1 - oppCostX / 100.
1105
- self.optionsUnits = u.getUnits(options.get("units", "k"))
1106
-
1107
1108
  def _add_rmd_inequalities(self):
1108
1109
  for i in range(self.N_i):
1109
1110
  if self.beta_ij[i, 1] > 0:
@@ -1131,6 +1132,45 @@ class Plan(object):
1131
1132
  for j in range(self.N_j):
1132
1133
  self.B.setRange(_q3(self.C["w"], self.i_d, j, n, self.N_i, self.N_j, self.N_n), 0, 0)
1133
1134
 
1135
+ def _add_roth_maturation_constraints(self):
1136
+ """
1137
+ Withdrawals from Roth accounts are subject to the 5-year rule for conversion.
1138
+ Conversions and gains are subject to the 5-year rule since conversion.
1139
+ Contributions can be withdrawn at any time (without 59.5 penalty) but
1140
+ gains on contributions are subject to the 5-year rule since the opening of the account.
1141
+ A retainer is put on all conversions and associated gains, and gains on all recent contributions.
1142
+ """
1143
+ # Assume 10% per year for contributions and conversions for past 5 years.
1144
+ # Future years will use the assumed returns.
1145
+ oldTau1 = 1.10
1146
+ for i in range(self.N_i):
1147
+ h = self.horizons[i]
1148
+ for n in range(h):
1149
+ rhs = 0
1150
+ # To add compounded gains to original amount.
1151
+ cgains = 1
1152
+ row = self.A.newRow()
1153
+ row.addElem(_q3(self.C["b"], i, 2, n, self.N_i, self.N_j, self.N_n + 1), 1)
1154
+ row.addElem(_q3(self.C["w"], i, 2, n, self.N_i, self.N_j, self.N_n), -1)
1155
+ for dn in range(1, 6):
1156
+ nn = n - dn
1157
+ if nn < 0: # Past of future is in the past:
1158
+ # Parameters are stored at the end of contributions and conversions arrays.
1159
+ cgains *= oldTau1
1160
+ # If only an contribution - without conversion.
1161
+ # rhs += (cgains - 1) * self.kappa_ijn[i, 2, nn] + cgains * self.myRothX_in[i, nn]
1162
+ rhs += cgains * self.kappa_ijn[i, 2, nn] + cgains * self.myRothX_in[i, nn]
1163
+ else: # Past of future is in the future: use variables and parameters.
1164
+ ksum2 = np.sum(self.alpha_ijkn[i, 2, :, nn] * self.tau_kn[:, nn], axis=0)
1165
+ Tau1 = 1 + ksum2
1166
+ cgains *= Tau1
1167
+ row.addElem(_q2(self.C["x"], i, nn, self.N_i, self.N_n), -cgains)
1168
+ # If only a contribution - without conversion.
1169
+ # rhs += (cgains - 1) * self.kappa_ijn[i, 2, nn]
1170
+ rhs += cgains * self.kappa_ijn[i, 2, nn]
1171
+
1172
+ self.A.addRow(row, rhs, np.inf)
1173
+
1134
1174
  def _add_roth_conversion_constraints(self, options):
1135
1175
  if "maxRothConversion" in options and options["maxRothConversion"] == "file":
1136
1176
  for i in range(self.N_i):
@@ -1579,14 +1619,18 @@ class Plan(object):
1579
1619
  if objective == "maxSpending" and "bequest" not in myoptions:
1580
1620
  self.mylog.vprint("Using bequest of $1.")
1581
1621
 
1582
- self.prevMAGI = np.zeros(3)
1622
+ self.optionsUnits = u.getUnits(myoptions.get("units", "k"))
1623
+
1624
+ oppCostX = options.get("oppCostX", 0.)
1625
+ self.xnet = 1 - oppCostX / 100.
1626
+
1627
+ self.prevMAGI = np.zeros(2)
1583
1628
  if "previousMAGIs" in myoptions:
1584
1629
  magi = myoptions["previousMAGIs"]
1585
- if len(magi) != 3:
1586
- raise ValueError("previousMAGIs must have 3 values.")
1630
+ if 3 < len(magi) < 2:
1631
+ raise ValueError("previousMAGIs must have 2 values.")
1587
1632
 
1588
- units = u.getUnits(options.get("units", "k"))
1589
- self.prevMAGI = units * np.array(magi)
1633
+ self.prevMAGI = self.optionsUnits * np.array(magi)
1590
1634
 
1591
1635
  lambdha = myoptions.get("spendingSlack", 0)
1592
1636
  if lambdha < 0 or lambdha > 50:
@@ -1949,7 +1993,7 @@ class Plan(object):
1949
1993
  self.Q_n = np.sum(
1950
1994
  (
1951
1995
  self.mu
1952
- * (self.b_ijn[:, 0, :-1] - self.w_ijn[:, 0, :] + self.d_in[:, :] + 0.5 * self.kappa_ijn[:, 0, :])
1996
+ * (self.b_ijn[:, 0, :-1] - self.w_ijn[:, 0, :] + self.d_in[:, :] + 0.5 * self.kappa_ijn[:, 0, :Nn])
1953
1997
  + tau_0prev * self.w_ijn[:, 0, :]
1954
1998
  )
1955
1999
  * self.alpha_ijkn[:, 0, 0, :-1],
@@ -2058,7 +2102,7 @@ class Plan(object):
2058
2102
  dic = {}
2059
2103
  # Results
2060
2104
  dic["Plan name"] = self._name
2061
- dic["Net yearly spending basis"] = u.d(self.g_n[0] / self.xi_n[0])
2105
+ dic["Net yearly spending basis" + 26*" ."] = u.d(self.g_n[0] / self.xi_n[0])
2062
2106
  dic[f"Net spending for year {now}"] = u.d(self.g_n[0])
2063
2107
  dic[f"Net spending remaining in year {now}"] = u.d(self.g_n[0] * self.yearFracLeft)
2064
2108
 
@@ -2370,7 +2414,7 @@ class Plan(object):
2370
2414
  the default behavior of setDefaultPlots().
2371
2415
  """
2372
2416
  value = self._checkValue(value)
2373
- title = self._name + "\nIncome Tax"
2417
+ title = self._name + "\nFederal Income Tax"
2374
2418
  if tag:
2375
2419
  title += " - " + tag
2376
2420
  # All taxes: ordinary income and dividends.
@@ -2489,16 +2533,16 @@ class Plan(object):
2489
2533
  # Account balances except final year.
2490
2534
  accDic = {
2491
2535
  "taxable bal": self.b_ijn[:, 0, :-1],
2492
- "taxable ctrb": self.kappa_ijn[:, 0, :],
2536
+ "taxable ctrb": self.kappa_ijn[:, 0, :self.N_n],
2493
2537
  "taxable dep": self.d_in,
2494
2538
  "taxable wdrwl": self.w_ijn[:, 0, :],
2495
2539
  "tax-deferred bal": self.b_ijn[:, 1, :-1],
2496
- "tax-deferred ctrb": self.kappa_ijn[:, 1, :],
2540
+ "tax-deferred ctrb": self.kappa_ijn[:, 1, :self.N_n],
2497
2541
  "tax-deferred wdrwl": self.w_ijn[:, 1, :],
2498
2542
  "(included RMDs)": self.rmd_in[:, :],
2499
2543
  "Roth conv": self.x_in,
2500
2544
  "tax-free bal": self.b_ijn[:, 2, :-1],
2501
- "tax-free ctrb": self.kappa_ijn[:, 2, :],
2545
+ "tax-free ctrb": self.kappa_ijn[:, 2, :self.N_n],
2502
2546
  "tax-free wdrwl": self.w_ijn[:, 2, :],
2503
2547
  }
2504
2548
  for i in range(self.N_i):
@@ -2595,12 +2639,12 @@ class Plan(object):
2595
2639
  planData[self.inames[i] + " txbl dep"] = self.d_in[i, :]
2596
2640
  planData[self.inames[i] + " txbl wrdwl"] = self.w_ijn[i, 0, :]
2597
2641
  planData[self.inames[i] + " tx-def bal"] = self.b_ijn[i, 1, :-1]
2598
- planData[self.inames[i] + " tx-def ctrb"] = self.kappa_ijn[i, 1, :]
2642
+ planData[self.inames[i] + " tx-def ctrb"] = self.kappa_ijn[i, 1, :self.N_n]
2599
2643
  planData[self.inames[i] + " tx-def wdrl"] = self.w_ijn[i, 1, :]
2600
2644
  planData[self.inames[i] + " (RMD)"] = self.rmd_in[i, :]
2601
2645
  planData[self.inames[i] + " Roth conv"] = self.x_in[i, :]
2602
2646
  planData[self.inames[i] + " tx-free bal"] = self.b_ijn[i, 2, :-1]
2603
- planData[self.inames[i] + " tx-free ctrb"] = self.kappa_ijn[i, 2, :]
2647
+ planData[self.inames[i] + " tx-free ctrb"] = self.kappa_ijn[i, 2, :self.N_n]
2604
2648
  planData[self.inames[i] + " tax-free wdrwl"] = self.w_ijn[i, 2, :]
2605
2649
  planData[self.inames[i] + " big-ticket items"] = self.Lambda_in[i, :]
2606
2650
 
@@ -1,5 +1,10 @@
1
1
  """
2
2
  Plotting backends for Owl.
3
+
4
+ Copyright &copy; 2025 - Martin-D. Lacasse
5
+
6
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
7
+
3
8
  """
4
9
 
5
10
  from .factory import PlotFactory
@@ -1,5 +1,10 @@
1
1
  """
2
2
  Base classes for plot backends.
3
+
4
+ Copyright &copy; 2025 - Martin-D. Lacasse
5
+
6
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
7
+
3
8
  """
4
9
 
5
10
  from abc import ABC, abstractmethod
@@ -1,5 +1,10 @@
1
1
  """
2
2
  Factory for creating plot backends.
3
+
4
+ Copyright &copy; 2025 - Martin-D. Lacasse
5
+
6
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
7
+
3
8
  """
4
9
 
5
10
  from .base import PlotBackend
@@ -1,5 +1,10 @@
1
1
  """
2
2
  Matplotlib implementation of plot backend.
3
+
4
+ Copyright &copy; 2025 - Martin-D. Lacasse
5
+
6
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
7
+
3
8
  """
4
9
 
5
10
  import numpy as np
@@ -372,17 +377,19 @@ class MatplotlibBackend(PlotBackend):
372
377
  raise ValueError(f"Unknown coordination {ARCoord}.")
373
378
  figures = []
374
379
  assetDic = {"stocks": 0, "C bonds": 1, "T notes": 2, "common": 3}
380
+ blank = ["", ""]
375
381
  for i in range(count):
376
382
  y2stack = {}
377
383
  for acType in acList:
378
384
  stackNames = []
379
385
  for key in assetDic:
380
- aname = key + " / " + acType
386
+ # aname = key + " / " + acType
387
+ aname = key
381
388
  stackNames.append(aname)
382
389
  y2stack[aname] = np.zeros((count, len(year_n)))
383
390
  y2stack[aname][i][:] = alpha_ijkn[i, acList.index(acType), assetDic[key], : len(year_n)]
384
- t = title + f" - {acType}"
385
- fig, ax = self._stack_plot(year_n, inames, t, [i], y2stack, stackNames, "upper left", "percent")
391
+ t = title + f" - {acType} {inames[i]}"
392
+ fig, ax = self._stack_plot(year_n, blank, t, [i], y2stack, stackNames, "upper left", "percent")
386
393
  figures.append(fig)
387
394
 
388
395
  return figures
@@ -1,5 +1,10 @@
1
1
  """
2
2
  Plotly implementation of plot backend.
3
+
4
+ Copyright &copy; 2025 - Martin-D. Lacasse
5
+
6
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
7
+
3
8
  """
4
9
 
5
10
  import numpy as np
@@ -815,7 +820,8 @@ class PlotlyBackend(PlotBackend):
815
820
  stack_data = []
816
821
  stack_names = []
817
822
  for key in assetDic:
818
- aname = f"{key} / {acType}"
823
+ # aname = f"{key} / {acType}"
824
+ aname = key
819
825
  stack_names.append(aname)
820
826
 
821
827
  # Get allocation data
@@ -834,7 +840,7 @@ class PlotlyBackend(PlotBackend):
834
840
  ))
835
841
 
836
842
  # Update layout
837
- plot_title = f"{title} - {acType}"
843
+ plot_title = f"{title} - {acType} {inames[i]}"
838
844
  fig.update_layout(
839
845
  title=plot_title,
840
846
  # xaxis_title="year",
owlplanner/progress.py CHANGED
@@ -1,6 +1,10 @@
1
1
  """
2
2
  A simple object to display progress.
3
3
 
4
+ Copyright &copy; 2024 - Martin-D. Lacasse
5
+
6
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
7
+
4
8
  """
5
9
 
6
10
  from owlplanner import utils as u
owlplanner/rates.py CHANGED
@@ -21,11 +21,10 @@ Rate lists will need to be updated with values for current year.
21
21
  When doing so, the TO bound defined below will need to be adjusted
22
22
  to the last current data year.
23
23
 
24
- Copyright (C) 2024 -- Martin-D. Lacasse
24
+ Copyright &copy; 2024 - Martin-D. Lacasse
25
25
 
26
- Last updated: Jan 2025
26
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
27
27
 
28
- Disclaimer: This program comes with no guarantee. Use at your own risk.
29
28
  """
30
29
 
31
30
  ###################################################################
owlplanner/tax2025.py CHANGED
@@ -10,9 +10,10 @@ of all variables and parameters.
10
10
 
11
11
  Module to handle all tax calculations.
12
12
 
13
- Copyright (C) 2024 -- Martin-D. Lacasse
13
+ Copyright &copy; 2024 - Martin-D. Lacasse
14
+
15
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
14
16
 
15
- Disclaimer: This program comes with no guarantee. Use at your own risk.
16
17
  """
17
18
 
18
19
  import numpy as np
@@ -93,9 +94,9 @@ def mediCosts(yobs, horizons, magi, prevmagi, gamma_n, Nn):
93
94
  status = 0 if Ni == 1 else 1 if n < horizons[0] and n < horizons[1] else 0
94
95
  for i in range(Ni):
95
96
  if thisyear + n - yobs[i] >= 65 and n < horizons[i]:
96
- # Start with the (indexed) basic Medicare part B premium.
97
+ # Start with the (inflation-adjusted) basic Medicare part B premium.
97
98
  costs[n] += gamma_n[n] * irmaaFees[0]
98
- if n < 3:
99
+ if n < 2:
99
100
  mymagi = prevmagi[n]
100
101
  else:
101
102
  mymagi = magi[n - 2]
owlplanner/timelists.py CHANGED
@@ -10,9 +10,10 @@ of all variables and parameters.
10
10
 
11
11
  Utility functions to read and check timelists.
12
12
 
13
- Copyright (C) 2024 -- Martin-D. Lacasse
13
+ Copyright &copy; 2024 - Martin-D. Lacasse
14
+
15
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
14
16
 
15
- Disclaimer: This program comes with no guarantee. Use at your own risk.
16
17
  """
17
18
 
18
19
  from datetime import date
@@ -20,7 +21,7 @@ import pandas as pd
20
21
 
21
22
 
22
23
  # Expected headers in each excel sheet, one per individual.
23
- timeHorizonItems = [
24
+ _timeHorizonItems = [
24
25
  "year",
25
26
  "anticipated wages",
26
27
  "taxable ctrb",
@@ -47,7 +48,7 @@ def read(finput, inames, horizons, mylog):
47
48
  mylog.vprint("Reading wages, contributions, conversions, and big-ticket items over time...")
48
49
 
49
50
  if isinstance(finput, dict):
50
- timeLists = finput
51
+ dfDict = finput
51
52
  finput = "dictionary of DataFrames"
52
53
  streamName = "dictionary of DataFrames"
53
54
  else:
@@ -58,14 +59,14 @@ def read(finput, inames, horizons, mylog):
58
59
  raise Exception(f"Could not read file {finput}: {e}.") from e
59
60
  streamName = f"file '{finput}'"
60
61
 
61
- timeLists = condition(dfDict, inames, horizons, mylog)
62
+ timeLists = _condition(dfDict, inames, horizons, mylog)
62
63
 
63
64
  mylog.vprint(f"Successfully read time horizons from {streamName}.")
64
65
 
65
66
  return finput, timeLists
66
67
 
67
68
 
68
- def condition(dfDict, inames, horizons, mylog):
69
+ def _condition(dfDict, inames, horizons, mylog):
69
70
  """
70
71
  Make sure that time horizons contain all years up to life expectancy,
71
72
  and that values are positive (except big-ticket items).
@@ -82,24 +83,24 @@ def condition(dfDict, inames, horizons, mylog):
82
83
 
83
84
  df = df.loc[:, ~df.columns.str.contains("^Unnamed")]
84
85
  for col in df.columns:
85
- if col == "" or col not in timeHorizonItems:
86
+ if col == "" or col not in _timeHorizonItems:
86
87
  df.drop(col, axis=1, inplace=True)
87
88
 
88
- for item in timeHorizonItems:
89
+ for item in _timeHorizonItems:
89
90
  if item not in df.columns:
90
91
  raise ValueError(f"Item {item} not found for {iname}.")
91
92
 
92
- # Only consider lines in proper year range.
93
- df = df[df["year"] >= thisyear]
93
+ # Only consider lines in proper year range. Go back 5 years for Roth maturation.
94
+ df = df[df["year"] >= (thisyear - 5)]
94
95
  df = df[df["year"] < endyear]
95
96
  missing = []
96
- for n in range(horizons[i]):
97
+ for n in range(-5, horizons[i]):
97
98
  year = thisyear + n
98
99
  if not (df[df["year"] == year]).any(axis=None):
99
100
  df.loc[len(df)] = [year, 0, 0, 0, 0, 0, 0, 0, 0]
100
101
  missing.append(year)
101
102
  else:
102
- for item in timeHorizonItems:
103
+ for item in _timeHorizonItems:
103
104
  if item != "big-ticket items" and df[item].iloc[n] < 0:
104
105
  raise ValueError(f"Item {item} for {iname} in year {df['year'].iloc[n]} is < 0.")
105
106
 
owlplanner/utils.py CHANGED
@@ -4,9 +4,9 @@ Owl/utils
4
4
 
5
5
  This file contains functions for handling data.
6
6
 
7
- Copyright (C) 2024 -- Martin-D. Lacasse
7
+ Copyright &copy; 2024 - Martin-D. Lacasse
8
8
 
9
- Disclaimer: This program comes with no guarantee. Use at your own risk.
9
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
10
10
 
11
11
  """
12
12
 
owlplanner/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "2025.05.30"
1
+ __version__ = "2025.06.21"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: owlplanner
3
- Version: 2025.5.30
3
+ Version: 2025.6.21
4
4
  Summary: Owl: Retirement planner with great wisdom
5
5
  Project-URL: HomePage, https://github.com/mdlacasse/owl
6
6
  Project-URL: Repository, https://github.com/mdlacasse/owl
@@ -748,13 +748,6 @@ This is exactly where this tool fits it. Given your savings capabilities and spe
748
748
  it can generate different future realizations of
749
749
  your strategy under different market assumptions, helping to better understand your financial situation.
750
750
 
751
- Disclaimers: I am not a financial planner. You make your own decisions.
752
- This program comes with no guarantee. Use at your own risk.
753
-
754
- More disclaimers: While some output of the code has been verified with other approaches,
755
- this code is still under development and I cannot guarantee the accuracy of the results.
756
- Use at your own risk.
757
-
758
751
  -------------------------------------------------------------------------------------
759
752
  ## Purpose and vision
760
753
  The goal of Owl is to create a free and open-source ecosystem that has cutting-edge optimization capabilities,
@@ -839,11 +832,13 @@ an Excel spreadsheet that contains future wages, contributions
839
832
  to savings accounts, and planned *big-ticket items* such as the purchase of a lake house,
840
833
  the sale of a boat, large gifts, or inheritance.
841
834
 
842
- Three types of savings accounts are considered: taxable, tax-deferred, and tax-exempt,
835
+ Three types of savings accounts are considered: taxable, tax-deferred, and tax-free,
843
836
  which are all tracked separately for married individuals. Asset transition to the surviving spouse
844
837
  is done according to beneficiary fractions for each type of savings account.
845
838
  Tax status covers married filing jointly and single, depending on the number of individuals reported.
846
839
 
840
+ Maturation rules for Roth contributions and conversions are implemented as constraints
841
+ limiting withdrawal amounts to cover Roth account balances for 5 years after the events.
847
842
  Medicare and IRMAA calculations are performed through a self-consistent loop on cash flow constraints.
848
843
  Future values are simple projections of current values with the assumed inflation rates.
849
844
 
@@ -892,14 +887,16 @@ assets to support, even with no estate being left.
892
887
  - Streamlit Community Cloud [Streamlit](https://streamlit.io)
893
888
  - Contributors: Josh (noimjosh@gmail.com) for Docker image code,
894
889
  Dale Seng (sengsational) for great insights and suggestions,
895
- Robert E. Anderson (NH-RedAnt) for bug fixes and suggestions.
890
+ Robert E. Anderson (NH-RedAnt) for bug fixes and suggestions, Clark Jefcoat (hubcity) for fruitful interactions.
896
891
 
897
892
  ---------------------------------------------------------------------
898
893
 
899
894
  Copyright &copy; 2024 - Martin-D. Lacasse
900
895
 
901
- Disclaimers: I am not a financial planner. You make your own decisions.
902
- This program comes with no guarantee. Use at your own risk.
896
+ Disclaimers: This code is for educatonal purposes only and does not constitute financial advice.
897
+
898
+ Code output has been verified with analytical solutions when applicable, and comparative approaches otherwise.
899
+ Nevertheless, accuracy of results is not guaranteed.
903
900
 
904
901
  --------------------------------------------------------
905
902
 
@@ -0,0 +1,22 @@
1
+ owlplanner/__init__.py,sha256=hJ2i4m2JpHPAKyQLjYOXpJzeEsgcTcKD-Vhm0AIjjWg,592
2
+ owlplanner/abcapi.py,sha256=8VCXS7nH_QZYxCUU3lwO0_UPR9Q5fuYQ6DHDLvHVLPg,6878
3
+ owlplanner/config.py,sha256=onGIMqW2WwB9_CUZauDL6LtHGvc8O1cPUKKcK7Oh70M,12617
4
+ owlplanner/mylogging.py,sha256=RKUr-y-1XvKZzLMcfdtm4IM30LuRpJwb2qUeXmAWqME,2557
5
+ owlplanner/plan.py,sha256=VVHyKJiooLXXVLiRFJcauZ3oOYU62CCBe4DlpA08P38,109765
6
+ owlplanner/progress.py,sha256=2DOjOLo6Mo7m21wY-9iZhoUksAyi4VCbb6UL2RegNCw,529
7
+ owlplanner/rates.py,sha256=7jXcuHbkJ3AVIeBYZdwme18rdYslIzCuT-c0cLzvKUU,14819
8
+ owlplanner/tax2025.py,sha256=HVYJq8po28jL5Z_il39ZY7qvf2riUEfxio15Zp7TGj8,7890
9
+ owlplanner/timelists.py,sha256=95rKYknGMi1bonDVIc3xNmiwG0zTSejKyQy_uWCLSiA,4024
10
+ owlplanner/utils.py,sha256=6Ky8ZKfNE9x--3znsZ8VZaT2PptDinszRxWsOCPanu8,2512
11
+ owlplanner/version.py,sha256=Q6lAE5sS9Y-tuy3jNnv43HcB70y7l1kmDPNzx4CR9tc,28
12
+ owlplanner/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
+ owlplanner/data/rates.csv,sha256=6fxg56BVVORrj9wJlUGFdGXKvOX5r7CSca8uhUbbuIU,3734
14
+ owlplanner/plotting/__init__.py,sha256=uhxqtUi0OI-QWNOO2LkXgQViW_9yM3rYb-204Wit974,250
15
+ owlplanner/plotting/base.py,sha256=UimGKpMTV-dVm3BX5Apr_Ltorc7dlDLCRPRQ3RF_v7c,2578
16
+ owlplanner/plotting/factory.py,sha256=EDopIAPQr9zHRgemObko18FlCeRNhNCoLNNFAOq-X6s,1030
17
+ owlplanner/plotting/matplotlib_backend.py,sha256=AOEkapD94U5hGNoS0EdbRoe8mgdMHH4oOvkXADZS914,17957
18
+ owlplanner/plotting/plotly_backend.py,sha256=AO33GxBHGYG5osir_H1iRRtGxdhs4AjfLV2d_xm35nY,33138
19
+ owlplanner-2025.6.21.dist-info/METADATA,sha256=bZI1gHxPSbxJvJP2DuSqiB6Y33x4tdiVgHlKK73wGD4,54045
20
+ owlplanner-2025.6.21.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
21
+ owlplanner-2025.6.21.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
22
+ owlplanner-2025.6.21.dist-info/RECORD,,
@@ -1,22 +0,0 @@
1
- owlplanner/__init__.py,sha256=hJ2i4m2JpHPAKyQLjYOXpJzeEsgcTcKD-Vhm0AIjjWg,592
2
- owlplanner/abcapi.py,sha256=m0vtoEzz9HJV7fOK_d7OnK7ha2Qbf7wLLPCJ9YZzR1k,6851
3
- owlplanner/config.py,sha256=v6T6A_90rVyl4sfX8KLpI8wkzt9HCjUiGDsPS-4VTec,12588
4
- owlplanner/mylogging.py,sha256=tYMw04O-XYSzjTj36fmKJGLcE1VkK6k6oJNeqtKXzuc,2530
5
- owlplanner/plan.py,sha256=BnojjOQzzFdcT4dL8EALzc_vzXO2qQJJXjY98nRZIyA,107114
6
- owlplanner/progress.py,sha256=8jlCvvtgDI89zXVNMBg1-lnEyhpPvKQS2X5oAIpoOVQ,384
7
- owlplanner/rates.py,sha256=MiaibxJY82JGpAhGyF2BJTm5-rmVAUuG8KLApVQhjvU,14816
8
- owlplanner/tax2025.py,sha256=wmlZpYeeGNrbyn5g7wOFqhWbggppodtHqc-ex5XRooI,7850
9
- owlplanner/timelists.py,sha256=wNYnJqxJ6QqE6jHh5lfFqYngfw5wUFrI15LSsM5ae8s,3949
10
- owlplanner/utils.py,sha256=WpJgn79YZfH8UCkcmhd-AZlxlGuz1i1-UDBRXImsY6I,2485
11
- owlplanner/version.py,sha256=h-tHOHZjN9oy3hW0oN8p91JT5cGNx7ALbl5_KcaZl3g,28
12
- owlplanner/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
- owlplanner/data/rates.csv,sha256=6fxg56BVVORrj9wJlUGFdGXKvOX5r7CSca8uhUbbuIU,3734
14
- owlplanner/plotting/__init__.py,sha256=VnF6ui78YrTrg1dA6hBIdI02ahzEaHVR3ZEdDe_i880,103
15
- owlplanner/plotting/base.py,sha256=LP1TByl1tO4m087O6VpbZ_TTMnErHJGLTxXZXC9cuKQ,2431
16
- owlplanner/plotting/factory.py,sha256=i1k8m_ISnJw06f_JWlMvOQ7Q0PgV_BoLm05uLwFPvOQ,883
17
- owlplanner/plotting/matplotlib_backend.py,sha256=iJm3IBeMA5VUYG_zZxKPIzt4Izv2QWtWvlP656zwJVk,17738
18
- owlplanner/plotting/plotly_backend.py,sha256=5nqEUJXwLPW1vL9hQijxIUK57sWHvya6ZqIIYof-OjE,32944
19
- owlplanner-2025.5.30.dist-info/METADATA,sha256=lail2zj8dulkBtJ71340wAUjE3u6LZNNaEjgN4FAo0A,54024
20
- owlplanner-2025.5.30.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
21
- owlplanner-2025.5.30.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
22
- owlplanner-2025.5.30.dist-info/RECORD,,