owlplanner 2025.2.3__py3-none-any.whl → 2025.2.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- owlplanner/plan.py +102 -113
- owlplanner/version.py +1 -1
- {owlplanner-2025.2.3.dist-info → owlplanner-2025.2.5.dist-info}/METADATA +25 -40
- {owlplanner-2025.2.3.dist-info → owlplanner-2025.2.5.dist-info}/RECORD +6 -6
- {owlplanner-2025.2.3.dist-info → owlplanner-2025.2.5.dist-info}/WHEEL +0 -0
- {owlplanner-2025.2.3.dist-info → owlplanner-2025.2.5.dist-info}/licenses/LICENSE +0 -0
owlplanner/plan.py
CHANGED
|
@@ -898,12 +898,9 @@ class Plan(object):
|
|
|
898
898
|
self.myRothX_in[i, :h] = self.timeLists[iname]['Roth conv'].iloc[:h]
|
|
899
899
|
self.Lambda_in[i, :h] = self.timeLists[iname]['big-ticket items'].iloc[:h]
|
|
900
900
|
|
|
901
|
-
# In 1st year, reduce wages and
|
|
901
|
+
# In 1st year, reduce wages and contributions depending on starting date.
|
|
902
902
|
self.omega_in[:, 0] *= self.yearFracLeft
|
|
903
903
|
self.kappa_ijn[:, :, 0] *= self.yearFracLeft
|
|
904
|
-
if self.yearFracLeft != 1:
|
|
905
|
-
self.Lambda_in[:, 0] = 0
|
|
906
|
-
self.myRothX_in[:, 0] = 0
|
|
907
904
|
|
|
908
905
|
self.caseStatus = 'modified'
|
|
909
906
|
|
|
@@ -1416,11 +1413,11 @@ class Plan(object):
|
|
|
1416
1413
|
|
|
1417
1414
|
progcall.finish()
|
|
1418
1415
|
self.mylog.resetVerbose()
|
|
1419
|
-
fig,
|
|
1420
|
-
self.mylog.print(
|
|
1416
|
+
fig, description = self._showResults(objective, df, N, figure)
|
|
1417
|
+
self.mylog.print(description.getvalue())
|
|
1421
1418
|
|
|
1422
1419
|
if figure:
|
|
1423
|
-
return fig,
|
|
1420
|
+
return fig, description.getvalue()
|
|
1424
1421
|
|
|
1425
1422
|
return N, df
|
|
1426
1423
|
|
|
@@ -1472,11 +1469,11 @@ class Plan(object):
|
|
|
1472
1469
|
|
|
1473
1470
|
progcall.finish()
|
|
1474
1471
|
self.mylog.resetVerbose()
|
|
1475
|
-
fig,
|
|
1476
|
-
self.mylog.print(
|
|
1472
|
+
fig, description = self._showResults(objective, df, N, figure)
|
|
1473
|
+
self.mylog.print(description.getvalue())
|
|
1477
1474
|
|
|
1478
1475
|
if figure:
|
|
1479
|
-
return fig,
|
|
1476
|
+
return fig, description.getvalue()
|
|
1480
1477
|
|
|
1481
1478
|
return N, df
|
|
1482
1479
|
|
|
@@ -1486,9 +1483,9 @@ class Plan(object):
|
|
|
1486
1483
|
"""
|
|
1487
1484
|
import seaborn as sbn
|
|
1488
1485
|
|
|
1489
|
-
|
|
1486
|
+
description = io.StringIO()
|
|
1490
1487
|
|
|
1491
|
-
print('Success rate: %s on %d samples.' % (u.pc(len(df) / N), N), file=
|
|
1488
|
+
print('Success rate: %s on %d samples.' % (u.pc(len(df) / N), N), file=description)
|
|
1492
1489
|
title = '$N$ = %d, $P$ = %s' % (N, u.pc(len(df) / N))
|
|
1493
1490
|
means = df.mean(axis=0, numeric_only=True)
|
|
1494
1491
|
medians = df.median(axis=0, numeric_only=True)
|
|
@@ -1501,7 +1498,7 @@ class Plan(object):
|
|
|
1501
1498
|
# or if solution led to empty accounts at the end of first spouse's life.
|
|
1502
1499
|
if np.all(self.phi_j == 1) or medians.iloc[0] < 1:
|
|
1503
1500
|
if medians.iloc[0] < 1:
|
|
1504
|
-
print('Optimized solutions all have null partial bequest in year %d.' % my[0], file=
|
|
1501
|
+
print('Optimized solutions all have null partial bequest in year %d.' % my[0], file=description)
|
|
1505
1502
|
df.drop('partial', axis=1, inplace=True)
|
|
1506
1503
|
means = df.mean(axis=0, numeric_only=True)
|
|
1507
1504
|
medians = df.median(axis=0, numeric_only=True)
|
|
@@ -1553,16 +1550,16 @@ class Plan(object):
|
|
|
1553
1550
|
# plt.show()
|
|
1554
1551
|
|
|
1555
1552
|
for q in range(len(means)):
|
|
1556
|
-
print('%12s: Median (%d $): %s' % (leads[q], self.year_n[0], u.d(medians.iloc[q])), file=
|
|
1557
|
-
print('%12s: Mean (%d $): %s' % (leads[q], self.year_n[0], u.d(means.iloc[q])), file=
|
|
1553
|
+
print('%12s: Median (%d $): %s' % (leads[q], self.year_n[0], u.d(medians.iloc[q])), file=description)
|
|
1554
|
+
print('%12s: Mean (%d $): %s' % (leads[q], self.year_n[0], u.d(means.iloc[q])), file=description)
|
|
1558
1555
|
print(
|
|
1559
1556
|
'%12s: Range: %s - %s'
|
|
1560
1557
|
% (leads[q], u.d(1000 * df.iloc[:, q].min()), u.d(1000 * df.iloc[:, q].max())),
|
|
1561
|
-
file=
|
|
1558
|
+
file=description)
|
|
1562
1559
|
nzeros = len(df.iloc[:, q][df.iloc[:, q] < 0.001])
|
|
1563
|
-
print('%12s: N zero solns: %d' % (leads[q], nzeros), file=
|
|
1560
|
+
print('%12s: N zero solns: %d' % (leads[q], nzeros), file=description)
|
|
1564
1561
|
|
|
1565
|
-
return fig,
|
|
1562
|
+
return fig, description
|
|
1566
1563
|
|
|
1567
1564
|
def resolve(self):
|
|
1568
1565
|
"""
|
|
@@ -2041,141 +2038,133 @@ class Plan(object):
|
|
|
2041
2038
|
@_checkCaseStatus
|
|
2042
2039
|
def summary(self):
|
|
2043
2040
|
"""
|
|
2044
|
-
Print summary
|
|
2041
|
+
Print summary in logs.
|
|
2045
2042
|
"""
|
|
2046
2043
|
self.mylog.print('SUMMARY ================================================================')
|
|
2047
|
-
|
|
2048
|
-
for
|
|
2049
|
-
self.mylog.print(
|
|
2044
|
+
dic = self.summaryDic()
|
|
2045
|
+
for key, value in dic.items():
|
|
2046
|
+
self.mylog.print(f"{key}: {value}")
|
|
2050
2047
|
self.mylog.print('------------------------------------------------------------------------')
|
|
2051
2048
|
|
|
2052
2049
|
return None
|
|
2053
2050
|
|
|
2051
|
+
def summaryList(self):
|
|
2052
|
+
"""
|
|
2053
|
+
Return summary as a list.
|
|
2054
|
+
"""
|
|
2055
|
+
mylist = []
|
|
2056
|
+
dic = self.summaryDic()
|
|
2057
|
+
for key, value in dic.items():
|
|
2058
|
+
mylist.append(f"{key}: {value}")
|
|
2059
|
+
|
|
2060
|
+
return mylist
|
|
2061
|
+
|
|
2054
2062
|
def summaryString(self):
|
|
2055
2063
|
"""
|
|
2056
|
-
|
|
2064
|
+
Return summary as a string.
|
|
2057
2065
|
"""
|
|
2058
|
-
string = ''
|
|
2059
|
-
|
|
2060
|
-
for
|
|
2061
|
-
string +=
|
|
2066
|
+
string = 'Synopsis\n'
|
|
2067
|
+
dic = self.summaryDic()
|
|
2068
|
+
for key, value in dic.items():
|
|
2069
|
+
string += f"{key:>70}: {value}\n"
|
|
2070
|
+
# string += "%60s: %s\n" % (key, value)
|
|
2062
2071
|
|
|
2063
2072
|
return string
|
|
2064
2073
|
|
|
2065
|
-
def
|
|
2074
|
+
def summaryDic(self):
|
|
2066
2075
|
"""
|
|
2067
|
-
Return
|
|
2076
|
+
Return dictionary containing summary of values.
|
|
2068
2077
|
"""
|
|
2069
2078
|
now = self.year_n[0]
|
|
2070
|
-
|
|
2071
|
-
|
|
2072
|
-
|
|
2073
|
-
|
|
2074
|
-
|
|
2075
|
-
lines.append('Contributions file: %s' % self.timeListsFileName)
|
|
2076
|
-
lines.append('Initial balances [taxable, tax-deferred, tax-free]:')
|
|
2077
|
-
for i in range(self.N_i):
|
|
2078
|
-
lines.append("%12s's accounts: %s" % (self.inames[i], [u.d(self.beta_ij[i][j]) for j in range(self.N_j)]))
|
|
2079
|
-
|
|
2080
|
-
lines.append('Return rates: %s' % self.rateMethod)
|
|
2081
|
-
if self.rateMethod in ['historical', 'historical average', 'histochastic']:
|
|
2082
|
-
lines.append('Rates used: from %d to %d' % (self.rateFrm, self.rateTo))
|
|
2083
|
-
elif self.rateMethod == 'stochastic':
|
|
2084
|
-
lines.append(
|
|
2085
|
-
'Mean rates used (%%): %s' % (['{:.1f}'.format(100 * self.rateValues[k]) for k in range(self.N_k)])
|
|
2086
|
-
)
|
|
2087
|
-
lines.append(
|
|
2088
|
-
'Standard deviation used (%%): %s'
|
|
2089
|
-
% (['{:.1f}'.format(100 * self.rateStdev[k]) for k in range(self.N_k)])
|
|
2090
|
-
)
|
|
2091
|
-
lines.append('Correlation matrix used:')
|
|
2092
|
-
lines.append('\t\t' + str(self.rateCorr).replace('\n', '\n\t\t'))
|
|
2093
|
-
else:
|
|
2094
|
-
lines.append('Rates used (%%): %s' % (['{:.1f}'.format(100 * self.rateValues[k]) for k in range(self.N_k)]))
|
|
2095
|
-
lines.append("This year's starting date: %s" % self.startDate)
|
|
2096
|
-
lines.append('Optimized for: %s' % self.objective)
|
|
2097
|
-
lines.append('Solver options: %s' % self.solverOptions)
|
|
2098
|
-
lines.append('Number of decision variables: %d' % self.A.nvars)
|
|
2099
|
-
lines.append('Number of constraints: %d' % self.A.ncons)
|
|
2100
|
-
lines.append('Spending profile: %s' % self.spendingProfile)
|
|
2101
|
-
if self.spendingProfile == 'smile':
|
|
2102
|
-
lines.append('\twith increase: %d%%, dip: %d%%, delay: %dy'
|
|
2103
|
-
% (self.smileIncrease, self.smileDip, self.smileDelay))
|
|
2104
|
-
if self.N_i == 2:
|
|
2105
|
-
lines.append('Surviving spouse spending needs: %s' % u.pc(self.chi, f=0))
|
|
2106
|
-
|
|
2107
|
-
lines.append('Net yearly spending in year %d: %s' % (now, u.d(self.g_n[0] / self.yearFracLeft)))
|
|
2108
|
-
lines.append('Net spending remaining in year %d: %s' % (now, u.d(self.g_n[0])))
|
|
2109
|
-
lines.append('Net yearly spending profile basis in %d$: %s' % (now, u.d(self.g_n[0] / self.xi_n[0])))
|
|
2110
|
-
|
|
2111
|
-
lines.append('Assumed heirs marginal tax rate: %s' % u.pc(self.nu, f=0))
|
|
2112
|
-
|
|
2113
|
-
if self.N_i == 2 and self.n_d < self.N_n:
|
|
2114
|
-
lines.append("Spousal surplus deposit fraction in %s's taxable account: %s"
|
|
2115
|
-
% (self.inames[1], self.eta))
|
|
2116
|
-
lines.append('Spousal beneficiary fractions to %s: %s' % (self.inames[self.i_s], self.phi_j.tolist()))
|
|
2117
|
-
p_j = self.partialEstate_j * (1 - self.phi_j)
|
|
2118
|
-
p_j[1] *= 1 - self.nu
|
|
2119
|
-
nx = self.n_d - 1
|
|
2120
|
-
totOthers = np.sum(p_j)
|
|
2121
|
-
totOthersNow = totOthers / self.gamma_n[nx + 1]
|
|
2122
|
-
q_j = self.partialEstate_j * self.phi_j
|
|
2123
|
-
totSpousal = np.sum(q_j)
|
|
2124
|
-
totSpousalNow = totSpousal / self.gamma_n[nx + 1]
|
|
2125
|
-
lines.append('Spousal wealth transfer from %s to %s in year %d (nominal):'
|
|
2126
|
-
% (self.inames[self.i_d], self.inames[self.i_s], self.year_n[nx]))
|
|
2127
|
-
lines.append(' taxable: %s tax-def: %s tax-free: %s' % (u.d(q_j[0]), u.d(q_j[1]), u.d(q_j[2])))
|
|
2128
|
-
lines.append('Sum of spousal bequests to %s in year %d in %d$: %s (%s nominal)'
|
|
2129
|
-
% (self.inames[self.i_s], self.year_n[nx], now, u.d(totSpousalNow), u.d(totSpousal)))
|
|
2130
|
-
lines.append(
|
|
2131
|
-
'Post-tax non-spousal bequests from %s in year %d (nominal):' % (self.inames[self.i_d], self.year_n[nx])
|
|
2132
|
-
)
|
|
2133
|
-
lines.append(' taxable: %s tax-def: %s tax-free: %s' % (u.d(p_j[0]), u.d(p_j[1]), u.d(p_j[2])))
|
|
2134
|
-
lines.append(
|
|
2135
|
-
'Sum of post-tax non-spousal bequests from %s in year %d in %d$: %s (%s nominal)'
|
|
2136
|
-
% (self.inames[self.i_d], self.year_n[nx], now, u.d(totOthersNow), u.d(totOthers))
|
|
2137
|
-
)
|
|
2079
|
+
dic = {}
|
|
2080
|
+
# Results
|
|
2081
|
+
dic[f"Net yearly spending basis in {now}$"] = (u.d(self.g_n[0] / self.xi_n[0]))
|
|
2082
|
+
dic[f"Net yearly spending for year {now}"] = (u.d(self.g_n[0] / self.yearFracLeft))
|
|
2083
|
+
dic[f"Net spending remaining in year {now}"] = u.d(self.g_n[0])
|
|
2138
2084
|
|
|
2139
2085
|
totIncome = np.sum(self.g_n, axis=0)
|
|
2140
2086
|
totIncomeNow = np.sum(self.g_n / self.gamma_n[:-1], axis=0)
|
|
2141
|
-
|
|
2087
|
+
dic[f"Total net spending in {now}$"] = (
|
|
2088
|
+
"%s (%s nominal)" % (u.d(totIncomeNow), u.d(totIncome))
|
|
2089
|
+
)
|
|
2142
2090
|
|
|
2143
2091
|
totRoth = np.sum(self.x_in, axis=(0, 1))
|
|
2144
2092
|
totRothNow = np.sum(np.sum(self.x_in, axis=0) / self.gamma_n[:-1], axis=0)
|
|
2145
|
-
|
|
2093
|
+
dic[f"Total Roth conversions in {now}$"] = (
|
|
2094
|
+
"%s (%s nominal)" % (u.d(totRothNow), u.d(totRoth))
|
|
2095
|
+
)
|
|
2146
2096
|
|
|
2147
2097
|
taxPaid = np.sum(self.T_n, axis=0)
|
|
2148
2098
|
taxPaidNow = np.sum(self.T_n / self.gamma_n[:-1], axis=0)
|
|
2149
|
-
|
|
2150
|
-
|
|
2099
|
+
dic[f"Total income tax paid on ordinary income in {now}$"] = (
|
|
2100
|
+
"%s (%s nominal)" % (u.d(taxPaidNow), u.d(taxPaid))
|
|
2101
|
+
)
|
|
2151
2102
|
|
|
2152
2103
|
taxPaid = np.sum(self.U_n, axis=0)
|
|
2153
2104
|
taxPaidNow = np.sum(self.U_n / self.gamma_n[:-1], axis=0)
|
|
2154
|
-
|
|
2155
|
-
|
|
2105
|
+
dic[f"Total tax paid on gains and dividends in {now}$"] = (
|
|
2106
|
+
"%s (%s nominal)" % (u.d(taxPaidNow), u.d(taxPaid))
|
|
2107
|
+
)
|
|
2156
2108
|
|
|
2157
2109
|
taxPaid = np.sum(self.M_n, axis=0)
|
|
2158
2110
|
taxPaidNow = np.sum(self.M_n / self.gamma_n[:-1], axis=0)
|
|
2159
|
-
|
|
2111
|
+
dic[f"Total Medicare premiums paid in {now}$"] = (
|
|
2112
|
+
"%s (%s nominal)" % (u.d(taxPaidNow), u.d(taxPaid))
|
|
2113
|
+
)
|
|
2114
|
+
|
|
2115
|
+
if self.N_i == 2 and self.n_d < self.N_n:
|
|
2116
|
+
p_j = self.partialEstate_j * (1 - self.phi_j)
|
|
2117
|
+
p_j[1] *= 1 - self.nu
|
|
2118
|
+
nx = self.n_d - 1
|
|
2119
|
+
totOthers = np.sum(p_j)
|
|
2120
|
+
totOthersNow = totOthers / self.gamma_n[nx + 1]
|
|
2121
|
+
q_j = self.partialEstate_j * self.phi_j
|
|
2122
|
+
totSpousal = np.sum(q_j)
|
|
2123
|
+
totSpousalNow = totSpousal / self.gamma_n[nx + 1]
|
|
2124
|
+
dic["Spousal wealth transfer from %s to %s in year %d (nominal)" %
|
|
2125
|
+
(self.inames[self.i_d], self.inames[self.i_s], self.year_n[nx])] = (
|
|
2126
|
+
"taxable: %s tax-def: %s tax-free: %s" % (u.d(q_j[0]), u.d(q_j[1]), u.d(q_j[2]))
|
|
2127
|
+
)
|
|
2128
|
+
|
|
2129
|
+
dic["Sum of spousal bequests to %s in year %d in %d$" %
|
|
2130
|
+
(self.inames[self.i_s], self.year_n[nx], now)] = (
|
|
2131
|
+
"%s (%s nominal)" % (u.d(totSpousalNow), u.d(totSpousal))
|
|
2132
|
+
)
|
|
2133
|
+
dic["Post-tax non-spousal bequests from %s in year %d (nominal)" %
|
|
2134
|
+
(self.inames[self.i_d], self.year_n[nx])] = (
|
|
2135
|
+
"taxable: %s tax-def: %s tax-free: %s" % (u.d(p_j[0]), u.d(p_j[1]), u.d(p_j[2]))
|
|
2136
|
+
)
|
|
2137
|
+
dic["Sum of post-tax non-spousal bequests from %s in year %d in %d$" %
|
|
2138
|
+
(self.inames[self.i_d], self.year_n[nx], now)] = (
|
|
2139
|
+
"%s (%s nominal)" % (u.d(totOthersNow), u.d(totOthers))
|
|
2140
|
+
)
|
|
2160
2141
|
|
|
2161
2142
|
estate = np.sum(self.b_ijn[:, :, self.N_n], axis=0)
|
|
2162
2143
|
estate[1] *= 1 - self.nu
|
|
2163
|
-
|
|
2164
|
-
|
|
2144
|
+
dic["Post-tax account values at the end of final plan year %d (nominal)" % self.year_n[-1]] = (
|
|
2145
|
+
"taxable: %s tax-def: %s tax-free: %s" % (u.d(estate[0]), u.d(estate[1]), u.d(estate[2]))
|
|
2146
|
+
)
|
|
2165
2147
|
|
|
2166
2148
|
totEstate = np.sum(estate)
|
|
2167
2149
|
totEstateNow = totEstate / self.gamma_n[-1]
|
|
2168
|
-
|
|
2169
|
-
|
|
2170
|
-
% (self.year_n[-1], now, u.d(totEstateNow), u.d(totEstate))
|
|
2150
|
+
dic["Total estate value at the end of final plan year %d in %d$" % (self.year_n[-1], now)] = (
|
|
2151
|
+
"%s (%s nominal)" % (u.d(totEstateNow), u.d(totEstate))
|
|
2171
2152
|
)
|
|
2172
|
-
|
|
2173
|
-
|
|
2153
|
+
dic["Plan starting date"] = str(self.startDate)
|
|
2154
|
+
dic["Cumulative inflation factor from start date to end of plan"] = (
|
|
2155
|
+
"%.2f" % (self.gamma_n[-1])
|
|
2174
2156
|
)
|
|
2157
|
+
for i in range(self.N_i):
|
|
2158
|
+
dic["%12s's %02d-year life horizon" % (self.inames[i], self.horizons[i])] = (
|
|
2159
|
+
"%d -> %d" % (now, now + self.horizons[i] - 1)
|
|
2160
|
+
)
|
|
2175
2161
|
|
|
2176
|
-
|
|
2162
|
+
dic["Plan name"] = self._name
|
|
2163
|
+
dic["Number of decision variables"] = str(self.A.nvars)
|
|
2164
|
+
dic["Number of constraints"] = str(self.A.ncons)
|
|
2165
|
+
dic["Case executed on"] = str(self._timestamp)
|
|
2177
2166
|
|
|
2178
|
-
return
|
|
2167
|
+
return dic
|
|
2179
2168
|
|
|
2180
2169
|
def showRatesCorrelations(self, tag='', shareRange=False, figure=False):
|
|
2181
2170
|
"""
|
owlplanner/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "2025.02.
|
|
1
|
+
__version__ = "2025.02.05"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: owlplanner
|
|
3
|
-
Version: 2025.2.
|
|
3
|
+
Version: 2025.2.5
|
|
4
4
|
Summary: Owl: Retirement planner with great wisdom
|
|
5
5
|
Project-URL: HomePage, https://github.com/mdlacasse/owl
|
|
6
6
|
Project-URL: Repository, https://github.com/mdlacasse/owl
|
|
@@ -731,7 +731,8 @@ This is exactly where this tool fits it. Given your savings capabilities and spe
|
|
|
731
731
|
it can generate different future realizations of
|
|
732
732
|
your strategy under different market assumptions, helping to better understand your financial situation.
|
|
733
733
|
|
|
734
|
-
Disclaimers: I am not a financial planner. You make your own decisions.
|
|
734
|
+
Disclaimers: I am not a financial planner. You make your own decisions.
|
|
735
|
+
This program comes with no guarantee. Use at your own risk.
|
|
735
736
|
|
|
736
737
|
More disclaimers: While some output of the code has been verified with other approaches,
|
|
737
738
|
this code is still under development and I cannot guarantee the accuracy of the results.
|
|
@@ -975,47 +976,31 @@ The output of the last command reports that if future rates are exactly like tho
|
|
|
975
976
|
starting from 1969 and the following years, Jack and Jill could afford an annual spending of
|
|
976
977
|
\\$97k starting this year
|
|
977
978
|
(with a basis of \\$88.8k - the basis multiplies the profile which can vary over the course of the plan).
|
|
978
|
-
The summary also contains
|
|
979
|
+
The summary also contains some details:
|
|
979
980
|
```
|
|
980
981
|
SUMMARY ================================================================
|
|
982
|
+
Net yearly spending basis in 2025$: $91,812
|
|
983
|
+
Net yearly spending for year 2025: $100,448
|
|
984
|
+
Net spending remaining in year 2025: $100,448
|
|
985
|
+
Total net spending in 2025$: $2,809,453 ($7,757,092 nominal)
|
|
986
|
+
Total Roth conversions in 2025$: $320,639 ($456,454 nominal)
|
|
987
|
+
Total income tax paid on ordinary income in 2025$: $247,788 ($469,522 nominal)
|
|
988
|
+
Total tax paid on gains and dividends in 2025$: $3,313 ($3,768 nominal)
|
|
989
|
+
Total Medicare premiums paid in 2025$: $117,660 ($343,388 nominal)
|
|
990
|
+
Spousal wealth transfer from Jack to Jill in year 2051 (nominal): taxable: $0 tax-def: $57,224 tax-free: $2,102,173
|
|
991
|
+
Sum of spousal bequests to Jill in year 2051 in 2025$: $499,341 ($2,159,397 nominal)
|
|
992
|
+
Post-tax non-spousal bequests from Jack in year 2051 (nominal): taxable: $0 tax-def: $0 tax-free: $0
|
|
993
|
+
Sum of post-tax non-spousal bequests from Jack in year 2051 in 2025$: $0 ($0 nominal)
|
|
994
|
+
Post-tax account values at the end of final plan year 2057 (nominal): taxable: $0 tax-def: $0 tax-free: $2,488,808
|
|
995
|
+
Total estate value at the end of final plan year 2057 in 2025$: $500,000 ($2,488,808 nominal)
|
|
996
|
+
Plan starting date: 01-01
|
|
997
|
+
Cumulative inflation factor from start date to end of plan: 4.98
|
|
998
|
+
Jack's 27-year life horizon: 2025 -> 2051
|
|
999
|
+
Jill's 33-year life horizon: 2025 -> 2057
|
|
981
1000
|
Plan name: jack & jill - tutorial
|
|
982
|
-
|
|
983
|
-
|
|
984
|
-
|
|
985
|
-
Initial balances [taxable, tax-deferred, tax-free]:
|
|
986
|
-
Jack's accounts: ['$90,500', '$600,500', '$70,000']
|
|
987
|
-
Jill's accounts: ['$60,200', '$150,000', '$40,000']
|
|
988
|
-
Return rates: historical
|
|
989
|
-
Rates used: from 1969 to 2002
|
|
990
|
-
This year's starting date: 01-01
|
|
991
|
-
Optimized for: maxSpending
|
|
992
|
-
Solver options: {'maxRothConversion': 100, 'bequest': 500, 'noRothConversions': 'Jill'}
|
|
993
|
-
Number of decision variables: 1026
|
|
994
|
-
Number of constraints: 894
|
|
995
|
-
Spending profile: smile
|
|
996
|
-
Surviving spouse spending needs: 60%
|
|
997
|
-
Net yearly spending in year 2024: $97,098
|
|
998
|
-
Net spending remaining in year 2024: $97,098
|
|
999
|
-
Net yearly spending profile basis in 2024$: $88,763
|
|
1000
|
-
Assumed heirs tax rate: 30%
|
|
1001
|
-
Spousal surplus deposit fraction: 0.5
|
|
1002
|
-
Spousal beneficiary fractions to Jill: [1, 1, 1]
|
|
1003
|
-
Spousal wealth transfer from Jack to Jill in year 2051 (nominal):
|
|
1004
|
-
taxable: $0 tax-def: $63,134 tax-free: $2,583,303
|
|
1005
|
-
Sum of spousal bequests to Jill in year 2051 in 2024$: $592,103 ($2,646,437 nominal)
|
|
1006
|
-
Post-tax non-spousal bequests from Jack in year 2051 (nominal):
|
|
1007
|
-
taxable: $0 tax-def: $0 tax-free: $0
|
|
1008
|
-
Sum of post-tax non-spousal bequests from Jack in year 2051 in 2024$: $0 ($0 nominal)
|
|
1009
|
-
Total net spending in 2024$: $2,804,910 ($7,916,623 nominal)
|
|
1010
|
-
Total Roth conversions in 2024$: $311,760 ($443,005 nominal)
|
|
1011
|
-
Total ordinary income tax paid in 2024$: $236,710 ($457,922 nominal)
|
|
1012
|
-
Total dividend tax paid in 2024$: $3,437 ($3,902 nominal)
|
|
1013
|
-
Total Medicare premiums paid in 2024$: $117,817 ($346,404 nominal)
|
|
1014
|
-
Post-tax account values at the end of final plan year 2057: (nominal)
|
|
1015
|
-
taxable: $0 tax-def: $0 tax-free: $2,553,871
|
|
1016
|
-
Total estate value at the end of final plan year 2057 in 2024$: $500,000 ($2,553,871 nominal)
|
|
1017
|
-
Inflation factor from this year's start date to the end of plan final year: 5.11
|
|
1018
|
-
Case executed on: 2024-12-09 at 22:11:57
|
|
1001
|
+
Number of decision variables: 996
|
|
1002
|
+
Number of constraints: 867
|
|
1003
|
+
Case executed on: 2025-02-04 at 22:55:03
|
|
1019
1004
|
------------------------------------------------------------------------
|
|
1020
1005
|
```
|
|
1021
1006
|
And an Excel workbook can be saved with all the detailed amounts over the years by using the following command:
|
|
@@ -2,16 +2,16 @@ owlplanner/__init__.py,sha256=QqrdT0Qks20osBTg7h0vJHAxpP9lL7DA99xb0nYbtw4,254
|
|
|
2
2
|
owlplanner/abcapi.py,sha256=eemIsdbtzdWCIj5VuuswgphxXMcxJ_GZfUlDi6lttFM,6658
|
|
3
3
|
owlplanner/config.py,sha256=ouADb6YES5Zgv0UwnEK9Axwvs8drp-ahboQjI4WTrr0,12069
|
|
4
4
|
owlplanner/logging.py,sha256=pXg_mMgBll-kklqaDRLDNVUFo-5DAa-yqTKtiVrhNWw,2530
|
|
5
|
-
owlplanner/plan.py,sha256=
|
|
5
|
+
owlplanner/plan.py,sha256=LJwNf6UngC2WepPyvO6zQzx9V0RbsQd2H9LAg5V8Fto,113815
|
|
6
6
|
owlplanner/progress.py,sha256=YZjL5_m4MMgKPlWlhhKacPLt54tVhVGF1eXxxZapMYs,386
|
|
7
7
|
owlplanner/rates.py,sha256=aKOmau8i3uqxZGi7HQJpzooT3X-yAZhga5MZJ56pBzk,15627
|
|
8
8
|
owlplanner/tax2025.py,sha256=b2RgM6TBQa8ggo6ODyh0p_J7j79UUm8z5NiENqa1l_k,7016
|
|
9
9
|
owlplanner/timelists.py,sha256=WwymsYAGWcrEzMtc-wrLbn1EVA2fhqXGN4NHLJsH3Fs,4110
|
|
10
10
|
owlplanner/utils.py,sha256=adIwqGVQFfvekke0JCxYJD3PKHbptVCj3NrQT2TQIB4,2351
|
|
11
|
-
owlplanner/version.py,sha256=
|
|
11
|
+
owlplanner/version.py,sha256=3SB4x2fk8FWUTRIEqgNzXA2CeRNyNlNPfgW0-yoyV_A,28
|
|
12
12
|
owlplanner/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
13
|
owlplanner/data/rates.csv,sha256=6fxg56BVVORrj9wJlUGFdGXKvOX5r7CSca8uhUbbuIU,3734
|
|
14
|
-
owlplanner-2025.2.
|
|
15
|
-
owlplanner-2025.2.
|
|
16
|
-
owlplanner-2025.2.
|
|
17
|
-
owlplanner-2025.2.
|
|
14
|
+
owlplanner-2025.2.5.dist-info/METADATA,sha256=RpUVgZp48DCU53VP6HjcQvojsnaZPsqSaav2jJ0OglA,63946
|
|
15
|
+
owlplanner-2025.2.5.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
16
|
+
owlplanner-2025.2.5.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
|
|
17
|
+
owlplanner-2025.2.5.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|