owlplanner 2025.2.11__py3-none-any.whl → 2025.2.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- owlplanner/config.py +2 -0
- owlplanner/plan.py +14 -4
- owlplanner/tax2025.py +63 -43
- owlplanner/version.py +1 -1
- {owlplanner-2025.2.11.dist-info → owlplanner-2025.2.15.dist-info}/METADATA +52 -242
- {owlplanner-2025.2.11.dist-info → owlplanner-2025.2.15.dist-info}/RECORD +8 -8
- {owlplanner-2025.2.11.dist-info → owlplanner-2025.2.15.dist-info}/WHEEL +0 -0
- {owlplanner-2025.2.11.dist-info → owlplanner-2025.2.15.dist-info}/licenses/LICENSE +0 -0
owlplanner/config.py
CHANGED
|
@@ -64,6 +64,7 @@ def saveConfig(plan, file, mylog):
|
|
|
64
64
|
"Heirs rate on tax-deferred estate": float(100 * plan.nu),
|
|
65
65
|
"Long-term capital gain tax rate": float(100 * plan.psi),
|
|
66
66
|
"Dividend tax rate": float(100 * plan.mu),
|
|
67
|
+
"TCJA expiration year": plan.yTCJA,
|
|
67
68
|
"Method": plan.rateMethod,
|
|
68
69
|
}
|
|
69
70
|
if plan.rateMethod in ["user", "stochastic"]:
|
|
@@ -226,6 +227,7 @@ def readConfig(file, *, verbose=True, logstreams=None, readContributions=True):
|
|
|
226
227
|
p.setDividendRate(float(diconf["Rates Selection"]["Dividend tax rate"]))
|
|
227
228
|
p.setLongTermCapitalTaxRate(float(diconf["Rates Selection"]["Long-term capital gain tax rate"]))
|
|
228
229
|
p.setHeirsTaxRate(float(diconf["Rates Selection"]["Heirs rate on tax-deferred estate"]))
|
|
230
|
+
p.yTCJA = int(diconf["Rates Selection"]["TCJA expiration year"])
|
|
229
231
|
|
|
230
232
|
frm = None
|
|
231
233
|
to = None
|
owlplanner/plan.py
CHANGED
|
@@ -249,7 +249,8 @@ class Plan(object):
|
|
|
249
249
|
assert inames[0] != "" or (self.N_i == 2 and inames[1] == ""), "Name for each individual must be provided."
|
|
250
250
|
|
|
251
251
|
self.filingStatus = ["single", "married"][self.N_i - 1]
|
|
252
|
-
|
|
252
|
+
# Default year TCJA is speculated to expire.
|
|
253
|
+
self.yTCJA = 2026
|
|
253
254
|
self.inames = inames
|
|
254
255
|
self.yobs = np.array(yobs, dtype=np.int32)
|
|
255
256
|
self.expectancy = np.array(expectancy, dtype=np.int32)
|
|
@@ -307,7 +308,8 @@ class Plan(object):
|
|
|
307
308
|
|
|
308
309
|
# Prepare income tax and RMD time series.
|
|
309
310
|
self.rho_in = tx.rho_in(self.yobs, self.N_n)
|
|
310
|
-
self.sigma_n, self.theta_tn, self.Delta_tn = tx.taxParams(self.yobs, self.i_d, self.n_d,
|
|
311
|
+
self.sigma_n, self.theta_tn, self.Delta_tn = tx.taxParams(self.yobs, self.i_d, self.n_d,
|
|
312
|
+
self.N_n, self.yTCJA)
|
|
311
313
|
|
|
312
314
|
# If none was given, default is to begin plan on today's date.
|
|
313
315
|
self._setStartingDate(startDate)
|
|
@@ -443,6 +445,14 @@ class Plan(object):
|
|
|
443
445
|
self.mu = mu
|
|
444
446
|
self.caseStatus = "modified"
|
|
445
447
|
|
|
448
|
+
def setExpirationYearTCJA(self, yTCJA):
|
|
449
|
+
"""
|
|
450
|
+
Set year at which TCJA is speculated to expire.
|
|
451
|
+
"""
|
|
452
|
+
self.mylog.vprint(f"Setting TCJA expiration year to {yTCJA}.")
|
|
453
|
+
self.yTCJA = yTCJA
|
|
454
|
+
self.caseStatus = "modified"
|
|
455
|
+
|
|
446
456
|
def setLongTermCapitalTaxRate(self, psi):
|
|
447
457
|
"""
|
|
448
458
|
Set long-term income tax rate. Rate is in percent. Default 15%.
|
|
@@ -2262,7 +2272,7 @@ class Plan(object):
|
|
|
2262
2272
|
# style = {'net': '-', 'target': ':'}
|
|
2263
2273
|
style = {"profile": "-"}
|
|
2264
2274
|
series = {"profile": self.xi_n}
|
|
2265
|
-
fig, ax = _lineIncomePlot(self.year_n, series, style, title, yformat="xi")
|
|
2275
|
+
fig, ax = _lineIncomePlot(self.year_n, series, style, title, yformat="$\\xi$")
|
|
2266
2276
|
|
|
2267
2277
|
if figure:
|
|
2268
2278
|
return fig
|
|
@@ -2572,7 +2582,7 @@ class Plan(object):
|
|
|
2572
2582
|
|
|
2573
2583
|
fig, ax = _lineIncomePlot(self.year_n, series, style, title, yformat)
|
|
2574
2584
|
|
|
2575
|
-
data = tx.taxBrackets(self.N_i, self.n_d, self.N_n)
|
|
2585
|
+
data = tx.taxBrackets(self.N_i, self.n_d, self.N_n, self.yTCJA)
|
|
2576
2586
|
for key in data:
|
|
2577
2587
|
data_adj = data[key] * infladjust
|
|
2578
2588
|
ax.plot(self.year_n, data_adj, label=key, ls=":")
|
owlplanner/tax2025.py
CHANGED
|
@@ -24,49 +24,62 @@ from datetime import date
|
|
|
24
24
|
|
|
25
25
|
taxBracketNames = ["10%", "12/15%", "22/25%", "24/28%", "32/33%", "35%", "37/40%"]
|
|
26
26
|
|
|
27
|
-
|
|
28
|
-
|
|
27
|
+
rates_TCJA = np.array([0.10, 0.12, 0.22, 0.24, 0.32, 0.35, 0.370])
|
|
28
|
+
rates_nonTCJA = np.array([0.10, 0.15, 0.25, 0.28, 0.33, 0.35, 0.396])
|
|
29
29
|
|
|
30
|
+
###############################################################################
|
|
31
|
+
# Start of section where rates need to be actualized every year.
|
|
32
|
+
###############################################################################
|
|
30
33
|
# Single [0] and married filing jointly [1].
|
|
31
|
-
|
|
34
|
+
|
|
35
|
+
# These are current.
|
|
36
|
+
taxBrackets_TCJA = np.array(
|
|
32
37
|
[
|
|
33
38
|
[11925, 48475, 103350, 197300, 250525, 626350, 9999999],
|
|
34
39
|
[23850, 96950, 206700, 394600, 501050, 751700, 9999999],
|
|
35
40
|
]
|
|
36
41
|
)
|
|
37
42
|
|
|
38
|
-
|
|
43
|
+
irmaaBrackets = np.array(
|
|
39
44
|
[
|
|
40
45
|
[0, 106000, 133000, 167000, 200000, 500000],
|
|
41
46
|
[0, 212000, 266000, 334000, 400000, 750000],
|
|
42
47
|
]
|
|
43
48
|
)
|
|
44
49
|
|
|
45
|
-
#
|
|
50
|
+
# Index [0] stores the standard Medicare part B premium.
|
|
46
51
|
# Following values are incremental IRMAA part B monthly fees.
|
|
47
|
-
|
|
48
|
-
# irmaaFees_2024 = 12 * np.array([174.70, 69.90, 104.80, 104.80, 104.80, 35.00])
|
|
49
|
-
irmaaFees_2025 = 12 * np.array([185.00, 74.00, 111.00, 110.90, 111.00, 37.00])
|
|
52
|
+
irmaaFees = 12 * np.array([185.00, 74.00, 111.00, 110.90, 111.00, 37.00])
|
|
50
53
|
|
|
51
|
-
#
|
|
54
|
+
# Make projection for non-TCJA using 2017 to current year.
|
|
52
55
|
# taxBrackets_2017 = np.array(
|
|
53
56
|
# [ [9325, 37950, 91900, 191650, 416700, 418400, 9999999],
|
|
54
|
-
# [18650, 75900, 153100, 233350, 416700,
|
|
57
|
+
# [18650, 75900, 153100, 233350, 416700, 470700, 9999999],
|
|
55
58
|
# ])
|
|
56
|
-
|
|
57
|
-
|
|
59
|
+
#
|
|
60
|
+
# stdDeduction_2017 = [6350, 12700]
|
|
61
|
+
#
|
|
62
|
+
# For 2025, I used a 30.5% adjustment from 2017, rounded to closest 50.
|
|
63
|
+
#
|
|
64
|
+
# These are speculated.
|
|
65
|
+
taxBrackets_nonTCJA = np.array(
|
|
58
66
|
[
|
|
59
|
-
[
|
|
60
|
-
[
|
|
67
|
+
[12150, 49550, 119950, 250200, 544000, 546200, 9999999],
|
|
68
|
+
[24350, 99100, 199850, 304600, 543950, 614450, 9999999],
|
|
61
69
|
]
|
|
62
70
|
)
|
|
63
71
|
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
72
|
+
# These are current.
|
|
73
|
+
stdDeduction_TCJA = np.array([15000, 30000])
|
|
74
|
+
# These are speculated.
|
|
75
|
+
stdDeduction_nonTCJA = np.array([8300, 16600])
|
|
67
76
|
|
|
77
|
+
# These are current.
|
|
78
|
+
extra65Deduction = np.array([2000, 1600])
|
|
68
79
|
|
|
69
|
-
|
|
80
|
+
###############################################################################
|
|
81
|
+
# End of section where rates need to be actualized every year.
|
|
82
|
+
###############################################################################
|
|
70
83
|
|
|
71
84
|
|
|
72
85
|
def mediCosts(yobs, horizons, magi, prevmagi, gamma_n, Nn):
|
|
@@ -80,21 +93,25 @@ def mediCosts(yobs, horizons, magi, prevmagi, gamma_n, Nn):
|
|
|
80
93
|
for i in range(Ni):
|
|
81
94
|
if thisyear + n - yobs[i] >= 65 and n < horizons[i]:
|
|
82
95
|
# Start with the (indexed) basic Medicare part B premium.
|
|
83
|
-
costs[n] += gamma_n[n] *
|
|
96
|
+
costs[n] += gamma_n[n] * irmaaFees[0]
|
|
84
97
|
if n < 2:
|
|
85
98
|
mymagi = prevmagi[n]
|
|
86
99
|
else:
|
|
87
100
|
mymagi = magi[n - 2]
|
|
88
101
|
for q in range(1, 6):
|
|
89
|
-
if mymagi > gamma_n[n] *
|
|
90
|
-
costs[n] += gamma_n[n] *
|
|
102
|
+
if mymagi > gamma_n[n] * irmaaBrackets[Ni - 1][q]:
|
|
103
|
+
costs[n] += gamma_n[n] * irmaaFees[q]
|
|
91
104
|
|
|
92
105
|
return costs
|
|
93
106
|
|
|
94
107
|
|
|
95
|
-
def taxParams(yobs, i_d, n_d, N_n):
|
|
108
|
+
def taxParams(yobs, i_d, n_d, N_n, y_TCJA=2026):
|
|
96
109
|
"""
|
|
97
|
-
|
|
110
|
+
Input is year of birth, index of shortest-lived individual,
|
|
111
|
+
lifespan of shortest-lived individual, total number of years
|
|
112
|
+
in the plan, and the year that TCJA might expire.
|
|
113
|
+
|
|
114
|
+
It returns 3 time series:
|
|
98
115
|
1) Standard deductions at year n (sigma_n).
|
|
99
116
|
2) Tax rate in year n (theta_tn)
|
|
100
117
|
3) Delta from top to bottom of tax brackets (Delta_tn)
|
|
@@ -102,12 +119,12 @@ def taxParams(yobs, i_d, n_d, N_n):
|
|
|
102
119
|
Returned values are not indexed for inflation.
|
|
103
120
|
"""
|
|
104
121
|
# Compute the deltas in-place between brackets, starting from the end.
|
|
105
|
-
|
|
106
|
-
|
|
122
|
+
deltaBrackets_TCJA = np.array(taxBrackets_TCJA)
|
|
123
|
+
deltaBrackets_nonTCJA = np.array(taxBrackets_nonTCJA)
|
|
107
124
|
for t in range(6, 0, -1):
|
|
108
125
|
for i in range(2):
|
|
109
|
-
|
|
110
|
-
|
|
126
|
+
deltaBrackets_TCJA[i, t] -= deltaBrackets_TCJA[i, t - 1]
|
|
127
|
+
deltaBrackets_nonTCJA[i, t] -= deltaBrackets_nonTCJA[i, t - 1]
|
|
111
128
|
|
|
112
129
|
# Prepare the 3 arrays to return - use transpose for easy slicing.
|
|
113
130
|
sigma = np.zeros((N_n))
|
|
@@ -124,23 +141,23 @@ def taxParams(yobs, i_d, n_d, N_n):
|
|
|
124
141
|
souls.remove(i_d)
|
|
125
142
|
filingStatus -= 1
|
|
126
143
|
|
|
127
|
-
if thisyear + n <
|
|
128
|
-
sigma[n] =
|
|
129
|
-
Delta[n, :] =
|
|
144
|
+
if thisyear + n < y_TCJA:
|
|
145
|
+
sigma[n] = stdDeduction_TCJA[filingStatus]
|
|
146
|
+
Delta[n, :] = deltaBrackets_TCJA[filingStatus, :]
|
|
130
147
|
else:
|
|
131
|
-
sigma[n] =
|
|
132
|
-
Delta[n, :] =
|
|
148
|
+
sigma[n] = stdDeduction_nonTCJA[filingStatus]
|
|
149
|
+
Delta[n, :] = deltaBrackets_nonTCJA[filingStatus, :]
|
|
133
150
|
|
|
134
151
|
# Add 65+ additional exemption(s).
|
|
135
152
|
for i in souls:
|
|
136
153
|
if thisyear + n - yobs[i] >= 65:
|
|
137
|
-
sigma[n] +=
|
|
154
|
+
sigma[n] += extra65Deduction[filingStatus]
|
|
138
155
|
|
|
139
156
|
# Fill in future tax rates for year n.
|
|
140
|
-
if thisyear + n <
|
|
141
|
-
theta[n, :] =
|
|
157
|
+
if thisyear + n < y_TCJA:
|
|
158
|
+
theta[n, :] = rates_TCJA[:]
|
|
142
159
|
else:
|
|
143
|
-
theta[n, :] =
|
|
160
|
+
theta[n, :] = rates_nonTCJA[:]
|
|
144
161
|
|
|
145
162
|
Delta = Delta.transpose()
|
|
146
163
|
theta = theta.transpose()
|
|
@@ -149,23 +166,26 @@ def taxParams(yobs, i_d, n_d, N_n):
|
|
|
149
166
|
return sigma, theta, Delta
|
|
150
167
|
|
|
151
168
|
|
|
152
|
-
def taxBrackets(N_i, n_d, N_n):
|
|
169
|
+
def taxBrackets(N_i, n_d, N_n, y_TCJA):
|
|
153
170
|
"""
|
|
154
171
|
Return dictionary containing future tax brackets
|
|
155
172
|
unadjusted for inflation for plotting.
|
|
156
173
|
"""
|
|
157
174
|
assert 0 < N_i and N_i <= 2, f"Cannot process {N_i} individuals."
|
|
158
|
-
# This 1 is the number of years left in TCJA from 2025.
|
|
159
|
-
ytc = 1
|
|
160
|
-
status = N_i - 1
|
|
161
175
|
n_d = min(n_d, N_n)
|
|
176
|
+
status = N_i - 1
|
|
177
|
+
|
|
178
|
+
# Number of years left in TCJA from this year.
|
|
179
|
+
thisyear = date.today().year
|
|
180
|
+
ytc = y_TCJA - thisyear
|
|
162
181
|
|
|
163
182
|
data = {}
|
|
164
183
|
for t in range(len(taxBracketNames) - 1):
|
|
165
184
|
array = np.zeros(N_n)
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
185
|
+
for n in range(N_n):
|
|
186
|
+
stat = status if n < n_d else 0
|
|
187
|
+
array[n] = taxBrackets_TCJA[stat][t] if n < ytc else taxBrackets_nonTCJA[stat][t]
|
|
188
|
+
|
|
169
189
|
data[taxBracketNames[t]] = array
|
|
170
190
|
|
|
171
191
|
return data
|
owlplanner/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "2025.02.
|
|
1
|
+
__version__ = "2025.02.15"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: owlplanner
|
|
3
|
-
Version: 2025.2.
|
|
3
|
+
Version: 2025.2.15
|
|
4
4
|
Summary: Owl: Retirement planner with great wisdom
|
|
5
5
|
Project-URL: HomePage, https://github.com/mdlacasse/owl
|
|
6
6
|
Project-URL: Repository, https://github.com/mdlacasse/owl
|
|
@@ -708,15 +708,21 @@ Description-Content-Type: text/markdown
|
|
|
708
708
|
|
|
709
709
|
<img align=right src="https://raw.github.com/mdlacasse/Owl/main/docs/images/owl.png" width="250">
|
|
710
710
|
|
|
711
|
-
|
|
711
|
+
-------------------------------------------------------------------------------------
|
|
712
|
+
|
|
713
|
+
### TL;DR
|
|
714
|
+
Owl is a planning tool that uses a linear programming optimization algorithm to provide guidance on retirement decisions. There are a few ways to run Owl.
|
|
712
715
|
|
|
713
|
-
|
|
714
|
-
Owl is a planning tool that uses a linear programming optimization algorithm to provide guidance on retirement decisions.
|
|
716
|
+
- Run Owl directly on the Streamlit Community Server at [owlplanner.streamlit.app](https://owlplanner.streamlit.app).
|
|
715
717
|
|
|
716
|
-
|
|
718
|
+
- Run locally on your computer using a Docker image.
|
|
719
|
+
Follow these [instructions](docker/README.md) for this option.
|
|
717
720
|
|
|
718
|
-
|
|
721
|
+
- Run locally on your computer using Python code and libraries.
|
|
722
|
+
Follow these [instructions](INSTALL.md) to install Owl from the source code and run it on your computer.
|
|
719
723
|
|
|
724
|
+
-------------------------------------------------------------------------------------
|
|
725
|
+
## Overview
|
|
720
726
|
This package is a retirement modeling framework for exploring the sensitivity of retirement financial decisions.
|
|
721
727
|
Strictly speaking, it is not a planning tool, but more an environment for exploring *what if* scenarios.
|
|
722
728
|
It provides different realizations of a financial strategy through the rigorous
|
|
@@ -750,21 +756,21 @@ The algorithms in Owl rely on the open-source HiGHS linear programming solver. T
|
|
|
750
756
|
detailed description of the underlying
|
|
751
757
|
mathematical model can be found [here](https://raw.github.com/mdlacasse/Owl/main/docs/owl.pdf).
|
|
752
758
|
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
|
|
756
|
-
|
|
757
|
-
|
|
759
|
+
It is anticipated that most end users will use Owl through the graphical interface
|
|
760
|
+
either at [owlplanner.streamlit.app](https://owlplanner.streamlit.app)
|
|
761
|
+
or [installed](INSTALL.md) on their own computer.
|
|
762
|
+
The underlying Python package can also be used directly through Python scripts or a Jupyter Notebook
|
|
763
|
+
as described [here](USER_GUIDE.md).
|
|
758
764
|
|
|
759
765
|
Not every retirement decision strategy can be framed as an easy-to-solve optimization problem.
|
|
760
766
|
In particular, if one is interested in comparing different withdrawal strategies,
|
|
761
|
-
[FI Calc](ficalc.app) is
|
|
767
|
+
[FI Calc](ficalc.app) is an elegant application that addresses this need.
|
|
762
768
|
If, however, you also want to optimize spending, bequest, and Roth conversions, with
|
|
763
769
|
an approach also considering Medicare and federal income tax over the next few years,
|
|
764
770
|
then Owl is definitely a tool that can help guide your decisions.
|
|
765
771
|
|
|
766
772
|
--------------------------------------------------------------------------------------
|
|
767
|
-
##
|
|
773
|
+
## Capabilities
|
|
768
774
|
Owl can optimize for either maximum net spending under the constraint of a given bequest (which can be zero),
|
|
769
775
|
or maximize the after-tax value of a bequest under the constraint of a desired net spending profile,
|
|
770
776
|
and under the assumption of a heirs marginal tax rate.
|
|
@@ -783,7 +789,7 @@ Other asset classes can easily be added, but would add complexity while only pro
|
|
|
783
789
|
Historical data used are from
|
|
784
790
|
[Aswath Damodaran](https://pages.stern.nyu.edu/~adamodar/) at the Stern School of Business.
|
|
785
791
|
Asset allocations are selected for the duration of the plan, and these can glide linearly
|
|
786
|
-
or along a configurable s-curve
|
|
792
|
+
or along a configurable s-curve over the lifespan of the individual.
|
|
787
793
|
|
|
788
794
|
Spending profiles are adjusted for inflation, and so are all other indexable quantities. Proflies can be
|
|
789
795
|
flat or follow a *smile* curve which is also adjustable through two simple parameters.
|
|
@@ -794,10 +800,10 @@ the statistical characteristics (means and covariance matrix) of
|
|
|
794
800
|
a selected historical year range. Pure *stochastic* rates can also be generated
|
|
795
801
|
if the user provides means, volatility (expressed as standard deviation), and optionally
|
|
796
802
|
the correlations between the different assets return rates provided as a matrix, or a list of
|
|
797
|
-
the off-diagonal elements (see
|
|
803
|
+
the off-diagonal elements (see documentation for details).
|
|
798
804
|
Average rates calculated over a historical data period can also be chosen.
|
|
799
805
|
|
|
800
|
-
Monte Carlo simulations capabilities are included
|
|
806
|
+
Monte Carlo simulations capabilities are included and provide a probability of success and a histogram of
|
|
801
807
|
outcomes. These simulations can be used for either determining the probability distribution of the
|
|
802
808
|
maximum net spending amount under
|
|
803
809
|
the constraint of a desired bequest, or the probability distribution of the maximum
|
|
@@ -805,32 +811,37 @@ bequest under the constraint of a desired net spending amount. Unlike discrete-e
|
|
|
805
811
|
simulators, Owl uses an optimization algorithm for every new scenario, which results in more
|
|
806
812
|
calculations being performed. As a result, the number of cases to be considered should be kept
|
|
807
813
|
to a reasonable number. For a few hundred cases, a few minutes of calculations can provide very good estimates
|
|
808
|
-
and reliable probability distributions.
|
|
809
|
-
|
|
810
|
-
|
|
814
|
+
and reliable probability distributions.
|
|
815
|
+
|
|
816
|
+
Optimizing each solution is more representative than event-base simulators
|
|
817
|
+
in the sense that optimal solutions
|
|
818
|
+
will naturally adjust to the return scenarios being considered.
|
|
819
|
+
This is more realistic as retirees would certainly re-evaluate
|
|
820
|
+
their expectations under severe market drops or gains.
|
|
821
|
+
This optimal approach provides a net benefit over event-based simulators,
|
|
811
822
|
which maintain a distribution strategy either fixed, or within guardrails for capturing the
|
|
812
|
-
|
|
823
|
+
retirees' reactions to the market.
|
|
813
824
|
|
|
814
|
-
Basic input parameters
|
|
825
|
+
Basic input parameters can be entered through the user interface
|
|
826
|
+
while optional additional time series can be read from
|
|
815
827
|
an Excel spreadsheet that contains future wages, contributions
|
|
816
|
-
to savings accounts, and planned *big-ticket items* such as the purchase of a lake house,
|
|
817
|
-
large gifts, or inheritance.
|
|
828
|
+
to savings accounts, and planned *big-ticket items* such as the purchase of a lake house,
|
|
829
|
+
the sale of a boat, large gifts, or inheritance.
|
|
818
830
|
|
|
819
831
|
Three types of savings accounts are considered: taxable, tax-deferred, and tax-exempt,
|
|
820
832
|
which are all tracked separately for married individuals. Asset transition to the surviving spouse
|
|
821
|
-
is done according to beneficiary fractions for each account
|
|
833
|
+
is done according to beneficiary fractions for each type of savings account.
|
|
822
834
|
Tax status covers married filing jointly and single, depending on the number of individuals reported.
|
|
823
835
|
|
|
824
|
-
Medicare and IRMAA calculations are performed through a self-consistent loop on cash flow constraints.
|
|
825
|
-
values are simple projections of current values with the assumed inflation rates.
|
|
826
|
-
|
|
827
|
-
See one of the notebooks for a tutorial and representative user cases.
|
|
836
|
+
Medicare and IRMAA calculations are performed through a self-consistent loop on cash flow constraints.
|
|
837
|
+
Future values are simple projections of current values with the assumed inflation rates.
|
|
828
838
|
|
|
829
839
|
### Limitations
|
|
830
840
|
Owl is work in progress. At the current time:
|
|
831
841
|
- Only the US federal income tax is considered (and minimized through the optimization algorithm).
|
|
832
842
|
Head of household filing status has not been added but can easily be.
|
|
833
|
-
- Required minimum distributions are calculated, but tables for spouses more than 10 years apart are not included.
|
|
843
|
+
- Required minimum distributions are calculated, but tables for spouses more than 10 years apart are not included.
|
|
844
|
+
These cases are detected and will generate an error message.
|
|
834
845
|
- Social security rule for surviving spouse assumes that benefits were taken at full retirement age.
|
|
835
846
|
- Current version has no optimization of asset allocations between individuals and/or types of savings accounts.
|
|
836
847
|
If there is interest, that could be added in the future.
|
|
@@ -839,12 +850,12 @@ If there is interest, that could be added in the future.
|
|
|
839
850
|
This means that the Medicare premiums are calculated after an initial solution is generated,
|
|
840
851
|
and then a new solution is re-generated with these premiums as a constraint.
|
|
841
852
|
In some situations, when the income (MAGI) is near an IRMAA bracket, oscillatory solutions can arise.
|
|
842
|
-
|
|
843
|
-
While the solutions generated are very close to one another, Owl will pick the smallest one
|
|
853
|
+
While the solutions generated are very close to one another, Owl will pick the smallest solution
|
|
844
854
|
for being conservative.
|
|
845
|
-
- Part D is not included in the IRMAA calculations. Being considerably more,
|
|
846
|
-
|
|
847
|
-
|
|
855
|
+
- Part D is not included in the IRMAA calculations. Being considerably more significant,
|
|
856
|
+
only Part B is taken into account.
|
|
857
|
+
- Future tax brackets are pure speculations derived from the little we know now and projected to the next 30 years.
|
|
858
|
+
Your guesses are as good as mine.
|
|
848
859
|
|
|
849
860
|
The solution from an optimization algorithm has only two states: feasible and infeasible.
|
|
850
861
|
Therefore, unlike event-driven simulators that can tell you that your distribution strategy runs
|
|
@@ -854,215 +865,12 @@ estate value too large for the savings assets to support, even with zero net spe
|
|
|
854
865
|
or maximizing the bequest subject to a net spending basis that is already too large for the savings
|
|
855
866
|
assets to support, even with no estate being left.
|
|
856
867
|
|
|
857
|
-
-----------------------------------------------------------------------
|
|
858
|
-
## An example of Owl's functionality
|
|
859
|
-
With about 10 lines of Python code, one can generate a full case study.
|
|
860
|
-
Here is a typical plan with some comments.
|
|
861
|
-
A plan starts with the names of the individuals, their birth years and life expectancies, and a name for the plan.
|
|
862
|
-
Dollar amounts are in k\$ (i.e. thousands) and ratios in percentage.
|
|
863
|
-
```python
|
|
864
|
-
import owlplanner as owl
|
|
865
|
-
# Jack was born in 1962 and expects to live to age 89. Jill was born in 1965 and hopes to live to age 92.
|
|
866
|
-
# Plan starts on Jan 1st of this year.
|
|
867
|
-
plan = owl.Plan(['Jack', 'Jill'], [1962, 1965], [89, 92], 'jack & jill - tutorial', startDate='01-01')
|
|
868
|
-
# Jack has $90.5k in a taxable investment account, $600.5k in a tax-deferred account and $70k from 2 tax-exempt accounts.
|
|
869
|
-
# Jill has $60.2k in her taxable account, $150k in a 403b, and $40k in a Roth IRA.
|
|
870
|
-
plan.setAccountBalances(taxable=[90.5, 60.2], taxDeferred=[600.5, 150], taxFree=[50.6 + 20, 40.8])
|
|
871
|
-
# An Excel file contains 2 tabs (one for Jill, one for Jack) describing anticipated wages and contributions.
|
|
872
|
-
plan.readContributions('jack+jill.xlsx')
|
|
873
|
-
# Jack will glide an s-curve for asset allocations from a 60/40 -> 70/30 stocks/bonds portfolio.
|
|
874
|
-
# Jill will do the same thing but is a bit more conservative from 50/50 -> 70/30 stocks/bonds portfolio.
|
|
875
|
-
plan.setInterpolationMethod('s-curve')
|
|
876
|
-
plan.setAllocationRatios('individual', generic=[[[60, 40, 0, 0], [70, 30, 0, 0]], [[50, 50, 0, 0], [70, 30, 0, 0]]])
|
|
877
|
-
# Jack has no pension, but Jill will receive $10k per year at 65 yo.
|
|
878
|
-
plan.setPension([0, 10.5], [65, 65])
|
|
879
|
-
# Jack anticipates receiving social security of $28.4k at age 70, and Jill $19.7k at age 62. All values are in today's $.
|
|
880
|
-
plan.setSocialSecurity([28.4, 19.7], [70, 62])
|
|
881
|
-
# Instead of a 'flat' profile, we select a 'smile' spending profile, with 60% needs for the survivor.
|
|
882
|
-
plan.setSpendingProfile('smile', 60)
|
|
883
|
-
# We will reproduce the historical sequence of returns starting in year 1969.
|
|
884
|
-
plan.setRates('historical', 1969)
|
|
885
|
-
# Jack and Jill want to leave a bequest of $500k, and limit Roth conversions to $100k per year.
|
|
886
|
-
# Jill's 403b plan does not support in-plan Roth conversions.
|
|
887
|
-
# We solve for the maximum net spending profile under these constraints.
|
|
888
|
-
plan.solve('maxSpending', options={'maxRothConversion': 100, 'bequest': 500, 'noRothConversions': 'Jill'})
|
|
889
|
-
```
|
|
890
|
-
The output can be seen using the following commands that display various plots of the decision variables in time.
|
|
891
|
-
```python
|
|
892
|
-
plan.showNetSpending()
|
|
893
|
-
plan.showGrossIncome()
|
|
894
|
-
plan.showTaxes()
|
|
895
|
-
plan.showSources()
|
|
896
|
-
plan.showAccounts()
|
|
897
|
-
plan.showAssetDistribution()
|
|
898
|
-
...
|
|
899
|
-
```
|
|
900
|
-
By default, all these plots are in nominal dollars. To get values in today's $, a call to
|
|
901
|
-
```python
|
|
902
|
-
plan.setDefaultPlots('today')
|
|
903
|
-
```
|
|
904
|
-
would change all graphs to report in today's dollars. Each plot can also override the default by setting the `value`
|
|
905
|
-
parameters to either *nominal* or *today*, such as in the following example, which shows the taxable ordinary
|
|
906
|
-
income over the duration of the plan,
|
|
907
|
-
along with inflation-adjusted extrapolated tax brackets. Notice how the optimized income is surfing
|
|
908
|
-
the boundaries of tax brackets.
|
|
909
|
-
```python
|
|
910
|
-
plan.showGrossIncome(value='nominal')
|
|
911
|
-
```
|
|
912
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/taxIncomePlot.png" width="75%">
|
|
913
|
-
|
|
914
|
-
The optimal spending profile is shown in the next plot (in today's dollars). Notice the drop
|
|
915
|
-
(recall we selected 60% survivor needs) at the passing of the first spouse.
|
|
916
|
-
```python
|
|
917
|
-
plan.showProfile('today')
|
|
918
|
-
```
|
|
919
|
-
|
|
920
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/spendingPlot.png" width="75%">
|
|
921
|
-
|
|
922
|
-
The following plot shows the account balances in nominal value for all savings accounts owned by Jack and Jill.
|
|
923
|
-
It was generated using
|
|
924
|
-
```python
|
|
925
|
-
plan.showAccounts(value='nominal')
|
|
926
|
-
```
|
|
927
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/savingsPlot.png" width="75%">
|
|
928
|
-
|
|
929
|
-
while this plot shows the complex cash flow from all sources, which was generated with
|
|
930
|
-
```python
|
|
931
|
-
plan.showSources(value='nominal')
|
|
932
|
-
```
|
|
933
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/sourcesPlot.png" width="75%">
|
|
934
|
-
|
|
935
|
-
For taxes, the following call will display Medicare premiums (including Part B IRMAA fees) and federal income tax
|
|
936
|
-
```python
|
|
937
|
-
plan.showTaxes(value='nominal')
|
|
938
|
-
```
|
|
939
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/taxesPlot.png" width="75%">
|
|
940
|
-
|
|
941
|
-
For the case at hand, recall that asset allocations were selected above through
|
|
942
|
-
|
|
943
|
-
```python
|
|
944
|
-
plan.setAllocationRatios('individual', generic=[[[60, 40, 0, 0], [70, 30, 0, 0]], [[50, 50, 0, 0], [70, 30, 0, 0]]])
|
|
945
|
-
```
|
|
946
|
-
gliding from a 60%/40% stocks/bonds portfolio to 70%/30% for Jack, and 50%/50% -> 70%/30% for Jill.
|
|
947
|
-
Assets distribution in all accounts in today's $ over time can be displayed from
|
|
948
|
-
```python
|
|
949
|
-
plan.showAssetDistribution(value='today')
|
|
950
|
-
```
|
|
951
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/AD-taxable.png" width="75%">
|
|
952
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/AD-taxDef.png" width="75%">
|
|
953
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/AD-taxFree.png" width="75%">
|
|
954
|
-
|
|
955
|
-
These plots are irregular because we used historical rates from 1969. The volatility of
|
|
956
|
-
the rates offers Roth conversion benefits which are exploited by the optimizer.
|
|
957
|
-
The rates used can be displayed by:
|
|
958
|
-
```python
|
|
959
|
-
plan.showRates()
|
|
960
|
-
```
|
|
961
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/ratesPlot.png" width="75%">
|
|
962
|
-
|
|
963
|
-
Values between brackets <> are the average values and volatility over the selected period.
|
|
964
|
-
|
|
965
|
-
For the statisticians, rates distributions and correlations between them can be shown using:
|
|
966
|
-
```python
|
|
967
|
-
plan.showRatesCorrelations()
|
|
968
|
-
```
|
|
969
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/ratesCorrelations.png" width="75%">
|
|
970
|
-
|
|
971
|
-
A short text summary of the outcome of the optimization can be displayed through using:
|
|
972
|
-
```python
|
|
973
|
-
plan.summary()
|
|
974
|
-
```
|
|
975
|
-
The output of the last command reports that if future rates are exactly like those observed
|
|
976
|
-
starting from 1969 and the following years, Jack and Jill could afford an annual spending of
|
|
977
|
-
\\$97k starting this year
|
|
978
|
-
(with a basis of \\$88.8k - the basis multiplies the profile which can vary over the course of the plan).
|
|
979
|
-
The summary also contains some details:
|
|
980
|
-
```
|
|
981
|
-
SUMMARY ================================================================
|
|
982
|
-
Net yearly spending basis in 2025$: $91,812
|
|
983
|
-
Net yearly spending for year 2025: $100,448
|
|
984
|
-
Net spending remaining in year 2025: $100,448
|
|
985
|
-
Total net spending in 2025$: $2,809,453 ($7,757,092 nominal)
|
|
986
|
-
Total Roth conversions in 2025$: $320,639 ($456,454 nominal)
|
|
987
|
-
Total income tax paid on ordinary income in 2025$: $247,788 ($469,522 nominal)
|
|
988
|
-
Total tax paid on gains and dividends in 2025$: $3,313 ($3,768 nominal)
|
|
989
|
-
Total Medicare premiums paid in 2025$: $117,660 ($343,388 nominal)
|
|
990
|
-
Spousal wealth transfer from Jack to Jill in year 2051 (nominal): taxable: $0 tax-def: $57,224 tax-free: $2,102,173
|
|
991
|
-
Sum of spousal bequests to Jill in year 2051 in 2025$: $499,341 ($2,159,397 nominal)
|
|
992
|
-
Post-tax non-spousal bequests from Jack in year 2051 (nominal): taxable: $0 tax-def: $0 tax-free: $0
|
|
993
|
-
Sum of post-tax non-spousal bequests from Jack in year 2051 in 2025$: $0 ($0 nominal)
|
|
994
|
-
Post-tax account values at the end of final plan year 2057 (nominal): taxable: $0 tax-def: $0 tax-free: $2,488,808
|
|
995
|
-
Total estate value at the end of final plan year 2057 in 2025$: $500,000 ($2,488,808 nominal)
|
|
996
|
-
Plan starting date: 01-01
|
|
997
|
-
Cumulative inflation factor from start date to end of plan: 4.98
|
|
998
|
-
Jack's 27-year life horizon: 2025 -> 2051
|
|
999
|
-
Jill's 33-year life horizon: 2025 -> 2057
|
|
1000
|
-
Plan name: jack & jill - tutorial
|
|
1001
|
-
Number of decision variables: 996
|
|
1002
|
-
Number of constraints: 867
|
|
1003
|
-
Case executed on: 2025-02-04 at 22:55:03
|
|
1004
|
-
------------------------------------------------------------------------
|
|
1005
|
-
```
|
|
1006
|
-
And an Excel workbook can be saved with all the detailed amounts over the years by using the following command:
|
|
1007
|
-
```python
|
|
1008
|
-
plan.saveWorkbook(overwrite=True)
|
|
1009
|
-
```
|
|
1010
|
-
For Monte Carlo simulations, the mean return rates, their volatility and covariance are specified
|
|
1011
|
-
and used to generate random scenarios. A histogram of outcomes is generated such as this one for Jack and Jill, which was generated
|
|
1012
|
-
by selecting *stochastic* rates and using
|
|
1013
|
-
```
|
|
1014
|
-
plan.runMC('maxSpending', ...)
|
|
1015
|
-
```
|
|
1016
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/MC-tutorial2a.png" width="75%">
|
|
1017
|
-
|
|
1018
|
-
Similarly, the next one was generated using
|
|
1019
|
-
```
|
|
1020
|
-
plan.runMC('maxBequest', ...)
|
|
1021
|
-
```
|
|
1022
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/MC-tutorial2b.png" width="75%">
|
|
1023
|
-
|
|
1024
|
-
|
|
1025
|
-
See tutorial notebooks [1](https://github.com/mdlacasse/Owl/blob/main/notebooks/tutorial_1.ipynb),
|
|
1026
|
-
[2](https://github.com/mdlacasse/Owl/blob/main/notebooks/tutorial_2.ipynb), and
|
|
1027
|
-
[3](https://github.com/mdlacasse/Owl/blob/main/notebooks/tutorial_3.ipynb) for more info.
|
|
1028
|
-
|
|
1029
|
-
|
|
1030
868
|
---------------------------------------------------------------
|
|
1031
|
-
##
|
|
1032
|
-
|
|
1033
|
-
If you have Python already installed on your computer, Owl can be installed as a package using the following commands:
|
|
1034
|
-
```shell
|
|
1035
|
-
python -m build
|
|
1036
|
-
pip install .
|
|
1037
|
-
```
|
|
1038
|
-
These commands need to run from the Owl directory where you downloaded Owl from GitHub either through git or a zip file.
|
|
1039
|
-
Pip will install all the required dependencies.
|
|
869
|
+
## Documentation
|
|
1040
870
|
|
|
1041
|
-
|
|
1042
|
-
|
|
1043
|
-
|
|
1044
|
-
will be installed by pip.
|
|
1045
|
-
|
|
1046
|
-
The simplest way to get started with Owl is to use the `streamlit` browser-based user interface
|
|
1047
|
-
that is started by the `owlplanner.cmd` script, which will start a user interface on your own browser.
|
|
1048
|
-
Here is a screenshot of one of the multiple tabs of the interface:
|
|
1049
|
-
|
|
1050
|
-
<img src="https://raw.github.com/mdlacasse/Owl/main/docs/images/OwlUI.png" width="100%">
|
|
1051
|
-
|
|
1052
|
-
Alternatively, one can prefer using Owl from Jupyter notebooks. For that purpose, the `examples` directory
|
|
1053
|
-
contains many files as a tutorial. The Jupyter Notebook interface is a browser-based application for authoring documents that combines live-code with narrative text, equations and visualizations.
|
|
1054
|
-
Jupyter will run in your default web browser, from your computer to your browser, and therefore no data is ever transferred on the Internet
|
|
1055
|
-
(your computer, i.e., `localhost`, is the server).
|
|
1056
|
-
|
|
1057
|
-
For simulating your own realizations, use the files beginning with the word *template*.
|
|
1058
|
-
Make a copy and rename them with your own names while keeping the same extension.
|
|
1059
|
-
Then you'll be able to personalize a case with your own numbers and start experimenting with Owl.
|
|
1060
|
-
Notebooks with detailed explanations can be found in
|
|
1061
|
-
[tutorial_1](https://github.com/mdlacasse/Owl/blob/main/examples/tutorial_1.ipynb),
|
|
1062
|
-
[tutorial_2](https://github.com/mdlacasse/Owl/blob/main/examples/tutorial_1.ipynb), and
|
|
1063
|
-
[tutorial_3](https://github.com/mdlacasse/Owl/blob/main/examples/tutorial_2.ipynb).
|
|
1064
|
-
|
|
1065
|
-
Finally, you will also need the capability to read and edit Excel files. One can have an Excel license, or use the LibreOffice free alternative. You can also use Google docs.
|
|
871
|
+
- Documentation for the app user interface is available from the interface itself.
|
|
872
|
+
- Installation guide and software requirements can be found [here](INSTALL.md).
|
|
873
|
+
- User guide for the underlying Python package as used in a Jupyter notebook can be found [here](USER_GUIDE.md).
|
|
1066
874
|
|
|
1067
875
|
---------------------------------------------------------------------
|
|
1068
876
|
|
|
@@ -1071,12 +879,14 @@ Finally, you will also need the capability to read and edit Excel files. One can
|
|
|
1071
879
|
- Image from [freepik](https://freepik.com)
|
|
1072
880
|
- Optimization solver from [HiGHS](https://highs.dev)
|
|
1073
881
|
- Streamlit Community Cloud [Streamlit](https://streamlit.io)
|
|
882
|
+
- Contributors: Josh (noimjosh@gmail.com) for Docker image code
|
|
1074
883
|
|
|
1075
884
|
---------------------------------------------------------------------
|
|
1076
885
|
|
|
1077
886
|
Copyright © 2024 - Martin-D. Lacasse
|
|
1078
887
|
|
|
1079
|
-
Disclaimers: I am not a financial planner. You make your own decisions.
|
|
888
|
+
Disclaimers: I am not a financial planner. You make your own decisions.
|
|
889
|
+
This program comes with no guarantee. Use at your own risk.
|
|
1080
890
|
|
|
1081
891
|
--------------------------------------------------------
|
|
1082
892
|
|
|
@@ -1,17 +1,17 @@
|
|
|
1
1
|
owlplanner/__init__.py,sha256=QqrdT0Qks20osBTg7h0vJHAxpP9lL7DA99xb0nYbtw4,254
|
|
2
2
|
owlplanner/abcapi.py,sha256=LbzW_KcNy0IeHp42MUHwGu_H67B2h_e1_vu-c2ACTkQ,6646
|
|
3
|
-
owlplanner/config.py,sha256=
|
|
3
|
+
owlplanner/config.py,sha256=Yzi_Xivd_EFfuHklIoQ-LNqKCxF2ruc8p-Il_HVgEaw,11817
|
|
4
4
|
owlplanner/logging.py,sha256=tYMw04O-XYSzjTj36fmKJGLcE1VkK6k6oJNeqtKXzuc,2530
|
|
5
|
-
owlplanner/plan.py,sha256=
|
|
5
|
+
owlplanner/plan.py,sha256=wpCeRSLnnYIEpRAw4MkUXjA5AgNTsuPC4F0Y51zLVuE,113526
|
|
6
6
|
owlplanner/progress.py,sha256=8jlCvvtgDI89zXVNMBg1-lnEyhpPvKQS2X5oAIpoOVQ,384
|
|
7
7
|
owlplanner/rates.py,sha256=TN407qU4n-bac1oymkQ_n2QKEPwFQxy6JZVGwgIkLQU,15585
|
|
8
|
-
owlplanner/tax2025.py,sha256=
|
|
8
|
+
owlplanner/tax2025.py,sha256=B-A5eU3wxdcAaxRCbT3qI-JEKoD_ZeNbg_86XhNdQEI,7745
|
|
9
9
|
owlplanner/timelists.py,sha256=tYieZU67FT6TCcQQis36JaXGI7dT6NqD7RvdEjgJL4M,4026
|
|
10
10
|
owlplanner/utils.py,sha256=HM70W60qB41zfnbl2LltNwAuLYHyy5XYbwnbNcaa6FE,2351
|
|
11
|
-
owlplanner/version.py,sha256=
|
|
11
|
+
owlplanner/version.py,sha256=oJ5YLWQGjCt2MMP18haMf1cu0Tep1Sp6yhXiMqCOdyo,28
|
|
12
12
|
owlplanner/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
13
|
owlplanner/data/rates.csv,sha256=6fxg56BVVORrj9wJlUGFdGXKvOX5r7CSca8uhUbbuIU,3734
|
|
14
|
-
owlplanner-2025.2.
|
|
15
|
-
owlplanner-2025.2.
|
|
16
|
-
owlplanner-2025.2.
|
|
17
|
-
owlplanner-2025.2.
|
|
14
|
+
owlplanner-2025.2.15.dist-info/METADATA,sha256=Cm3V5cze1lykizvnbTZdnOliJ-cuj8aqknSInq6i4nU,53506
|
|
15
|
+
owlplanner-2025.2.15.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
16
|
+
owlplanner-2025.2.15.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
|
|
17
|
+
owlplanner-2025.2.15.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|