owlplanner 2025.2.14__py3-none-any.whl → 2025.2.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
owlplanner/config.py CHANGED
@@ -64,6 +64,7 @@ def saveConfig(plan, file, mylog):
64
64
  "Heirs rate on tax-deferred estate": float(100 * plan.nu),
65
65
  "Long-term capital gain tax rate": float(100 * plan.psi),
66
66
  "Dividend tax rate": float(100 * plan.mu),
67
+ "TCJA expiration year": plan.yTCJA,
67
68
  "Method": plan.rateMethod,
68
69
  }
69
70
  if plan.rateMethod in ["user", "stochastic"]:
@@ -226,6 +227,7 @@ def readConfig(file, *, verbose=True, logstreams=None, readContributions=True):
226
227
  p.setDividendRate(float(diconf["Rates Selection"]["Dividend tax rate"]))
227
228
  p.setLongTermCapitalTaxRate(float(diconf["Rates Selection"]["Long-term capital gain tax rate"]))
228
229
  p.setHeirsTaxRate(float(diconf["Rates Selection"]["Heirs rate on tax-deferred estate"]))
230
+ p.yTCJA = int(diconf["Rates Selection"]["TCJA expiration year"])
229
231
 
230
232
  frm = None
231
233
  to = None
owlplanner/plan.py CHANGED
@@ -249,7 +249,8 @@ class Plan(object):
249
249
  assert inames[0] != "" or (self.N_i == 2 and inames[1] == ""), "Name for each individual must be provided."
250
250
 
251
251
  self.filingStatus = ["single", "married"][self.N_i - 1]
252
-
252
+ # Default year TCJA is speculated to expire.
253
+ self.yTCJA = 2026
253
254
  self.inames = inames
254
255
  self.yobs = np.array(yobs, dtype=np.int32)
255
256
  self.expectancy = np.array(expectancy, dtype=np.int32)
@@ -307,7 +308,8 @@ class Plan(object):
307
308
 
308
309
  # Prepare income tax and RMD time series.
309
310
  self.rho_in = tx.rho_in(self.yobs, self.N_n)
310
- self.sigma_n, self.theta_tn, self.Delta_tn = tx.taxParams(self.yobs, self.i_d, self.n_d, self.N_n)
311
+ self.sigma_n, self.theta_tn, self.Delta_tn = tx.taxParams(self.yobs, self.i_d, self.n_d,
312
+ self.N_n, self.yTCJA)
311
313
 
312
314
  # If none was given, default is to begin plan on today's date.
313
315
  self._setStartingDate(startDate)
@@ -443,6 +445,14 @@ class Plan(object):
443
445
  self.mu = mu
444
446
  self.caseStatus = "modified"
445
447
 
448
+ def setExpirationYearTCJA(self, yTCJA):
449
+ """
450
+ Set year at which TCJA is speculated to expire.
451
+ """
452
+ self.mylog.vprint(f"Setting TCJA expiration year to {yTCJA}.")
453
+ self.yTCJA = yTCJA
454
+ self.caseStatus = "modified"
455
+
446
456
  def setLongTermCapitalTaxRate(self, psi):
447
457
  """
448
458
  Set long-term income tax rate. Rate is in percent. Default 15%.
@@ -2572,7 +2582,7 @@ class Plan(object):
2572
2582
 
2573
2583
  fig, ax = _lineIncomePlot(self.year_n, series, style, title, yformat)
2574
2584
 
2575
- data = tx.taxBrackets(self.N_i, self.n_d, self.N_n)
2585
+ data = tx.taxBrackets(self.N_i, self.n_d, self.N_n, self.yTCJA)
2576
2586
  for key in data:
2577
2587
  data_adj = data[key] * infladjust
2578
2588
  ax.plot(self.year_n, data_adj, label=key, ls=":")
owlplanner/tax2025.py CHANGED
@@ -24,49 +24,62 @@ from datetime import date
24
24
 
25
25
  taxBracketNames = ["10%", "12/15%", "22/25%", "24/28%", "32/33%", "35%", "37/40%"]
26
26
 
27
- rates_2025 = np.array([0.10, 0.12, 0.22, 0.24, 0.32, 0.35, 0.370])
28
- rates_2026 = np.array([0.10, 0.15, 0.25, 0.28, 0.33, 0.35, 0.396])
27
+ rates_TCJA = np.array([0.10, 0.12, 0.22, 0.24, 0.32, 0.35, 0.370])
28
+ rates_nonTCJA = np.array([0.10, 0.15, 0.25, 0.28, 0.33, 0.35, 0.396])
29
29
 
30
+ ###############################################################################
31
+ # Start of section where rates need to be actualized every year.
32
+ ###############################################################################
30
33
  # Single [0] and married filing jointly [1].
31
- taxBrackets_2025 = np.array(
34
+
35
+ # These are current.
36
+ taxBrackets_TCJA = np.array(
32
37
  [
33
38
  [11925, 48475, 103350, 197300, 250525, 626350, 9999999],
34
39
  [23850, 96950, 206700, 394600, 501050, 751700, 9999999],
35
40
  ]
36
41
  )
37
42
 
38
- irmaaBrackets_2025 = np.array(
43
+ irmaaBrackets = np.array(
39
44
  [
40
45
  [0, 106000, 133000, 167000, 200000, 500000],
41
46
  [0, 212000, 266000, 334000, 400000, 750000],
42
47
  ]
43
48
  )
44
49
 
45
- # Use index [0] to store the standard Medicare part B premium.
50
+ # Index [0] stores the standard Medicare part B premium.
46
51
  # Following values are incremental IRMAA part B monthly fees.
47
- # 2024 total monthly fees: [174.70, 244.60, 349.40, 454.20, 559.00, 594.00]
48
- # irmaaFees_2024 = 12 * np.array([174.70, 69.90, 104.80, 104.80, 104.80, 35.00])
49
- irmaaFees_2025 = 12 * np.array([185.00, 74.00, 111.00, 110.90, 111.00, 37.00])
52
+ irmaaFees = 12 * np.array([185.00, 74.00, 111.00, 110.90, 111.00, 37.00])
50
53
 
51
- # Compute 2026 from 2017 with 27% increase.
54
+ # Make projection for non-TCJA using 2017 to current year.
52
55
  # taxBrackets_2017 = np.array(
53
56
  # [ [9325, 37950, 91900, 191650, 416700, 418400, 9999999],
54
- # [18650, 75900, 153100, 233350, 416700, 470000, 9999999],
57
+ # [18650, 75900, 153100, 233350, 416700, 470700, 9999999],
55
58
  # ])
56
-
57
- taxBrackets_2026 = np.array(
59
+ #
60
+ # stdDeduction_2017 = [6350, 12700]
61
+ #
62
+ # For 2025, I used a 30.5% adjustment from 2017, rounded to closest 50.
63
+ #
64
+ # These are speculated.
65
+ taxBrackets_nonTCJA = np.array(
58
66
  [
59
- [11850, 48200, 116700, 243400, 529200, 531400, 9999999],
60
- [23700, 96400, 194400, 296350, 529200, 596900, 9999999],
67
+ [12150, 49550, 119950, 250200, 544000, 546200, 9999999],
68
+ [24350, 99100, 199850, 304600, 543950, 614450, 9999999],
61
69
  ]
62
70
  )
63
71
 
64
- stdDeduction_2025 = np.array([15000, 30000])
65
- stdDeduction_2026 = np.array([8300, 16600])
66
- extra65Deduction_2025 = np.array([2000, 1600])
72
+ # These are current.
73
+ stdDeduction_TCJA = np.array([15000, 30000])
74
+ # These are speculated.
75
+ stdDeduction_nonTCJA = np.array([8300, 16600])
67
76
 
77
+ # These are current.
78
+ extra65Deduction = np.array([2000, 1600])
68
79
 
69
- ##############################################################################
80
+ ###############################################################################
81
+ # End of section where rates need to be actualized every year.
82
+ ###############################################################################
70
83
 
71
84
 
72
85
  def mediCosts(yobs, horizons, magi, prevmagi, gamma_n, Nn):
@@ -80,21 +93,25 @@ def mediCosts(yobs, horizons, magi, prevmagi, gamma_n, Nn):
80
93
  for i in range(Ni):
81
94
  if thisyear + n - yobs[i] >= 65 and n < horizons[i]:
82
95
  # Start with the (indexed) basic Medicare part B premium.
83
- costs[n] += gamma_n[n] * irmaaFees_2025[0]
96
+ costs[n] += gamma_n[n] * irmaaFees[0]
84
97
  if n < 2:
85
98
  mymagi = prevmagi[n]
86
99
  else:
87
100
  mymagi = magi[n - 2]
88
101
  for q in range(1, 6):
89
- if mymagi > gamma_n[n] * irmaaBrackets_2025[Ni - 1][q]:
90
- costs[n] += gamma_n[n] * irmaaFees_2025[q]
102
+ if mymagi > gamma_n[n] * irmaaBrackets[Ni - 1][q]:
103
+ costs[n] += gamma_n[n] * irmaaFees[q]
91
104
 
92
105
  return costs
93
106
 
94
107
 
95
- def taxParams(yobs, i_d, n_d, N_n):
108
+ def taxParams(yobs, i_d, n_d, N_n, y_TCJA=2026):
96
109
  """
97
- Return 3 time series:
110
+ Input is year of birth, index of shortest-lived individual,
111
+ lifespan of shortest-lived individual, total number of years
112
+ in the plan, and the year that TCJA might expire.
113
+
114
+ It returns 3 time series:
98
115
  1) Standard deductions at year n (sigma_n).
99
116
  2) Tax rate in year n (theta_tn)
100
117
  3) Delta from top to bottom of tax brackets (Delta_tn)
@@ -102,12 +119,12 @@ def taxParams(yobs, i_d, n_d, N_n):
102
119
  Returned values are not indexed for inflation.
103
120
  """
104
121
  # Compute the deltas in-place between brackets, starting from the end.
105
- deltaBrackets_2025 = np.array(taxBrackets_2025)
106
- deltaBrackets_2026 = np.array(taxBrackets_2026)
122
+ deltaBrackets_TCJA = np.array(taxBrackets_TCJA)
123
+ deltaBrackets_nonTCJA = np.array(taxBrackets_nonTCJA)
107
124
  for t in range(6, 0, -1):
108
125
  for i in range(2):
109
- deltaBrackets_2025[i, t] -= deltaBrackets_2025[i, t - 1]
110
- deltaBrackets_2026[i, t] -= deltaBrackets_2026[i, t - 1]
126
+ deltaBrackets_TCJA[i, t] -= deltaBrackets_TCJA[i, t - 1]
127
+ deltaBrackets_nonTCJA[i, t] -= deltaBrackets_nonTCJA[i, t - 1]
111
128
 
112
129
  # Prepare the 3 arrays to return - use transpose for easy slicing.
113
130
  sigma = np.zeros((N_n))
@@ -124,23 +141,23 @@ def taxParams(yobs, i_d, n_d, N_n):
124
141
  souls.remove(i_d)
125
142
  filingStatus -= 1
126
143
 
127
- if thisyear + n < 2026:
128
- sigma[n] = stdDeduction_2025[filingStatus]
129
- Delta[n, :] = deltaBrackets_2025[filingStatus, :]
144
+ if thisyear + n < y_TCJA:
145
+ sigma[n] = stdDeduction_TCJA[filingStatus]
146
+ Delta[n, :] = deltaBrackets_TCJA[filingStatus, :]
130
147
  else:
131
- sigma[n] = stdDeduction_2026[filingStatus]
132
- Delta[n, :] = deltaBrackets_2026[filingStatus, :]
148
+ sigma[n] = stdDeduction_nonTCJA[filingStatus]
149
+ Delta[n, :] = deltaBrackets_nonTCJA[filingStatus, :]
133
150
 
134
151
  # Add 65+ additional exemption(s).
135
152
  for i in souls:
136
153
  if thisyear + n - yobs[i] >= 65:
137
- sigma[n] += extra65Deduction_2025[filingStatus]
154
+ sigma[n] += extra65Deduction[filingStatus]
138
155
 
139
156
  # Fill in future tax rates for year n.
140
- if thisyear + n < 2026:
141
- theta[n, :] = rates_2025[:]
157
+ if thisyear + n < y_TCJA:
158
+ theta[n, :] = rates_TCJA[:]
142
159
  else:
143
- theta[n, :] = rates_2026[:]
160
+ theta[n, :] = rates_nonTCJA[:]
144
161
 
145
162
  Delta = Delta.transpose()
146
163
  theta = theta.transpose()
@@ -149,23 +166,26 @@ def taxParams(yobs, i_d, n_d, N_n):
149
166
  return sigma, theta, Delta
150
167
 
151
168
 
152
- def taxBrackets(N_i, n_d, N_n):
169
+ def taxBrackets(N_i, n_d, N_n, y_TCJA):
153
170
  """
154
171
  Return dictionary containing future tax brackets
155
172
  unadjusted for inflation for plotting.
156
173
  """
157
174
  assert 0 < N_i and N_i <= 2, f"Cannot process {N_i} individuals."
158
- # This 1 is the number of years left in TCJA from 2025.
159
- ytc = 1
160
- status = N_i - 1
161
175
  n_d = min(n_d, N_n)
176
+ status = N_i - 1
177
+
178
+ # Number of years left in TCJA from this year.
179
+ thisyear = date.today().year
180
+ ytc = y_TCJA - thisyear
162
181
 
163
182
  data = {}
164
183
  for t in range(len(taxBracketNames) - 1):
165
184
  array = np.zeros(N_n)
166
- array[0:ytc] = taxBrackets_2025[status][t]
167
- array[ytc:n_d] = taxBrackets_2026[status][t]
168
- array[n_d:N_n] = taxBrackets_2026[0][t]
185
+ for n in range(N_n):
186
+ stat = status if n < n_d else 0
187
+ array[n] = taxBrackets_TCJA[stat][t] if n < ytc else taxBrackets_nonTCJA[stat][t]
188
+
169
189
  data[taxBracketNames[t]] = array
170
190
 
171
191
  return data
owlplanner/version.py CHANGED
@@ -1 +1 @@
1
- __version__ = "2025.02.14"
1
+ __version__ = "2025.02.15"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: owlplanner
3
- Version: 2025.2.14
3
+ Version: 2025.2.15
4
4
  Summary: Owl: Retirement planner with great wisdom
5
5
  Project-URL: HomePage, https://github.com/mdlacasse/owl
6
6
  Project-URL: Repository, https://github.com/mdlacasse/owl
@@ -708,7 +708,7 @@ Description-Content-Type: text/markdown
708
708
 
709
709
  <img align=right src="https://raw.github.com/mdlacasse/Owl/main/docs/images/owl.png" width="250">
710
710
 
711
- -----
711
+ -------------------------------------------------------------------------------------
712
712
 
713
713
  ### TL;DR
714
714
  Owl is a planning tool that uses a linear programming optimization algorithm to provide guidance on retirement decisions. There are a few ways to run Owl.
@@ -719,10 +719,10 @@ Owl is a planning tool that uses a linear programming optimization algorithm to
719
719
  Follow these [instructions](docker/README.md) for this option.
720
720
 
721
721
  - Run locally on your computer using Python code and libraries.
722
- Follow there [instructions](INSTALL.md) to install Owl from the source code and run it on your computer.
723
-
724
- -----
722
+ Follow these [instructions](INSTALL.md) to install Owl from the source code and run it on your computer.
725
723
 
724
+ -------------------------------------------------------------------------------------
725
+ ## Overview
726
726
  This package is a retirement modeling framework for exploring the sensitivity of retirement financial decisions.
727
727
  Strictly speaking, it is not a planning tool, but more an environment for exploring *what if* scenarios.
728
728
  It provides different realizations of a financial strategy through the rigorous
@@ -789,7 +789,7 @@ Other asset classes can easily be added, but would add complexity while only pro
789
789
  Historical data used are from
790
790
  [Aswath Damodaran](https://pages.stern.nyu.edu/~adamodar/) at the Stern School of Business.
791
791
  Asset allocations are selected for the duration of the plan, and these can glide linearly
792
- or along a configurable s-curve from now to the last year of the plan.
792
+ or along a configurable s-curve over the lifespan of the individual.
793
793
 
794
794
  Spending profiles are adjusted for inflation, and so are all other indexable quantities. Proflies can be
795
795
  flat or follow a *smile* curve which is also adjustable through two simple parameters.
@@ -800,10 +800,10 @@ the statistical characteristics (means and covariance matrix) of
800
800
  a selected historical year range. Pure *stochastic* rates can also be generated
801
801
  if the user provides means, volatility (expressed as standard deviation), and optionally
802
802
  the correlations between the different assets return rates provided as a matrix, or a list of
803
- the off-diagonal elements (see the notebook tutorial for details).
803
+ the off-diagonal elements (see documentation for details).
804
804
  Average rates calculated over a historical data period can also be chosen.
805
805
 
806
- Monte Carlo simulations capabilities are included and provide a probability of success and a histogram of
806
+ Monte Carlo simulations capabilities are included and provide a probability of success and a histogram of
807
807
  outcomes. These simulations can be used for either determining the probability distribution of the
808
808
  maximum net spending amount under
809
809
  the constraint of a desired bequest, or the probability distribution of the maximum
@@ -812,33 +812,36 @@ simulators, Owl uses an optimization algorithm for every new scenario, which res
812
812
  calculations being performed. As a result, the number of cases to be considered should be kept
813
813
  to a reasonable number. For a few hundred cases, a few minutes of calculations can provide very good estimates
814
814
  and reliable probability distributions.
815
- Optimizing each solution is more representative in the sense that optimal solutions
815
+
816
+ Optimizing each solution is more representative than event-base simulators
817
+ in the sense that optimal solutions
816
818
  will naturally adjust to the return scenarios being considered.
817
819
  This is more realistic as retirees would certainly re-evaluate
818
820
  their expectations under severe market drops or gains.
819
- This optimal approach provides a net benefit over event-based simulations,
821
+ This optimal approach provides a net benefit over event-based simulators,
820
822
  which maintain a distribution strategy either fixed, or within guardrails for capturing the
821
- retirees' reactions to the market.
823
+ retirees' reactions to the market.
822
824
 
823
- Basic input parameters are given through function calls while optional additional time series can be read from
825
+ Basic input parameters can be entered through the user interface
826
+ while optional additional time series can be read from
824
827
  an Excel spreadsheet that contains future wages, contributions
825
828
  to savings accounts, and planned *big-ticket items* such as the purchase of a lake house,
826
829
  the sale of a boat, large gifts, or inheritance.
827
830
 
828
831
  Three types of savings accounts are considered: taxable, tax-deferred, and tax-exempt,
829
832
  which are all tracked separately for married individuals. Asset transition to the surviving spouse
830
- is done according to beneficiary fractions for each account type.
833
+ is done according to beneficiary fractions for each type of savings account.
831
834
  Tax status covers married filing jointly and single, depending on the number of individuals reported.
832
835
 
833
- Medicare and IRMAA calculations are performed through a self-consistent loop on cash flow constraints. Future
834
- values are simple projections of current values with the assumed inflation rates.
836
+ Medicare and IRMAA calculations are performed through a self-consistent loop on cash flow constraints.
837
+ Future values are simple projections of current values with the assumed inflation rates.
835
838
 
836
839
  ### Limitations
837
840
  Owl is work in progress. At the current time:
838
841
  - Only the US federal income tax is considered (and minimized through the optimization algorithm).
839
842
  Head of household filing status has not been added but can easily be.
840
843
  - Required minimum distributions are calculated, but tables for spouses more than 10 years apart are not included.
841
- An error message will be generated for these cases.
844
+ These cases are detected and will generate an error message.
842
845
  - Social security rule for surviving spouse assumes that benefits were taken at full retirement age.
843
846
  - Current version has no optimization of asset allocations between individuals and/or types of savings accounts.
844
847
  If there is interest, that could be added in the future.
@@ -847,12 +850,12 @@ If there is interest, that could be added in the future.
847
850
  This means that the Medicare premiums are calculated after an initial solution is generated,
848
851
  and then a new solution is re-generated with these premiums as a constraint.
849
852
  In some situations, when the income (MAGI) is near an IRMAA bracket, oscillatory solutions can arise.
850
- Owl will detect these cases and inform the user.
851
- While the solutions generated are very close to one another, Owl will pick the smallest one
853
+ While the solutions generated are very close to one another, Owl will pick the smallest solution
852
854
  for being conservative.
853
- - Part D is not included in the IRMAA calculations. Being considerably more, only Part B is taken into account.
854
- - Future tax brackets are pure speculations derived from the little we know now and projected to the next 30 years. Your guesses are as good as mine.
855
- Having a knob to adjust future rates might be an interesting feature to add for measuring the impact on Roth conversions.
855
+ - Part D is not included in the IRMAA calculations. Being considerably more significant,
856
+ only Part B is taken into account.
857
+ - Future tax brackets are pure speculations derived from the little we know now and projected to the next 30 years.
858
+ Your guesses are as good as mine.
856
859
 
857
860
  The solution from an optimization algorithm has only two states: feasible and infeasible.
858
861
  Therefore, unlike event-driven simulators that can tell you that your distribution strategy runs
@@ -867,7 +870,7 @@ assets to support, even with no estate being left.
867
870
 
868
871
  - Documentation for the app user interface is available from the interface itself.
869
872
  - Installation guide and software requirements can be found [here](INSTALL.md).
870
- - User guide for the underlying library to be used in a Jupyter notebook can be found [here](USER_GUIDE.md).
873
+ - User guide for the underlying Python package as used in a Jupyter notebook can be found [here](USER_GUIDE.md).
871
874
 
872
875
  ---------------------------------------------------------------------
873
876
 
@@ -876,13 +879,14 @@ assets to support, even with no estate being left.
876
879
  - Image from [freepik](https://freepik.com)
877
880
  - Optimization solver from [HiGHS](https://highs.dev)
878
881
  - Streamlit Community Cloud [Streamlit](https://streamlit.io)
879
- - Other contributors: Josh (noimjosh@gmail.com) for Docker image code
882
+ - Contributors: Josh (noimjosh@gmail.com) for Docker image code
880
883
 
881
884
  ---------------------------------------------------------------------
882
885
 
883
886
  Copyright &copy; 2024 - Martin-D. Lacasse
884
887
 
885
- Disclaimers: I am not a financial planner. You make your own decisions. This program comes with no guarantee. Use at your own risk.
888
+ Disclaimers: I am not a financial planner. You make your own decisions.
889
+ This program comes with no guarantee. Use at your own risk.
886
890
 
887
891
  --------------------------------------------------------
888
892
 
@@ -1,17 +1,17 @@
1
1
  owlplanner/__init__.py,sha256=QqrdT0Qks20osBTg7h0vJHAxpP9lL7DA99xb0nYbtw4,254
2
2
  owlplanner/abcapi.py,sha256=LbzW_KcNy0IeHp42MUHwGu_H67B2h_e1_vu-c2ACTkQ,6646
3
- owlplanner/config.py,sha256=XFVcXFVpEuWXzybaijNGSTt72py3cYJ3oq0S1ujivl0,11702
3
+ owlplanner/config.py,sha256=Yzi_Xivd_EFfuHklIoQ-LNqKCxF2ruc8p-Il_HVgEaw,11817
4
4
  owlplanner/logging.py,sha256=tYMw04O-XYSzjTj36fmKJGLcE1VkK6k6oJNeqtKXzuc,2530
5
- owlplanner/plan.py,sha256=sgQi0TD24Rmk_96M9AnJ72zKKmol0AKoM6CybAAQG1w,113088
5
+ owlplanner/plan.py,sha256=wpCeRSLnnYIEpRAw4MkUXjA5AgNTsuPC4F0Y51zLVuE,113526
6
6
  owlplanner/progress.py,sha256=8jlCvvtgDI89zXVNMBg1-lnEyhpPvKQS2X5oAIpoOVQ,384
7
7
  owlplanner/rates.py,sha256=TN407qU4n-bac1oymkQ_n2QKEPwFQxy6JZVGwgIkLQU,15585
8
- owlplanner/tax2025.py,sha256=PVteko6G9gjAT247GnTzAPUe_RaLnZUArFtdzf1dF3M,7014
8
+ owlplanner/tax2025.py,sha256=B-A5eU3wxdcAaxRCbT3qI-JEKoD_ZeNbg_86XhNdQEI,7745
9
9
  owlplanner/timelists.py,sha256=tYieZU67FT6TCcQQis36JaXGI7dT6NqD7RvdEjgJL4M,4026
10
10
  owlplanner/utils.py,sha256=HM70W60qB41zfnbl2LltNwAuLYHyy5XYbwnbNcaa6FE,2351
11
- owlplanner/version.py,sha256=_MJp2MbS5Atcm2yUx56j3cirNAIGlUxcU_Vuv3WHoV8,28
11
+ owlplanner/version.py,sha256=oJ5YLWQGjCt2MMP18haMf1cu0Tep1Sp6yhXiMqCOdyo,28
12
12
  owlplanner/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
13
13
  owlplanner/data/rates.csv,sha256=6fxg56BVVORrj9wJlUGFdGXKvOX5r7CSca8uhUbbuIU,3734
14
- owlplanner-2025.2.14.dist-info/METADATA,sha256=fEYEzkqBdWcT_Lv_96Ig7uxF7LwzPH0YcJl9NLD8auU,53447
15
- owlplanner-2025.2.14.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
16
- owlplanner-2025.2.14.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
17
- owlplanner-2025.2.14.dist-info/RECORD,,
14
+ owlplanner-2025.2.15.dist-info/METADATA,sha256=Cm3V5cze1lykizvnbTZdnOliJ-cuj8aqknSInq6i4nU,53506
15
+ owlplanner-2025.2.15.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
16
+ owlplanner-2025.2.15.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
17
+ owlplanner-2025.2.15.dist-info/RECORD,,