oscura 0.6.0__py3-none-any.whl → 0.8.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (38) hide show
  1. oscura/__init__.py +1 -1
  2. oscura/analyzers/eye/__init__.py +5 -1
  3. oscura/analyzers/eye/generation.py +501 -0
  4. oscura/analyzers/jitter/__init__.py +6 -6
  5. oscura/analyzers/jitter/timing.py +419 -0
  6. oscura/analyzers/patterns/__init__.py +28 -0
  7. oscura/analyzers/patterns/reverse_engineering.py +991 -0
  8. oscura/analyzers/power/__init__.py +35 -12
  9. oscura/analyzers/statistics/__init__.py +4 -0
  10. oscura/analyzers/statistics/basic.py +149 -0
  11. oscura/analyzers/statistics/correlation.py +47 -6
  12. oscura/analyzers/waveform/__init__.py +2 -0
  13. oscura/analyzers/waveform/measurements.py +145 -23
  14. oscura/analyzers/waveform/spectral.py +361 -8
  15. oscura/automotive/__init__.py +1 -1
  16. oscura/core/config/loader.py +0 -1
  17. oscura/core/types.py +108 -0
  18. oscura/loaders/__init__.py +12 -4
  19. oscura/loaders/tss.py +456 -0
  20. oscura/reporting/__init__.py +88 -1
  21. oscura/reporting/automation.py +348 -0
  22. oscura/reporting/citations.py +374 -0
  23. oscura/reporting/core.py +54 -0
  24. oscura/reporting/formatting/__init__.py +11 -0
  25. oscura/reporting/formatting/measurements.py +279 -0
  26. oscura/reporting/html.py +57 -0
  27. oscura/reporting/interpretation.py +431 -0
  28. oscura/reporting/summary.py +329 -0
  29. oscura/reporting/visualization.py +542 -0
  30. oscura/visualization/__init__.py +2 -1
  31. oscura/visualization/batch.py +521 -0
  32. oscura/workflows/__init__.py +2 -0
  33. oscura/workflows/waveform.py +783 -0
  34. {oscura-0.6.0.dist-info → oscura-0.8.0.dist-info}/METADATA +37 -19
  35. {oscura-0.6.0.dist-info → oscura-0.8.0.dist-info}/RECORD +38 -26
  36. {oscura-0.6.0.dist-info → oscura-0.8.0.dist-info}/WHEEL +0 -0
  37. {oscura-0.6.0.dist-info → oscura-0.8.0.dist-info}/entry_points.txt +0 -0
  38. {oscura-0.6.0.dist-info → oscura-0.8.0.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,419 @@
1
+ """Jitter timing measurements.
2
+
3
+ This module provides cycle-to-cycle jitter, period jitter, and
4
+ duty cycle distortion measurements per IEEE 2414-2020.
5
+
6
+
7
+ Example:
8
+ >>> from oscura.analyzers.jitter.timing import cycle_to_cycle_jitter
9
+ >>> c2c = cycle_to_cycle_jitter(periods)
10
+ >>> print(f"C2C RMS: {c2c.c2c_rms * 1e12:.2f} ps")
11
+
12
+ References:
13
+ IEEE 2414-2020: Standard for Jitter and Phase Noise
14
+ """
15
+
16
+ from __future__ import annotations
17
+
18
+ from dataclasses import dataclass
19
+ from typing import TYPE_CHECKING
20
+
21
+ import numpy as np
22
+
23
+ from oscura.core.exceptions import InsufficientDataError
24
+ from oscura.core.types import DigitalTrace, WaveformTrace
25
+
26
+ if TYPE_CHECKING:
27
+ from numpy.typing import NDArray
28
+
29
+
30
+ @dataclass
31
+ class CycleJitterResult:
32
+ """Result of cycle-to-cycle or period jitter measurement.
33
+
34
+ Attributes:
35
+ c2c_rms: Cycle-to-cycle jitter RMS in seconds.
36
+ c2c_pp: Cycle-to-cycle jitter peak-to-peak in seconds.
37
+ c2c_values: Array of individual C2C jitter values.
38
+ period_mean: Mean period in seconds.
39
+ period_std: Standard deviation of periods in seconds.
40
+ n_cycles: Number of cycles analyzed.
41
+ histogram: Histogram of C2C values.
42
+ bin_centers: Bin centers for histogram.
43
+ """
44
+
45
+ c2c_rms: float
46
+ c2c_pp: float
47
+ c2c_values: NDArray[np.float64]
48
+ period_mean: float
49
+ period_std: float
50
+ n_cycles: int
51
+ histogram: NDArray[np.float64] | None = None
52
+ bin_centers: NDArray[np.float64] | None = None
53
+
54
+
55
+ @dataclass
56
+ class DutyCycleDistortionResult:
57
+ """Result of duty cycle distortion measurement.
58
+
59
+ Attributes:
60
+ dcd_seconds: DCD in seconds.
61
+ dcd_percent: DCD as percentage of period.
62
+ mean_high_time: Mean high time in seconds.
63
+ mean_low_time: Mean low time in seconds.
64
+ duty_cycle: Actual duty cycle as fraction (0.0 to 1.0).
65
+ period: Mean period in seconds.
66
+ n_cycles: Number of cycles analyzed.
67
+ """
68
+
69
+ dcd_seconds: float
70
+ dcd_percent: float
71
+ mean_high_time: float
72
+ mean_low_time: float
73
+ duty_cycle: float
74
+ period: float
75
+ n_cycles: int
76
+
77
+
78
+ def tie_from_edges(
79
+ edge_timestamps: NDArray[np.float64],
80
+ nominal_period: float | None = None,
81
+ ) -> NDArray[np.float64]:
82
+ """Calculate Time Interval Error from edge timestamps.
83
+
84
+ TIE is the deviation of each edge from its ideal position
85
+ based on the recovered clock period.
86
+
87
+ Args:
88
+ edge_timestamps: Array of edge timestamps in seconds.
89
+ nominal_period: Expected period (computed from data if None).
90
+
91
+ Returns:
92
+ Array of TIE values in seconds.
93
+
94
+ Example:
95
+ >>> tie = tie_from_edges(rising_edges, nominal_period=1e-9)
96
+ >>> print(f"TIE range: {np.ptp(tie) * 1e12:.2f} ps")
97
+
98
+ References:
99
+ IEEE 2414-2020 Section 4.2: Time Interval Error Definition
100
+ """
101
+ if len(edge_timestamps) < 3:
102
+ return np.array([], dtype=np.float64)
103
+
104
+ # Calculate actual periods
105
+ periods = np.diff(edge_timestamps)
106
+
107
+ # Use mean period if nominal not provided
108
+ if nominal_period is None:
109
+ nominal_period = np.mean(periods)
110
+
111
+ # Calculate ideal edge positions
112
+ n_edges = len(edge_timestamps)
113
+ start_time = edge_timestamps[0]
114
+ ideal_positions = start_time + np.arange(n_edges) * nominal_period
115
+
116
+ # TIE is actual - ideal
117
+ tie: NDArray[np.float64] = edge_timestamps - ideal_positions
118
+
119
+ return tie
120
+
121
+
122
+ def cycle_to_cycle_jitter(
123
+ periods: NDArray[np.float64],
124
+ *,
125
+ include_histogram: bool = True,
126
+ n_bins: int = 50,
127
+ ) -> CycleJitterResult:
128
+ """Measure cycle-to-cycle jitter for clock quality analysis.
129
+
130
+ Cycle-to-cycle jitter measures the variation in period from
131
+ one clock cycle to the next: C2C[n] = |Period[n] - Period[n-1]|
132
+
133
+ Args:
134
+ periods: Array of measured clock periods in seconds.
135
+ include_histogram: Include histogram in result.
136
+ n_bins: Number of histogram bins.
137
+
138
+ Returns:
139
+ CycleJitterResult with C2C jitter statistics.
140
+
141
+ Raises:
142
+ InsufficientDataError: If fewer than 3 periods provided.
143
+
144
+ Example:
145
+ >>> c2c = cycle_to_cycle_jitter(periods)
146
+ >>> print(f"C2C: {c2c.c2c_rms * 1e12:.2f} ps RMS")
147
+
148
+ References:
149
+ IEEE 2414-2020 Section 5.3: Cycle-to-Cycle Jitter
150
+ """
151
+ if len(periods) < 3:
152
+ raise InsufficientDataError(
153
+ "Cycle-to-cycle jitter requires at least 3 periods",
154
+ required=3,
155
+ available=len(periods),
156
+ analysis_type="cycle_to_cycle_jitter",
157
+ )
158
+
159
+ # Remove NaN values
160
+ valid_periods = periods[~np.isnan(periods)]
161
+
162
+ if len(valid_periods) < 3:
163
+ raise InsufficientDataError(
164
+ "Cycle-to-cycle jitter requires at least 3 valid periods",
165
+ required=3,
166
+ available=len(valid_periods),
167
+ analysis_type="cycle_to_cycle_jitter",
168
+ )
169
+
170
+ # Calculate cycle-to-cycle differences
171
+ c2c_values = np.abs(np.diff(valid_periods))
172
+
173
+ # Statistics
174
+ c2c_rms = float(np.sqrt(np.mean(c2c_values**2)))
175
+ c2c_pp = float(np.max(c2c_values) - np.min(c2c_values))
176
+ period_mean = float(np.mean(valid_periods))
177
+ period_std = float(np.std(valid_periods))
178
+
179
+ # Optional histogram
180
+ if include_histogram and len(c2c_values) > 10:
181
+ hist, bin_edges = np.histogram(c2c_values, bins=n_bins, density=True)
182
+ bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2
183
+ else:
184
+ hist = None
185
+ bin_centers = None
186
+
187
+ return CycleJitterResult(
188
+ c2c_rms=c2c_rms,
189
+ c2c_pp=c2c_pp,
190
+ c2c_values=c2c_values,
191
+ period_mean=period_mean,
192
+ period_std=period_std,
193
+ n_cycles=len(valid_periods),
194
+ histogram=hist,
195
+ bin_centers=bin_centers,
196
+ )
197
+
198
+
199
+ def period_jitter(
200
+ periods: NDArray[np.float64],
201
+ nominal_period: float | None = None,
202
+ ) -> CycleJitterResult:
203
+ """Measure period jitter (deviation from nominal period).
204
+
205
+ Period jitter is the deviation of each period from the ideal
206
+ or nominal period. Unlike C2C jitter, it measures absolute deviation.
207
+
208
+ Args:
209
+ periods: Array of measured clock periods in seconds.
210
+ nominal_period: Expected period (uses mean if None).
211
+
212
+ Returns:
213
+ CycleJitterResult with period jitter statistics.
214
+
215
+ Raises:
216
+ InsufficientDataError: If fewer than 2 periods provided.
217
+
218
+ Example:
219
+ >>> pj = period_jitter(periods, nominal_period=1e-9)
220
+ >>> print(f"Period jitter: {pj.c2c_rms * 1e12:.2f} ps RMS")
221
+
222
+ References:
223
+ IEEE 2414-2020 Section 5.2: Period Jitter
224
+ """
225
+ if len(periods) < 2:
226
+ raise InsufficientDataError(
227
+ "Period jitter requires at least 2 periods",
228
+ required=2,
229
+ available=len(periods),
230
+ analysis_type="period_jitter",
231
+ )
232
+
233
+ valid_periods = periods[~np.isnan(periods)]
234
+
235
+ if nominal_period is None:
236
+ nominal_period = np.mean(valid_periods)
237
+
238
+ # Calculate deviations from nominal
239
+ deviations = valid_periods - nominal_period
240
+
241
+ return CycleJitterResult(
242
+ c2c_rms=float(np.std(valid_periods)), # RMS of period variation
243
+ c2c_pp=float(np.max(valid_periods) - np.min(valid_periods)),
244
+ c2c_values=np.abs(deviations),
245
+ period_mean=float(np.mean(valid_periods)),
246
+ period_std=float(np.std(valid_periods)),
247
+ n_cycles=len(valid_periods),
248
+ )
249
+
250
+
251
+ def measure_dcd(
252
+ trace: WaveformTrace | DigitalTrace,
253
+ clock_period: float | None = None,
254
+ *,
255
+ threshold: float = 0.5,
256
+ ) -> DutyCycleDistortionResult:
257
+ """Measure duty cycle distortion.
258
+
259
+ DCD measures the asymmetry between high and low times in a clock signal.
260
+ DCD = |mean_high_time - mean_low_time|
261
+
262
+ Args:
263
+ trace: Input waveform or digital trace.
264
+ clock_period: Expected clock period (computed if None).
265
+ threshold: Threshold level as fraction of amplitude (0.0-1.0).
266
+
267
+ Returns:
268
+ DutyCycleDistortionResult with DCD metrics.
269
+
270
+ Raises:
271
+ InsufficientDataError: If not enough edges found.
272
+
273
+ Example:
274
+ >>> dcd = measure_dcd(clock_trace, clock_period=1e-9)
275
+ >>> print(f"DCD: {dcd.dcd_percent:.1f}%")
276
+
277
+ References:
278
+ IEEE 2414-2020 Section 5.4: Duty Cycle Distortion
279
+ """
280
+ # Get edge timestamps
281
+ rising_edges, falling_edges = _find_edges(trace, threshold)
282
+
283
+ if len(rising_edges) < 2 or len(falling_edges) < 2:
284
+ raise InsufficientDataError(
285
+ "DCD measurement requires at least 2 rising and 2 falling edges",
286
+ required=4,
287
+ available=len(rising_edges) + len(falling_edges),
288
+ analysis_type="dcd_measurement",
289
+ )
290
+
291
+ # Measure high times (rising to falling)
292
+ high_times = []
293
+ for r_edge in rising_edges:
294
+ # Find next falling edge
295
+ next_falling = falling_edges[falling_edges > r_edge]
296
+ if len(next_falling) > 0:
297
+ high_times.append(next_falling[0] - r_edge)
298
+
299
+ # Measure low times (falling to rising)
300
+ low_times = []
301
+ for f_edge in falling_edges:
302
+ # Find next rising edge
303
+ next_rising = rising_edges[rising_edges > f_edge]
304
+ if len(next_rising) > 0:
305
+ low_times.append(next_rising[0] - f_edge)
306
+
307
+ if len(high_times) < 1 or len(low_times) < 1:
308
+ raise InsufficientDataError(
309
+ "Could not measure high/low times",
310
+ required=2,
311
+ available=0,
312
+ analysis_type="dcd_measurement",
313
+ )
314
+
315
+ mean_high = float(np.mean(high_times))
316
+ mean_low = float(np.mean(low_times))
317
+
318
+ # Calculate DCD
319
+ dcd_seconds = abs(mean_high - mean_low)
320
+ period = mean_high + mean_low
321
+
322
+ if clock_period is None:
323
+ clock_period = period
324
+
325
+ dcd_percent = (dcd_seconds / clock_period) * 100
326
+ duty_cycle = mean_high / period
327
+
328
+ return DutyCycleDistortionResult(
329
+ dcd_seconds=dcd_seconds,
330
+ dcd_percent=dcd_percent,
331
+ mean_high_time=mean_high,
332
+ mean_low_time=mean_low,
333
+ duty_cycle=duty_cycle,
334
+ period=period,
335
+ n_cycles=min(len(high_times), len(low_times)),
336
+ )
337
+
338
+
339
+ def _find_edges(
340
+ trace: WaveformTrace | DigitalTrace,
341
+ threshold_frac: float,
342
+ ) -> tuple[NDArray[np.float64], NDArray[np.float64]]:
343
+ """Find rising and falling edge timestamps with sub-sample interpolation.
344
+
345
+ Args:
346
+ trace: Input trace.
347
+ threshold_frac: Threshold as fraction of amplitude.
348
+
349
+ Returns:
350
+ Tuple of (rising_edges, falling_edges) arrays in seconds.
351
+ """
352
+ data = trace.data.astype(np.float64) if isinstance(trace, DigitalTrace) else trace.data
353
+
354
+ sample_rate = trace.metadata.sample_rate
355
+ sample_period = 1.0 / sample_rate
356
+
357
+ if len(data) < 3:
358
+ return np.array([]), np.array([])
359
+
360
+ # Find amplitude levels - use more extreme percentiles for better accuracy
361
+ low = np.percentile(data, 5)
362
+ high = np.percentile(data, 95)
363
+ threshold = low + threshold_frac * (high - low)
364
+
365
+ # Find crossings
366
+ above = data >= threshold
367
+ below = data < threshold
368
+
369
+ rising_indices = np.where(below[:-1] & above[1:])[0]
370
+ falling_indices = np.where(above[:-1] & below[1:])[0]
371
+
372
+ # Convert to timestamps with linear interpolation
373
+ # For a crossing between samples i and i+1:
374
+ # time = i * dt + (threshold - v[i]) / (v[i+1] - v[i]) * dt
375
+
376
+ rising_edges = []
377
+ for idx in rising_indices:
378
+ v1, v2 = data[idx], data[idx + 1]
379
+ dv = v2 - v1
380
+ if abs(dv) > 1e-12:
381
+ # Linear interpolation to find exact crossing time
382
+ frac = (threshold - v1) / dv
383
+ # Clamp to [0, 1] to handle numerical errors
384
+ frac = max(0.0, min(1.0, frac))
385
+ t_offset = frac * sample_period
386
+ else:
387
+ # Values are equal, use midpoint
388
+ t_offset = sample_period / 2
389
+ rising_edges.append(idx * sample_period + t_offset)
390
+
391
+ falling_edges = []
392
+ for idx in falling_indices:
393
+ v1, v2 = data[idx], data[idx + 1]
394
+ dv = v2 - v1
395
+ if abs(dv) > 1e-12:
396
+ # Linear interpolation to find exact crossing time
397
+ frac = (threshold - v1) / dv
398
+ # Clamp to [0, 1] to handle numerical errors
399
+ frac = max(0.0, min(1.0, frac))
400
+ t_offset = frac * sample_period
401
+ else:
402
+ # Values are equal, use midpoint
403
+ t_offset = sample_period / 2
404
+ falling_edges.append(idx * sample_period + t_offset)
405
+
406
+ return (
407
+ np.array(rising_edges, dtype=np.float64),
408
+ np.array(falling_edges, dtype=np.float64),
409
+ )
410
+
411
+
412
+ __all__ = [
413
+ "CycleJitterResult",
414
+ "DutyCycleDistortionResult",
415
+ "cycle_to_cycle_jitter",
416
+ "measure_dcd",
417
+ "period_jitter",
418
+ "tie_from_edges",
419
+ ]
@@ -11,11 +11,13 @@ for digital signals and binary data, including:
11
11
  - Multi-pattern search (Aho-Corasick)
12
12
  - Fuzzy/approximate pattern matching
13
13
  - Pattern learning and discovery
14
+ - Comprehensive reverse engineering toolkit
14
15
 
15
16
  - RE-PAT-001: Binary Regex Pattern Matching
16
17
  - RE-PAT-002: Multi-Pattern Search (Aho-Corasick)
17
18
  - RE-PAT-003: Fuzzy Pattern Matching
18
19
  - RE-PAT-004: Pattern Learning and Discovery
20
+ - RE-PAT-005: Reverse Engineering Toolkit
19
21
 
20
22
  Author: Oscura Development Team
21
23
  """
@@ -91,6 +93,20 @@ detect_period_fft = detect_periods_fft
91
93
  # Motif detection functions (aliases for test compatibility)
92
94
  from typing import TYPE_CHECKING, Any, cast
93
95
 
96
+ # RE-PAT-005: Comprehensive Reverse Engineering Toolkit
97
+ from .reverse_engineering import (
98
+ BinaryAnalysisResult,
99
+ FieldDescriptor,
100
+ ProtocolStructure,
101
+ ReverseEngineer,
102
+ byte_frequency_distribution,
103
+ detect_compressed_regions,
104
+ detect_encrypted_regions,
105
+ entropy_profile,
106
+ search_pattern,
107
+ shannon_entropy,
108
+ sliding_entropy,
109
+ )
94
110
  from .sequences import (
95
111
  NgramResult,
96
112
  RepeatingSequence,
@@ -233,11 +249,14 @@ def pattern_similarity(pattern1: Any, pattern2: Any) -> float:
233
249
  __all__ = [
234
250
  # RE-PAT-002: Multi-Pattern Search
235
251
  "AhoCorasickMatcher",
252
+ # RE-PAT-005: Reverse Engineering Toolkit
253
+ "BinaryAnalysisResult",
236
254
  # RE-PAT-001: Binary Regex Pattern Matching
237
255
  "BinaryRegex",
238
256
  "CandidateSignature",
239
257
  "ClusterResult",
240
258
  "ClusteringResult",
259
+ "FieldDescriptor",
241
260
  "FuzzyMatchResult",
242
261
  # RE-PAT-003: Fuzzy Pattern Matching
243
262
  "FuzzyMatcher",
@@ -249,11 +268,14 @@ __all__ = [
249
268
  "PatternMatchResult",
250
269
  "PeriodResult",
251
270
  "PeriodicPatternDetector",
271
+ "ProtocolStructure",
252
272
  "RepeatingSequence",
273
+ "ReverseEngineer",
253
274
  "SignatureDiscovery",
254
275
  "StructureHypothesis",
255
276
  "analyze_cluster",
256
277
  "binary_regex_search",
278
+ "byte_frequency_distribution",
257
279
  "cluster_by_edit_distance",
258
280
  "cluster_by_hamming",
259
281
  "cluster_hierarchical",
@@ -262,12 +284,15 @@ __all__ = [
262
284
  "count_pattern_occurrences",
263
285
  # Motif detection (compatibility)
264
286
  "detect_anomalies",
287
+ "detect_compressed_regions",
288
+ "detect_encrypted_regions",
265
289
  "detect_period",
266
290
  "detect_period_autocorr",
267
291
  "detect_period_fft",
268
292
  "detect_periods_autocorr",
269
293
  "detect_periods_fft",
270
294
  "discover_signatures",
295
+ "entropy_profile",
271
296
  "extract_motif",
272
297
  "find_approximate_repeats",
273
298
  "find_delimiter_candidates",
@@ -284,5 +309,8 @@ __all__ = [
284
309
  "learn_patterns_from_data",
285
310
  "multi_pattern_search",
286
311
  "pattern_similarity",
312
+ "search_pattern",
313
+ "shannon_entropy",
314
+ "sliding_entropy",
287
315
  "validate_period",
288
316
  ]