owlplanner 2025.1.25__py3-none-any.whl → 2025.1.28__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- owlplanner/data/__init__.py +0 -0
- owlplanner/data/rates.csv +98 -0
- owlplanner/rates.py +18 -658
- owlplanner/version.py +1 -1
- {owlplanner-2025.1.25.dist-info → owlplanner-2025.1.28.dist-info}/METADATA +2 -1
- {owlplanner-2025.1.25.dist-info → owlplanner-2025.1.28.dist-info}/RECORD +8 -7
- owlplanner/tax2024.py +0 -234
- {owlplanner-2025.1.25.dist-info → owlplanner-2025.1.28.dist-info}/WHEEL +0 -0
- {owlplanner-2025.1.25.dist-info → owlplanner-2025.1.28.dist-info}/licenses/LICENSE +0 -0
|
File without changes
|
|
@@ -0,0 +1,98 @@
|
|
|
1
|
+
year,S&P 500,Bonds Baa,Bonds Aaa,TBills,TNotes,Inflation
|
|
2
|
+
1928,43.81,3.22,3.22,3.08,0.84,-1.16
|
|
3
|
+
1929,-8.3,3.02,3.02,3.16,4.2,0.58
|
|
4
|
+
1930,-25.12,0.54,0.54,4.55,4.54,-6.4
|
|
5
|
+
1931,-43.84,-15.68,-15.68,2.31,-2.56,-9.32
|
|
6
|
+
1932,-8.64,23.59,23.59,1.07,8.79,-10.27
|
|
7
|
+
1933,49.98,12.97,12.97,0.96,1.86,0.76
|
|
8
|
+
1934,-1.19,18.82,18.82,0.28,7.96,1.52
|
|
9
|
+
1935,46.74,13.31,13.31,0.17,4.47,2.99
|
|
10
|
+
1936,31.94,11.38,11.38,0.17,5.02,1.45
|
|
11
|
+
1937,-35.34,-4.42,-4.42,0.28,1.38,2.86
|
|
12
|
+
1938,29.28,9.24,9.24,0.07,4.21,-2.78
|
|
13
|
+
1939,-1.1,7.98,7.98,0.05,4.41,0.0
|
|
14
|
+
1940,-10.67,8.65,8.65,0.04,5.4,0.71
|
|
15
|
+
1941,-12.77,5.01,5.01,0.13,-2.02,9.93
|
|
16
|
+
1942,19.17,5.18,5.18,0.34,2.29,9.03
|
|
17
|
+
1943,25.06,8.04,8.04,0.38,2.49,2.96
|
|
18
|
+
1944,19.03,6.57,6.57,0.38,2.58,2.3
|
|
19
|
+
1945,35.82,6.8,6.8,0.38,3.8,2.25
|
|
20
|
+
1946,-8.43,2.51,2.51,0.38,3.13,18.13
|
|
21
|
+
1947,5.2,0.26,0.26,0.6,0.92,8.84
|
|
22
|
+
1948,5.7,3.44,3.44,1.05,1.95,2.99
|
|
23
|
+
1949,18.3,5.38,5.38,1.12,4.66,-2.07
|
|
24
|
+
1950,30.81,4.24,4.24,1.2,0.43,5.93
|
|
25
|
+
1951,23.68,-0.19,-0.19,1.52,-0.3,6.0
|
|
26
|
+
1952,18.15,4.44,4.44,1.72,2.27,0.75
|
|
27
|
+
1953,-1.21,1.62,1.62,1.89,4.14,0.75
|
|
28
|
+
1954,52.56,6.16,6.16,0.94,3.29,-0.74
|
|
29
|
+
1955,32.6,2.04,2.04,1.72,-1.34,0.37
|
|
30
|
+
1956,7.44,-2.35,-2.35,2.62,-2.26,2.99
|
|
31
|
+
1957,-10.46,-0.72,-0.72,3.22,6.8,2.9
|
|
32
|
+
1958,43.72,6.43,6.43,1.77,-2.1,1.76
|
|
33
|
+
1959,12.06,1.57,1.57,3.39,-2.65,1.73
|
|
34
|
+
1960,0.34,6.66,6.66,2.87,11.64,1.36
|
|
35
|
+
1961,26.64,5.1,5.1,2.35,2.06,0.67
|
|
36
|
+
1962,-8.81,6.5,6.5,2.77,5.69,1.33
|
|
37
|
+
1963,22.61,5.46,5.46,3.16,1.68,1.64
|
|
38
|
+
1964,16.42,5.16,5.16,3.55,3.73,0.97
|
|
39
|
+
1965,12.4,3.19,3.19,3.95,0.72,1.92
|
|
40
|
+
1966,-9.97,-3.45,-3.45,4.86,2.91,3.46
|
|
41
|
+
1967,23.8,0.9,0.9,4.29,-1.58,3.04
|
|
42
|
+
1968,10.81,4.85,4.85,5.34,3.27,4.72
|
|
43
|
+
1969,-8.24,-2.03,-2.03,6.67,-5.01,6.2
|
|
44
|
+
1970,3.56,5.65,5.65,6.39,16.75,5.57
|
|
45
|
+
1971,14.22,14.0,14.0,4.33,9.79,3.27
|
|
46
|
+
1972,18.76,11.41,11.41,4.06,2.82,3.41
|
|
47
|
+
1973,-14.31,4.32,4.32,7.04,3.66,8.71
|
|
48
|
+
1974,-25.9,-4.38,-4.38,7.85,1.99,12.34
|
|
49
|
+
1975,37.0,11.05,11.05,5.79,3.61,6.94
|
|
50
|
+
1976,23.83,19.75,19.75,4.98,15.98,4.86
|
|
51
|
+
1977,-6.98,9.95,9.95,5.26,1.29,6.7
|
|
52
|
+
1978,6.51,3.14,3.14,7.18,-0.78,9.02
|
|
53
|
+
1979,18.52,-2.01,-2.01,10.05,0.67,13.29
|
|
54
|
+
1980,31.74,-3.32,-3.32,11.39,-2.99,12.52
|
|
55
|
+
1981,-4.7,8.46,8.46,14.04,8.2,8.92
|
|
56
|
+
1982,20.42,29.05,29.05,10.6,32.81,3.83
|
|
57
|
+
1983,22.34,16.19,16.19,8.62,3.2,3.79
|
|
58
|
+
1984,6.15,15.62,15.62,9.54,13.73,3.95
|
|
59
|
+
1985,31.24,23.86,23.86,7.47,25.71,3.8
|
|
60
|
+
1986,18.49,21.35,21.35,5.97,24.28,1.1
|
|
61
|
+
1987,5.81,2.81,2.81,5.78,-4.96,4.43
|
|
62
|
+
1988,16.54,14.38,14.38,6.67,8.22,4.42
|
|
63
|
+
1989,31.48,15.95,15.95,8.11,17.69,4.65
|
|
64
|
+
1990,-3.06,6.28,6.28,7.5,6.24,6.11
|
|
65
|
+
1991,30.23,18.93,18.93,5.38,15.0,3.06
|
|
66
|
+
1992,7.49,11.31,11.31,3.43,9.36,2.9
|
|
67
|
+
1993,9.97,15.47,15.47,3.0,14.21,2.75
|
|
68
|
+
1994,1.33,-0.97,-0.97,4.25,-8.04,2.67
|
|
69
|
+
1995,37.2,21.29,21.29,5.49,23.48,2.54
|
|
70
|
+
1996,22.68,3.42,3.42,5.01,1.43,3.32
|
|
71
|
+
1997,33.1,12.75,12.75,5.06,9.94,1.7
|
|
72
|
+
1998,28.34,7.63,7.63,4.78,14.92,1.61
|
|
73
|
+
1999,20.89,0.91,0.91,4.64,-8.25,2.68
|
|
74
|
+
2000,-9.03,9.39,9.39,5.82,16.66,3.39
|
|
75
|
+
2001,-11.85,8.54,8.54,3.4,5.57,1.55
|
|
76
|
+
2002,-21.97,12.14,12.14,1.61,15.12,2.38
|
|
77
|
+
2003,28.36,12.32,12.32,1.01,0.38,1.88
|
|
78
|
+
2004,10.74,10.35,10.35,1.37,4.49,3.26
|
|
79
|
+
2005,4.83,5.3,5.3,3.15,2.87,3.42
|
|
80
|
+
2006,15.61,5.2,5.2,4.73,1.96,2.54
|
|
81
|
+
2007,5.48,4.84,4.84,4.36,10.21,4.08
|
|
82
|
+
2008,-36.55,-3.54,-3.54,1.37,20.1,0.09
|
|
83
|
+
2009,25.94,20.21,20.21,0.15,-11.12,2.72
|
|
84
|
+
2010,14.82,9.41,9.41,0.14,8.46,1.5
|
|
85
|
+
2011,2.1,12.26,12.26,0.05,16.04,2.96
|
|
86
|
+
2012,15.89,9.33,9.33,0.09,2.97,1.74
|
|
87
|
+
2013,32.15,-0.98,-0.98,0.06,-9.1,1.5
|
|
88
|
+
2014,13.52,10.78,10.78,0.03,10.75,0.76
|
|
89
|
+
2015,1.38,-1.5,-1.5,0.05,1.28,0.73
|
|
90
|
+
2016,11.77,11.52,11.52,0.32,0.69,2.07
|
|
91
|
+
2017,21.61,9.23,9.23,0.93,2.8,2.11
|
|
92
|
+
2018,-4.23,-3.27,-3.27,1.94,-0.02,1.91
|
|
93
|
+
2019,31.21,15.25,15.25,2.06,9.64,2.29
|
|
94
|
+
2020,18.02,10.6,10.6,0.35,11.33,1.36
|
|
95
|
+
2021,28.47,0.93,0.93,0.05,-4.42,7.04
|
|
96
|
+
2022,-18.04,-15.14,-15.14,2.02,-17.83,6.45
|
|
97
|
+
2023,26.06,8.74,8.74,5.07,3.88,3.35
|
|
98
|
+
2024,24.88,1.74,1.74,4.97,-1.64,2.75
|
owlplanner/rates.py
CHANGED
|
@@ -31,6 +31,8 @@ Disclaimer: This program comes with no guarantee. Use at your own risk.
|
|
|
31
31
|
###################################################################
|
|
32
32
|
import numpy as np
|
|
33
33
|
import pandas as pd
|
|
34
|
+
import os
|
|
35
|
+
import sys
|
|
34
36
|
from datetime import date
|
|
35
37
|
|
|
36
38
|
from owlplanner import logging
|
|
@@ -41,673 +43,31 @@ from owlplanner import utils as u
|
|
|
41
43
|
FROM = 1928
|
|
42
44
|
TO = 2024
|
|
43
45
|
|
|
46
|
+
where = os.path.dirname(sys.modules['owlplanner'].__file__)
|
|
47
|
+
file = os.path.join(where, 'data/rates.csv')
|
|
48
|
+
try:
|
|
49
|
+
df = pd.read_csv(file)
|
|
50
|
+
except Exception as e:
|
|
51
|
+
raise RuntimeError(f'Could not find rates data file: {e}')
|
|
52
|
+
|
|
53
|
+
|
|
44
54
|
# Annual rate of return (%) of S&P 500 since 1928, including dividends.
|
|
45
|
-
SP500 = [
|
|
46
|
-
43.81,
|
|
47
|
-
-8.30,
|
|
48
|
-
# 1930
|
|
49
|
-
-25.12,
|
|
50
|
-
-43.84,
|
|
51
|
-
-8.64,
|
|
52
|
-
49.98,
|
|
53
|
-
-1.19,
|
|
54
|
-
46.74,
|
|
55
|
-
31.94,
|
|
56
|
-
-35.34,
|
|
57
|
-
29.28,
|
|
58
|
-
-1.10,
|
|
59
|
-
# 1940
|
|
60
|
-
-10.67,
|
|
61
|
-
-12.77,
|
|
62
|
-
19.17,
|
|
63
|
-
25.06,
|
|
64
|
-
19.03,
|
|
65
|
-
35.82,
|
|
66
|
-
-8.43,
|
|
67
|
-
5.20,
|
|
68
|
-
5.70,
|
|
69
|
-
18.30,
|
|
70
|
-
# 1950
|
|
71
|
-
30.81,
|
|
72
|
-
23.68,
|
|
73
|
-
18.15,
|
|
74
|
-
-1.21,
|
|
75
|
-
52.56,
|
|
76
|
-
32.60,
|
|
77
|
-
7.44,
|
|
78
|
-
-10.46,
|
|
79
|
-
43.72,
|
|
80
|
-
12.06,
|
|
81
|
-
# 1960
|
|
82
|
-
0.34,
|
|
83
|
-
26.64,
|
|
84
|
-
-8.81,
|
|
85
|
-
22.61,
|
|
86
|
-
16.42,
|
|
87
|
-
12.40,
|
|
88
|
-
-9.97,
|
|
89
|
-
23.80,
|
|
90
|
-
10.81,
|
|
91
|
-
-8.24,
|
|
92
|
-
# 1970
|
|
93
|
-
3.56,
|
|
94
|
-
14.22,
|
|
95
|
-
18.76,
|
|
96
|
-
-14.31,
|
|
97
|
-
-25.90,
|
|
98
|
-
37.00,
|
|
99
|
-
23.83,
|
|
100
|
-
-6.98,
|
|
101
|
-
6.51,
|
|
102
|
-
18.52,
|
|
103
|
-
# 1980
|
|
104
|
-
31.74,
|
|
105
|
-
-4.70,
|
|
106
|
-
20.42,
|
|
107
|
-
22.34,
|
|
108
|
-
6.15,
|
|
109
|
-
31.24,
|
|
110
|
-
18.49,
|
|
111
|
-
5.81,
|
|
112
|
-
16.54,
|
|
113
|
-
31.48,
|
|
114
|
-
# 1990
|
|
115
|
-
-3.06,
|
|
116
|
-
30.23,
|
|
117
|
-
7.49,
|
|
118
|
-
9.97,
|
|
119
|
-
1.33,
|
|
120
|
-
37.20,
|
|
121
|
-
22.68,
|
|
122
|
-
33.10,
|
|
123
|
-
28.34,
|
|
124
|
-
20.89,
|
|
125
|
-
# 2000
|
|
126
|
-
-9.03,
|
|
127
|
-
-11.85,
|
|
128
|
-
-21.97,
|
|
129
|
-
28.36,
|
|
130
|
-
10.74,
|
|
131
|
-
4.83,
|
|
132
|
-
15.61,
|
|
133
|
-
5.48,
|
|
134
|
-
-36.55,
|
|
135
|
-
25.94,
|
|
136
|
-
# 2010
|
|
137
|
-
14.82,
|
|
138
|
-
2.10,
|
|
139
|
-
15.89,
|
|
140
|
-
32.15,
|
|
141
|
-
13.52,
|
|
142
|
-
1.38,
|
|
143
|
-
11.77,
|
|
144
|
-
21.61,
|
|
145
|
-
-4.23,
|
|
146
|
-
31.21,
|
|
147
|
-
# 2020
|
|
148
|
-
18.02,
|
|
149
|
-
28.47,
|
|
150
|
-
-18.04,
|
|
151
|
-
26.06,
|
|
152
|
-
24.88,
|
|
153
|
-
]
|
|
55
|
+
SP500 = df['S&P 500']
|
|
154
56
|
|
|
155
57
|
# Annual rate of return (%) of Baa Corporate Bonds since 1928.
|
|
156
|
-
BondsBaa = [
|
|
157
|
-
3.22,
|
|
158
|
-
3.02,
|
|
159
|
-
# 1930
|
|
160
|
-
0.54,
|
|
161
|
-
-15.68,
|
|
162
|
-
23.59,
|
|
163
|
-
12.97,
|
|
164
|
-
18.82,
|
|
165
|
-
13.31,
|
|
166
|
-
11.38,
|
|
167
|
-
-4.42,
|
|
168
|
-
9.24,
|
|
169
|
-
7.98,
|
|
170
|
-
# 1940
|
|
171
|
-
8.65,
|
|
172
|
-
5.01,
|
|
173
|
-
5.18,
|
|
174
|
-
8.04,
|
|
175
|
-
6.57,
|
|
176
|
-
6.80,
|
|
177
|
-
2.51,
|
|
178
|
-
0.26,
|
|
179
|
-
3.44,
|
|
180
|
-
5.38,
|
|
181
|
-
# 1950
|
|
182
|
-
4.24,
|
|
183
|
-
-0.19,
|
|
184
|
-
4.44,
|
|
185
|
-
1.62,
|
|
186
|
-
6.16,
|
|
187
|
-
2.04,
|
|
188
|
-
-2.35,
|
|
189
|
-
-0.72,
|
|
190
|
-
6.43,
|
|
191
|
-
1.57,
|
|
192
|
-
# 1960
|
|
193
|
-
6.66,
|
|
194
|
-
5.10,
|
|
195
|
-
6.50,
|
|
196
|
-
5.46,
|
|
197
|
-
5.16,
|
|
198
|
-
3.19,
|
|
199
|
-
-3.45,
|
|
200
|
-
0.90,
|
|
201
|
-
4.85,
|
|
202
|
-
-2.03,
|
|
203
|
-
# 1970
|
|
204
|
-
5.65,
|
|
205
|
-
14.00,
|
|
206
|
-
11.41,
|
|
207
|
-
4.32,
|
|
208
|
-
-4.38,
|
|
209
|
-
11.05,
|
|
210
|
-
19.75,
|
|
211
|
-
9.95,
|
|
212
|
-
3.14,
|
|
213
|
-
-2.01,
|
|
214
|
-
# 1980
|
|
215
|
-
-3.32,
|
|
216
|
-
8.46,
|
|
217
|
-
29.05,
|
|
218
|
-
16.19,
|
|
219
|
-
15.62,
|
|
220
|
-
23.86,
|
|
221
|
-
21.35,
|
|
222
|
-
2.81,
|
|
223
|
-
14.38,
|
|
224
|
-
15.95,
|
|
225
|
-
# 1990
|
|
226
|
-
6.28,
|
|
227
|
-
18.93,
|
|
228
|
-
11.31,
|
|
229
|
-
15.47,
|
|
230
|
-
-0.97,
|
|
231
|
-
21.29,
|
|
232
|
-
3.42,
|
|
233
|
-
12.75,
|
|
234
|
-
7.63,
|
|
235
|
-
0.91,
|
|
236
|
-
# 2000
|
|
237
|
-
9.39,
|
|
238
|
-
8.54,
|
|
239
|
-
12.14,
|
|
240
|
-
12.32,
|
|
241
|
-
10.35,
|
|
242
|
-
5.30,
|
|
243
|
-
5.20,
|
|
244
|
-
4.84,
|
|
245
|
-
-3.54,
|
|
246
|
-
20.21,
|
|
247
|
-
# 2010
|
|
248
|
-
9.41,
|
|
249
|
-
12.26,
|
|
250
|
-
9.33,
|
|
251
|
-
-0.98,
|
|
252
|
-
10.78,
|
|
253
|
-
-1.50,
|
|
254
|
-
11.52,
|
|
255
|
-
9.23,
|
|
256
|
-
-3.27,
|
|
257
|
-
15.25,
|
|
258
|
-
# 2020
|
|
259
|
-
10.60,
|
|
260
|
-
0.93,
|
|
261
|
-
-15.14,
|
|
262
|
-
8.74,
|
|
263
|
-
1.74,
|
|
264
|
-
]
|
|
58
|
+
BondsBaa = df['Bonds Baa']
|
|
265
59
|
|
|
266
60
|
# Annual rate of return (%) of Aaa Corporate Bonds since 1928.
|
|
267
|
-
BondsAaa = [
|
|
268
|
-
3.28,
|
|
269
|
-
4.14,
|
|
270
|
-
# 1930
|
|
271
|
-
5.86,
|
|
272
|
-
-1.56,
|
|
273
|
-
11.07,
|
|
274
|
-
5.30,
|
|
275
|
-
10.15,
|
|
276
|
-
6.90,
|
|
277
|
-
6.33,
|
|
278
|
-
2.17,
|
|
279
|
-
4.31,
|
|
280
|
-
4.28,
|
|
281
|
-
# 1940
|
|
282
|
-
4.93,
|
|
283
|
-
1.93,
|
|
284
|
-
2.71,
|
|
285
|
-
3.42,
|
|
286
|
-
3.09,
|
|
287
|
-
3.48,
|
|
288
|
-
2.61,
|
|
289
|
-
0.46,
|
|
290
|
-
3.46,
|
|
291
|
-
4.62,
|
|
292
|
-
# 1950
|
|
293
|
-
1.80,
|
|
294
|
-
-0.23,
|
|
295
|
-
3.35,
|
|
296
|
-
1.61,
|
|
297
|
-
5.10,
|
|
298
|
-
0.78,
|
|
299
|
-
-1.78,
|
|
300
|
-
3.26,
|
|
301
|
-
1.63,
|
|
302
|
-
0.14,
|
|
303
|
-
# 1960
|
|
304
|
-
6.41,
|
|
305
|
-
3.79,
|
|
306
|
-
5.86,
|
|
307
|
-
3.36,
|
|
308
|
-
3.64,
|
|
309
|
-
2.56,
|
|
310
|
-
-0.70,
|
|
311
|
-
-0.45,
|
|
312
|
-
4.32,
|
|
313
|
-
-2.18,
|
|
314
|
-
# 1970
|
|
315
|
-
8.27,
|
|
316
|
-
10.35,
|
|
317
|
-
8.44,
|
|
318
|
-
3.00,
|
|
319
|
-
-0.12,
|
|
320
|
-
9.54,
|
|
321
|
-
14.23,
|
|
322
|
-
6.58,
|
|
323
|
-
2.01,
|
|
324
|
-
-0.25,
|
|
325
|
-
# 1980
|
|
326
|
-
-2.55,
|
|
327
|
-
7.94,
|
|
328
|
-
27.89,
|
|
329
|
-
7.85,
|
|
330
|
-
14.80,
|
|
331
|
-
25.97,
|
|
332
|
-
18.95,
|
|
333
|
-
-0.85,
|
|
334
|
-
12.87,
|
|
335
|
-
14.39,
|
|
336
|
-
# 1990
|
|
337
|
-
7.72,
|
|
338
|
-
14.98,
|
|
339
|
-
9.84,
|
|
340
|
-
14.30,
|
|
341
|
-
-2.78,
|
|
342
|
-
21.16,
|
|
343
|
-
2.83,
|
|
344
|
-
11.26,
|
|
345
|
-
10.20,
|
|
346
|
-
-3.39,
|
|
347
|
-
# 2000
|
|
348
|
-
10.99,
|
|
349
|
-
11.09,
|
|
350
|
-
10.42,
|
|
351
|
-
9.54,
|
|
352
|
-
7.14,
|
|
353
|
-
6.73,
|
|
354
|
-
3.75,
|
|
355
|
-
5.84,
|
|
356
|
-
10.97,
|
|
357
|
-
-0.09,
|
|
358
|
-
# 2010
|
|
359
|
-
8.83,
|
|
360
|
-
13.99,
|
|
361
|
-
4.59,
|
|
362
|
-
-3.43,
|
|
363
|
-
11.56,
|
|
364
|
-
1.13,
|
|
365
|
-
4.53,
|
|
366
|
-
8.40,
|
|
367
|
-
-0.93,
|
|
368
|
-
12.08,
|
|
369
|
-
# 2020
|
|
370
|
-
10.23,
|
|
371
|
-
-1.93,
|
|
372
|
-
-12.88,
|
|
373
|
-
5.09,
|
|
374
|
-
-1.03,
|
|
375
|
-
]
|
|
61
|
+
BondsAaa = df['Bonds Aaa']
|
|
376
62
|
|
|
377
63
|
# Annual rate of return (%) for 10-y Treasury notes since 1928.
|
|
378
|
-
TNotes = [
|
|
379
|
-
0.84,
|
|
380
|
-
4.20,
|
|
381
|
-
# 1930
|
|
382
|
-
4.54,
|
|
383
|
-
-2.56,
|
|
384
|
-
8.79,
|
|
385
|
-
1.86,
|
|
386
|
-
7.96,
|
|
387
|
-
4.47,
|
|
388
|
-
5.02,
|
|
389
|
-
1.38,
|
|
390
|
-
4.21,
|
|
391
|
-
4.41,
|
|
392
|
-
# 1940
|
|
393
|
-
5.40,
|
|
394
|
-
-2.02,
|
|
395
|
-
2.29,
|
|
396
|
-
2.49,
|
|
397
|
-
2.58,
|
|
398
|
-
3.80,
|
|
399
|
-
3.13,
|
|
400
|
-
0.92,
|
|
401
|
-
1.95,
|
|
402
|
-
4.66,
|
|
403
|
-
# 1950
|
|
404
|
-
0.43,
|
|
405
|
-
-0.30,
|
|
406
|
-
2.27,
|
|
407
|
-
4.14,
|
|
408
|
-
3.29,
|
|
409
|
-
-1.34,
|
|
410
|
-
-2.26,
|
|
411
|
-
6.80,
|
|
412
|
-
-2.10,
|
|
413
|
-
-2.65,
|
|
414
|
-
# 1960
|
|
415
|
-
11.64,
|
|
416
|
-
2.06,
|
|
417
|
-
5.69,
|
|
418
|
-
1.68,
|
|
419
|
-
3.73,
|
|
420
|
-
0.72,
|
|
421
|
-
2.91,
|
|
422
|
-
-1.58,
|
|
423
|
-
3.27,
|
|
424
|
-
-5.01,
|
|
425
|
-
# 1970
|
|
426
|
-
16.75,
|
|
427
|
-
9.79,
|
|
428
|
-
2.82,
|
|
429
|
-
3.66,
|
|
430
|
-
1.99,
|
|
431
|
-
3.61,
|
|
432
|
-
15.98,
|
|
433
|
-
1.29,
|
|
434
|
-
-0.78,
|
|
435
|
-
0.67,
|
|
436
|
-
# 1980
|
|
437
|
-
-2.99,
|
|
438
|
-
8.20,
|
|
439
|
-
32.81,
|
|
440
|
-
3.20,
|
|
441
|
-
13.73,
|
|
442
|
-
25.71,
|
|
443
|
-
24.28,
|
|
444
|
-
-4.96,
|
|
445
|
-
8.22,
|
|
446
|
-
17.69,
|
|
447
|
-
# 1990
|
|
448
|
-
6.24,
|
|
449
|
-
15.00,
|
|
450
|
-
9.36,
|
|
451
|
-
14.21,
|
|
452
|
-
-8.04,
|
|
453
|
-
23.48,
|
|
454
|
-
1.43,
|
|
455
|
-
9.94,
|
|
456
|
-
14.92,
|
|
457
|
-
-8.25,
|
|
458
|
-
# 2000
|
|
459
|
-
16.66,
|
|
460
|
-
5.57,
|
|
461
|
-
15.12,
|
|
462
|
-
0.38,
|
|
463
|
-
4.49,
|
|
464
|
-
2.87,
|
|
465
|
-
1.96,
|
|
466
|
-
10.21,
|
|
467
|
-
20.10,
|
|
468
|
-
-11.12,
|
|
469
|
-
# 2010
|
|
470
|
-
8.46,
|
|
471
|
-
16.04,
|
|
472
|
-
2.97,
|
|
473
|
-
-9.10,
|
|
474
|
-
10.75,
|
|
475
|
-
1.28,
|
|
476
|
-
0.69,
|
|
477
|
-
2.80,
|
|
478
|
-
-0.02,
|
|
479
|
-
9.64,
|
|
480
|
-
# 2020
|
|
481
|
-
11.33,
|
|
482
|
-
-4.42,
|
|
483
|
-
-17.83,
|
|
484
|
-
3.88,
|
|
485
|
-
-1.64,
|
|
486
|
-
]
|
|
64
|
+
TNotes = df['TNotes']
|
|
487
65
|
|
|
488
66
|
# Annual rates of return for 3-month Treasury bills since 1928.
|
|
489
|
-
TBills = [
|
|
490
|
-
|
|
491
|
-
|
|
492
|
-
|
|
493
|
-
4.55,
|
|
494
|
-
2.31,
|
|
495
|
-
1.07,
|
|
496
|
-
0.96,
|
|
497
|
-
0.28,
|
|
498
|
-
0.17,
|
|
499
|
-
0.17,
|
|
500
|
-
0.28,
|
|
501
|
-
0.07,
|
|
502
|
-
0.05,
|
|
503
|
-
# 1940
|
|
504
|
-
0.04,
|
|
505
|
-
0.13,
|
|
506
|
-
0.34,
|
|
507
|
-
0.38,
|
|
508
|
-
0.38,
|
|
509
|
-
0.38,
|
|
510
|
-
0.38,
|
|
511
|
-
0.60,
|
|
512
|
-
1.05,
|
|
513
|
-
1.12,
|
|
514
|
-
# 1950
|
|
515
|
-
1.20,
|
|
516
|
-
1.52,
|
|
517
|
-
1.72,
|
|
518
|
-
1.89,
|
|
519
|
-
0.94,
|
|
520
|
-
1.72,
|
|
521
|
-
2.62,
|
|
522
|
-
3.22,
|
|
523
|
-
1.77,
|
|
524
|
-
3.39,
|
|
525
|
-
# 1960
|
|
526
|
-
2.87,
|
|
527
|
-
2.35,
|
|
528
|
-
2.77,
|
|
529
|
-
3.16,
|
|
530
|
-
3.55,
|
|
531
|
-
3.95,
|
|
532
|
-
4.86,
|
|
533
|
-
4.29,
|
|
534
|
-
5.34,
|
|
535
|
-
6.67,
|
|
536
|
-
# 1970
|
|
537
|
-
6.39,
|
|
538
|
-
4.33,
|
|
539
|
-
4.06,
|
|
540
|
-
7.04,
|
|
541
|
-
7.85,
|
|
542
|
-
5.79,
|
|
543
|
-
4.98,
|
|
544
|
-
5.26,
|
|
545
|
-
7.18,
|
|
546
|
-
10.05,
|
|
547
|
-
# 1980
|
|
548
|
-
11.39,
|
|
549
|
-
14.04,
|
|
550
|
-
10.60,
|
|
551
|
-
8.62,
|
|
552
|
-
9.54,
|
|
553
|
-
7.47,
|
|
554
|
-
5.97,
|
|
555
|
-
5.78,
|
|
556
|
-
6.67,
|
|
557
|
-
8.11,
|
|
558
|
-
# 1990
|
|
559
|
-
7.50,
|
|
560
|
-
5.38,
|
|
561
|
-
3.43,
|
|
562
|
-
3.00,
|
|
563
|
-
4.25,
|
|
564
|
-
5.49,
|
|
565
|
-
5.01,
|
|
566
|
-
5.06,
|
|
567
|
-
4.78,
|
|
568
|
-
4.64,
|
|
569
|
-
# 2000
|
|
570
|
-
5.82,
|
|
571
|
-
3.40,
|
|
572
|
-
1.61,
|
|
573
|
-
1.01,
|
|
574
|
-
1.37,
|
|
575
|
-
3.15,
|
|
576
|
-
4.73,
|
|
577
|
-
4.36,
|
|
578
|
-
1.37,
|
|
579
|
-
0.15,
|
|
580
|
-
# 2010
|
|
581
|
-
0.14,
|
|
582
|
-
0.05,
|
|
583
|
-
0.09,
|
|
584
|
-
0.06,
|
|
585
|
-
0.03,
|
|
586
|
-
0.05,
|
|
587
|
-
0.32,
|
|
588
|
-
0.93,
|
|
589
|
-
1.94,
|
|
590
|
-
2.06,
|
|
591
|
-
# 2020
|
|
592
|
-
0.35,
|
|
593
|
-
0.05,
|
|
594
|
-
2.02,
|
|
595
|
-
5.07,
|
|
596
|
-
4.97,
|
|
597
|
-
]
|
|
598
|
-
|
|
599
|
-
# Inflation rate as U.S. CPI index (%) since 1928 (1914).
|
|
600
|
-
Inflation = [
|
|
601
|
-
# 1.00, 1.98, 12.62, 18.10, 20.44, 14.55, 2.65, # 1920
|
|
602
|
-
# -10.82, -2.31, 2.37, 0.00, 3.47, -1.12, -2.26,
|
|
603
|
-
-1.16,
|
|
604
|
-
0.58,
|
|
605
|
-
# 1930
|
|
606
|
-
-6.40,
|
|
607
|
-
-9.32,
|
|
608
|
-
-10.27,
|
|
609
|
-
0.76,
|
|
610
|
-
1.52,
|
|
611
|
-
2.99,
|
|
612
|
-
1.45,
|
|
613
|
-
2.86,
|
|
614
|
-
-2.78,
|
|
615
|
-
0.00,
|
|
616
|
-
# 1940
|
|
617
|
-
0.71,
|
|
618
|
-
9.93,
|
|
619
|
-
9.03,
|
|
620
|
-
2.96,
|
|
621
|
-
2.30,
|
|
622
|
-
2.25,
|
|
623
|
-
18.13,
|
|
624
|
-
8.84,
|
|
625
|
-
2.99,
|
|
626
|
-
-2.07,
|
|
627
|
-
# 1950
|
|
628
|
-
5.93,
|
|
629
|
-
6.00,
|
|
630
|
-
0.75,
|
|
631
|
-
0.75,
|
|
632
|
-
-0.74,
|
|
633
|
-
0.37,
|
|
634
|
-
2.99,
|
|
635
|
-
2.90,
|
|
636
|
-
1.76,
|
|
637
|
-
1.73,
|
|
638
|
-
# 1960
|
|
639
|
-
1.36,
|
|
640
|
-
0.67,
|
|
641
|
-
1.33,
|
|
642
|
-
1.64,
|
|
643
|
-
0.97,
|
|
644
|
-
1.92,
|
|
645
|
-
3.46,
|
|
646
|
-
3.04,
|
|
647
|
-
4.72,
|
|
648
|
-
6.20,
|
|
649
|
-
# 1970
|
|
650
|
-
5.57,
|
|
651
|
-
3.27,
|
|
652
|
-
3.41,
|
|
653
|
-
8.71,
|
|
654
|
-
12.34,
|
|
655
|
-
6.94,
|
|
656
|
-
4.86,
|
|
657
|
-
6.70,
|
|
658
|
-
9.02,
|
|
659
|
-
13.29,
|
|
660
|
-
# 1980
|
|
661
|
-
12.52,
|
|
662
|
-
8.92,
|
|
663
|
-
3.83,
|
|
664
|
-
3.79,
|
|
665
|
-
3.95,
|
|
666
|
-
3.80,
|
|
667
|
-
1.10,
|
|
668
|
-
4.43,
|
|
669
|
-
4.42,
|
|
670
|
-
4.65,
|
|
671
|
-
# 1990
|
|
672
|
-
6.11,
|
|
673
|
-
3.06,
|
|
674
|
-
2.90,
|
|
675
|
-
2.75,
|
|
676
|
-
2.67,
|
|
677
|
-
2.54,
|
|
678
|
-
3.32,
|
|
679
|
-
1.70,
|
|
680
|
-
1.61,
|
|
681
|
-
2.68,
|
|
682
|
-
# 2000
|
|
683
|
-
3.39,
|
|
684
|
-
1.55,
|
|
685
|
-
2.38,
|
|
686
|
-
1.88,
|
|
687
|
-
3.26,
|
|
688
|
-
3.42,
|
|
689
|
-
2.54,
|
|
690
|
-
4.08,
|
|
691
|
-
0.09,
|
|
692
|
-
2.72,
|
|
693
|
-
# 2010
|
|
694
|
-
1.50,
|
|
695
|
-
2.96,
|
|
696
|
-
1.74,
|
|
697
|
-
1.50,
|
|
698
|
-
0.76,
|
|
699
|
-
0.73,
|
|
700
|
-
2.07,
|
|
701
|
-
2.11,
|
|
702
|
-
1.91,
|
|
703
|
-
2.29,
|
|
704
|
-
# 2020
|
|
705
|
-
1.36,
|
|
706
|
-
7.04,
|
|
707
|
-
6.45,
|
|
708
|
-
3.35,
|
|
709
|
-
2.75,
|
|
710
|
-
]
|
|
67
|
+
TBills = df['TBills']
|
|
68
|
+
|
|
69
|
+
# Inflation rate as U.S. CPI index (%) since 1928.
|
|
70
|
+
Inflation = df['Inflation']
|
|
711
71
|
|
|
712
72
|
|
|
713
73
|
def getRatesDistributions(frm, to, mylog=None):
|
owlplanner/version.py
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
__version__ = "2025.1.
|
|
1
|
+
__version__ = "2025.1.28"
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: owlplanner
|
|
3
|
-
Version: 2025.1.
|
|
3
|
+
Version: 2025.1.28
|
|
4
4
|
Summary: Owl: Retirement planner with great wisdom
|
|
5
5
|
Project-URL: HomePage, https://github.com/mdlacasse/owl
|
|
6
6
|
Project-URL: Repository, https://github.com/mdlacasse/owl
|
|
@@ -698,6 +698,7 @@ Requires-Dist: pandas
|
|
|
698
698
|
Requires-Dist: scipy
|
|
699
699
|
Requires-Dist: seaborn
|
|
700
700
|
Requires-Dist: streamlit
|
|
701
|
+
Requires-Dist: toml
|
|
701
702
|
Description-Content-Type: text/markdown
|
|
702
703
|
|
|
703
704
|
|
|
@@ -4,13 +4,14 @@ owlplanner/config.py,sha256=ouADb6YES5Zgv0UwnEK9Axwvs8drp-ahboQjI4WTrr0,12069
|
|
|
4
4
|
owlplanner/logging.py,sha256=pXg_mMgBll-kklqaDRLDNVUFo-5DAa-yqTKtiVrhNWw,2530
|
|
5
5
|
owlplanner/plan.py,sha256=eRX04KT8DVkWD6sFzqm18OZZazSONQviuIYe7WNW7BM,115405
|
|
6
6
|
owlplanner/progress.py,sha256=YZjL5_m4MMgKPlWlhhKacPLt54tVhVGF1eXxxZapMYs,386
|
|
7
|
-
owlplanner/rates.py,sha256=
|
|
8
|
-
owlplanner/tax2024.py,sha256=qiGZCWv02Y8Ip3lmQCZT1kFpsnFYwj5cHlpB2Lh1dt8,6820
|
|
7
|
+
owlplanner/rates.py,sha256=aKOmau8i3uqxZGi7HQJpzooT3X-yAZhga5MZJ56pBzk,15627
|
|
9
8
|
owlplanner/tax2025.py,sha256=W3yXKC3rgcqPjZMguOyejgsox9J42w3ogBNN1mIBHBI,6965
|
|
10
9
|
owlplanner/timelists.py,sha256=ifxbyMlRW3IMwsiu8zsoodA1CKJQthgk3iPq50vQIds,4104
|
|
11
10
|
owlplanner/utils.py,sha256=adIwqGVQFfvekke0JCxYJD3PKHbptVCj3NrQT2TQIB4,2351
|
|
12
|
-
owlplanner/version.py,sha256=
|
|
13
|
-
owlplanner
|
|
14
|
-
owlplanner
|
|
15
|
-
owlplanner-2025.1.
|
|
16
|
-
owlplanner-2025.1.
|
|
11
|
+
owlplanner/version.py,sha256=IsA0LMM6U46XS2G3Hhe2lWjxXVKcighNZH7REVFvu3M,27
|
|
12
|
+
owlplanner/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
13
|
+
owlplanner/data/rates.csv,sha256=6fxg56BVVORrj9wJlUGFdGXKvOX5r7CSca8uhUbbuIU,3734
|
|
14
|
+
owlplanner-2025.1.28.dist-info/METADATA,sha256=ZLZXTjtEXy-eQaYHJbhKP9RfJcYf06jg95TIrr4Gpmk,64515
|
|
15
|
+
owlplanner-2025.1.28.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
16
|
+
owlplanner-2025.1.28.dist-info/licenses/LICENSE,sha256=IwGE9guuL-ryRPEKi6wFPI_zOhg7zDZbTYuHbSt_SAk,35823
|
|
17
|
+
owlplanner-2025.1.28.dist-info/RECORD,,
|
owlplanner/tax2024.py
DELETED
|
@@ -1,234 +0,0 @@
|
|
|
1
|
-
"""
|
|
2
|
-
|
|
3
|
-
Owl/tax2024
|
|
4
|
-
---
|
|
5
|
-
|
|
6
|
-
A retirement planner using linear programming optimization.
|
|
7
|
-
|
|
8
|
-
See companion document for a complete explanation and description
|
|
9
|
-
of all variables and parameters.
|
|
10
|
-
|
|
11
|
-
Module to handle all tax calculations.
|
|
12
|
-
|
|
13
|
-
Copyright (C) 2024 -- Martin-D. Lacasse
|
|
14
|
-
|
|
15
|
-
Disclaimer: This program comes with no guarantee. Use at your own risk.
|
|
16
|
-
"""
|
|
17
|
-
|
|
18
|
-
import numpy as np
|
|
19
|
-
from datetime import date
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
##############################################################################
|
|
23
|
-
# Prepare the data.
|
|
24
|
-
|
|
25
|
-
taxBracketNames = ['10%', '12/15%', '22/25%', '24/28%', '32/33%', '35%', '37/40%']
|
|
26
|
-
|
|
27
|
-
rates_2024 = np.array([0.10, 0.12, 0.22, 0.24, 0.32, 0.35, 0.370])
|
|
28
|
-
rates_2026 = np.array([0.10, 0.15, 0.25, 0.28, 0.33, 0.35, 0.396])
|
|
29
|
-
|
|
30
|
-
# Single [0] and married filing jointly [1].
|
|
31
|
-
taxBrackets_2024 = np.array(
|
|
32
|
-
[
|
|
33
|
-
[11600, 47150, 100525, 191950, 243450, 609350, 9999999],
|
|
34
|
-
[23200, 94300, 201050, 383900, 487450, 731200, 9999999],
|
|
35
|
-
]
|
|
36
|
-
)
|
|
37
|
-
|
|
38
|
-
irmaaBrackets = np.array([[0, 103000, 129000, 161000, 193000, 500000], [0, 206000, 258000, 322000, 386000, 750000]])
|
|
39
|
-
|
|
40
|
-
# medicareBasis_2024 = 12 * 174.70
|
|
41
|
-
# [174.70, 244.60, 349.40, 454.20, 559.00, 594.00]
|
|
42
|
-
irmaaFees = 12 * np.array([174.70, 69.90, 104.80, 104.80, 104.80, 35.00])
|
|
43
|
-
|
|
44
|
-
# taxBrackets_2017 = np.array(
|
|
45
|
-
# [[9325, 37950, 91900, 191650, 416700, 418400, 9999999],
|
|
46
|
-
# [18650, 75900, 153100, 233350, 416700, 470000, 9999999]])
|
|
47
|
-
|
|
48
|
-
# Adjusted from 2017 to 2024 with 27% increase.
|
|
49
|
-
taxBrackets_2026 = np.array(
|
|
50
|
-
[
|
|
51
|
-
[11850, 48200, 116700, 243400, 529200, 531400, 9999999],
|
|
52
|
-
[23700, 96400, 194400, 296350, 529200, 596900, 9999999],
|
|
53
|
-
]
|
|
54
|
-
)
|
|
55
|
-
|
|
56
|
-
stdDeduction_2024 = np.array([14600, 29200])
|
|
57
|
-
stdDeduction_2026 = np.array([8300, 16600])
|
|
58
|
-
extraDeduction_65 = np.array([1950, 1550])
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
##############################################################################
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
def mediCosts(yobs, horizons, magi, gamma_n, Nn):
|
|
65
|
-
"""
|
|
66
|
-
Compute Medicare costs directly.
|
|
67
|
-
Birth years, life horizons, MAGI time series, inflation time series gamma_n,
|
|
68
|
-
and total number of years in the plan are provided.
|
|
69
|
-
"""
|
|
70
|
-
thisyear = date.today().year
|
|
71
|
-
Ni = len(yobs)
|
|
72
|
-
medicosts = np.zeros(Nn)
|
|
73
|
-
for n in range(Nn):
|
|
74
|
-
medicount = 0
|
|
75
|
-
for i in range(Ni):
|
|
76
|
-
if thisyear + n - yobs[i] >= 65 and n < horizons[i]:
|
|
77
|
-
medicount += 1
|
|
78
|
-
|
|
79
|
-
if medicount == 0:
|
|
80
|
-
continue
|
|
81
|
-
|
|
82
|
-
fac = medicount * gamma_n[n]
|
|
83
|
-
medicosts[n] += fac * irmaaFees[0]
|
|
84
|
-
nx = max(0, n - 2)
|
|
85
|
-
for q in range(1, 6):
|
|
86
|
-
if magi[nx] > gamma_n[n] * irmaaBrackets[medicount - 1][q]:
|
|
87
|
-
medicosts[n] += fac * irmaaFees[q]
|
|
88
|
-
|
|
89
|
-
return medicosts
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
def taxParams(yobs, i_d, n_d, N_n):
|
|
93
|
-
"""
|
|
94
|
-
Return 3 time series:
|
|
95
|
-
1) Standard deductions at year n (sigma_n).
|
|
96
|
-
2) Tax rate in year n (theta_tn)
|
|
97
|
-
3) Delta from top to bottom of tax brackets (Delta_tn)
|
|
98
|
-
This is pure speculation on future values.
|
|
99
|
-
Returned values are not indexed for inflation.
|
|
100
|
-
"""
|
|
101
|
-
# Compute the deltas in-place between brackets, starting from the end.
|
|
102
|
-
deltaBrackets_2024 = np.array(taxBrackets_2024)
|
|
103
|
-
deltaBrackets_2026 = np.array(taxBrackets_2026)
|
|
104
|
-
for t in range(6, 0, -1):
|
|
105
|
-
for i in range(2):
|
|
106
|
-
deltaBrackets_2024[i, t] -= deltaBrackets_2024[i, t - 1]
|
|
107
|
-
deltaBrackets_2026[i, t] -= deltaBrackets_2026[i, t - 1]
|
|
108
|
-
|
|
109
|
-
# Prepare the 3 arrays to return - use transpose for easy slicing.
|
|
110
|
-
sigma = np.zeros((N_n))
|
|
111
|
-
Delta = np.zeros((N_n, 7))
|
|
112
|
-
theta = np.zeros((N_n, 7))
|
|
113
|
-
|
|
114
|
-
filingStatus = len(yobs) - 1
|
|
115
|
-
souls = list(range(len(yobs)))
|
|
116
|
-
thisyear = date.today().year
|
|
117
|
-
|
|
118
|
-
for n in range(N_n):
|
|
119
|
-
# First check if shortest-lived individual is still with us.
|
|
120
|
-
if n == n_d:
|
|
121
|
-
souls.remove(i_d)
|
|
122
|
-
filingStatus -= 1
|
|
123
|
-
|
|
124
|
-
if thisyear + n < 2026:
|
|
125
|
-
sigma[n] = stdDeduction_2024[filingStatus]
|
|
126
|
-
Delta[n, :] = deltaBrackets_2024[filingStatus, :]
|
|
127
|
-
else:
|
|
128
|
-
sigma[n] = stdDeduction_2026[filingStatus]
|
|
129
|
-
Delta[n, :] = deltaBrackets_2026[filingStatus, :]
|
|
130
|
-
|
|
131
|
-
# Add 65+ additional exemption(s).
|
|
132
|
-
for i in souls:
|
|
133
|
-
if thisyear + n - yobs[i] >= 65:
|
|
134
|
-
sigma[n] += extraDeduction_65[filingStatus]
|
|
135
|
-
|
|
136
|
-
# Fill in future tax rates for year n.
|
|
137
|
-
if thisyear + n < 2026:
|
|
138
|
-
theta[n, :] = rates_2024[:]
|
|
139
|
-
else:
|
|
140
|
-
theta[n, :] = rates_2026[:]
|
|
141
|
-
|
|
142
|
-
Delta = Delta.transpose()
|
|
143
|
-
theta = theta.transpose()
|
|
144
|
-
|
|
145
|
-
# Return series unadjusted for inflation, in STD order.
|
|
146
|
-
return sigma, theta, Delta
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
def taxBrackets(N_i, n_d, N_n):
|
|
150
|
-
"""
|
|
151
|
-
Return dictionary containing future tax brackets
|
|
152
|
-
unadjusted for inflation for plotting.
|
|
153
|
-
"""
|
|
154
|
-
assert 0 < N_i and N_i <= 2, 'Cannot process %d individuals.' % N_i
|
|
155
|
-
# This 2 is the number of years left in TCJA from 2024.
|
|
156
|
-
ytc = 2
|
|
157
|
-
status = N_i - 1
|
|
158
|
-
n_d = min(n_d, N_n)
|
|
159
|
-
|
|
160
|
-
data = {}
|
|
161
|
-
for t in range(len(taxBracketNames) - 1):
|
|
162
|
-
array = np.zeros(N_n)
|
|
163
|
-
array[0:ytc] = taxBrackets_2024[status][t]
|
|
164
|
-
array[ytc:n_d] = taxBrackets_2026[status][t]
|
|
165
|
-
array[n_d:N_n] = taxBrackets_2026[0][t]
|
|
166
|
-
data[taxBracketNames[t]] = array
|
|
167
|
-
|
|
168
|
-
return data
|
|
169
|
-
|
|
170
|
-
|
|
171
|
-
def rho_in(yobs, N_n):
|
|
172
|
-
"""
|
|
173
|
-
Return Required Minimum Distribution fractions for each individual.
|
|
174
|
-
This implementation does not support spouses with more than
|
|
175
|
-
10-year difference.
|
|
176
|
-
It starts at age 73 until it goes to 75 in 2033.
|
|
177
|
-
"""
|
|
178
|
-
# Notice that table starts at age 72.
|
|
179
|
-
rmdTable = [
|
|
180
|
-
27.4,
|
|
181
|
-
26.5,
|
|
182
|
-
25.5,
|
|
183
|
-
24.6,
|
|
184
|
-
23.7,
|
|
185
|
-
22.9,
|
|
186
|
-
22.0,
|
|
187
|
-
21.1,
|
|
188
|
-
20.2,
|
|
189
|
-
19.4,
|
|
190
|
-
18.5,
|
|
191
|
-
17.7,
|
|
192
|
-
16.8,
|
|
193
|
-
16.0,
|
|
194
|
-
15.2,
|
|
195
|
-
14.4,
|
|
196
|
-
13.7,
|
|
197
|
-
12.9,
|
|
198
|
-
12.2,
|
|
199
|
-
11.5,
|
|
200
|
-
10.8,
|
|
201
|
-
10.1,
|
|
202
|
-
9.5,
|
|
203
|
-
8.9,
|
|
204
|
-
8.4,
|
|
205
|
-
7.8,
|
|
206
|
-
7.3,
|
|
207
|
-
6.8,
|
|
208
|
-
6.4,
|
|
209
|
-
6.0,
|
|
210
|
-
5.6,
|
|
211
|
-
5.2,
|
|
212
|
-
4.9,
|
|
213
|
-
4.6,
|
|
214
|
-
]
|
|
215
|
-
|
|
216
|
-
N_i = len(yobs)
|
|
217
|
-
if N_i == 2 and abs(yobs[0] - yobs[1]) > 10:
|
|
218
|
-
raise RuntimeError('RMD: Unsupported age difference of more than 10 years.')
|
|
219
|
-
|
|
220
|
-
rho = np.zeros((N_i, N_n))
|
|
221
|
-
thisyear = date.today().year
|
|
222
|
-
for i in range(N_i):
|
|
223
|
-
agenow = thisyear - yobs[i]
|
|
224
|
-
for n in range(N_n):
|
|
225
|
-
year = thisyear + n
|
|
226
|
-
yage = agenow + n
|
|
227
|
-
|
|
228
|
-
# Account for increase of RMD age between 2023 and 2032.
|
|
229
|
-
if (yage < 73) or (year > 2032 and yage < 75):
|
|
230
|
-
pass # rho[i][n] = 0
|
|
231
|
-
else:
|
|
232
|
-
rho[i][n] = 1.0 / rmdTable[yage - 72]
|
|
233
|
-
|
|
234
|
-
return rho
|
|
File without changes
|
|
File without changes
|