orchestrator-core 4.4.1__py3-none-any.whl → 4.5.0a2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (54) hide show
  1. orchestrator/__init__.py +26 -2
  2. orchestrator/agentic_app.py +84 -0
  3. orchestrator/api/api_v1/api.py +10 -0
  4. orchestrator/api/api_v1/endpoints/search.py +277 -0
  5. orchestrator/app.py +32 -0
  6. orchestrator/cli/index_llm.py +73 -0
  7. orchestrator/cli/main.py +22 -1
  8. orchestrator/cli/resize_embedding.py +135 -0
  9. orchestrator/cli/search_explore.py +208 -0
  10. orchestrator/cli/speedtest.py +151 -0
  11. orchestrator/db/models.py +37 -1
  12. orchestrator/llm_settings.py +51 -0
  13. orchestrator/migrations/versions/schema/2025-08-12_52b37b5b2714_search_index_model_for_llm_integration.py +95 -0
  14. orchestrator/schemas/search.py +117 -0
  15. orchestrator/search/__init__.py +12 -0
  16. orchestrator/search/agent/__init__.py +8 -0
  17. orchestrator/search/agent/agent.py +47 -0
  18. orchestrator/search/agent/prompts.py +87 -0
  19. orchestrator/search/agent/state.py +8 -0
  20. orchestrator/search/agent/tools.py +236 -0
  21. orchestrator/search/core/__init__.py +0 -0
  22. orchestrator/search/core/embedding.py +64 -0
  23. orchestrator/search/core/exceptions.py +22 -0
  24. orchestrator/search/core/types.py +281 -0
  25. orchestrator/search/core/validators.py +27 -0
  26. orchestrator/search/docs/index.md +37 -0
  27. orchestrator/search/docs/running_local_text_embedding_inference.md +45 -0
  28. orchestrator/search/filters/__init__.py +27 -0
  29. orchestrator/search/filters/base.py +275 -0
  30. orchestrator/search/filters/date_filters.py +75 -0
  31. orchestrator/search/filters/definitions.py +93 -0
  32. orchestrator/search/filters/ltree_filters.py +43 -0
  33. orchestrator/search/filters/numeric_filter.py +60 -0
  34. orchestrator/search/indexing/__init__.py +3 -0
  35. orchestrator/search/indexing/indexer.py +323 -0
  36. orchestrator/search/indexing/registry.py +88 -0
  37. orchestrator/search/indexing/tasks.py +53 -0
  38. orchestrator/search/indexing/traverse.py +322 -0
  39. orchestrator/search/retrieval/__init__.py +3 -0
  40. orchestrator/search/retrieval/builder.py +113 -0
  41. orchestrator/search/retrieval/engine.py +152 -0
  42. orchestrator/search/retrieval/pagination.py +83 -0
  43. orchestrator/search/retrieval/retriever.py +447 -0
  44. orchestrator/search/retrieval/utils.py +106 -0
  45. orchestrator/search/retrieval/validation.py +174 -0
  46. orchestrator/search/schemas/__init__.py +0 -0
  47. orchestrator/search/schemas/parameters.py +116 -0
  48. orchestrator/search/schemas/results.py +64 -0
  49. orchestrator/services/settings_env_variables.py +2 -2
  50. orchestrator/settings.py +1 -1
  51. {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0a2.dist-info}/METADATA +8 -3
  52. {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0a2.dist-info}/RECORD +54 -11
  53. {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0a2.dist-info}/WHEEL +0 -0
  54. {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0a2.dist-info}/licenses/LICENSE +0 -0
@@ -0,0 +1,447 @@
1
+ from abc import ABC, abstractmethod
2
+ from decimal import Decimal
3
+
4
+ import structlog
5
+ from sqlalchemy import BindParameter, Numeric, Select, and_, bindparam, case, cast, func, literal, or_, select
6
+ from sqlalchemy.sql.expression import ColumnElement
7
+
8
+ from orchestrator.db.models import AiSearchIndex
9
+ from orchestrator.search.core.types import FieldType, SearchMetadata
10
+ from orchestrator.search.schemas.parameters import BaseSearchParameters
11
+
12
+ from .pagination import PaginationParams
13
+
14
+ logger = structlog.get_logger(__name__)
15
+
16
+
17
+ class Retriever(ABC):
18
+ """Abstract base class for applying a ranking strategy to a search query."""
19
+
20
+ SCORE_PRECISION = 12
21
+ SCORE_NUMERIC_TYPE = Numeric(38, 12)
22
+ HIGHLIGHT_TEXT_LABEL = "highlight_text"
23
+ HIGHLIGHT_PATH_LABEL = "highlight_path"
24
+ SCORE_LABEL = "score"
25
+ SEARCHABLE_FIELD_TYPES = [
26
+ FieldType.STRING.value,
27
+ FieldType.UUID.value,
28
+ FieldType.BLOCK.value,
29
+ FieldType.RESOURCE_TYPE.value,
30
+ ]
31
+
32
+ @classmethod
33
+ async def from_params(
34
+ cls,
35
+ params: BaseSearchParameters,
36
+ pagination_params: PaginationParams,
37
+ ) -> "Retriever":
38
+ """Create the appropriate retriever instance from search parameters.
39
+
40
+ Parameters
41
+ ----------
42
+ params : BaseSearchParameters
43
+ Search parameters including vector queries, fuzzy terms, and filters.
44
+ pagination_params : PaginationParams
45
+ Pagination parameters for cursor-based paging.
46
+
47
+ Returns:
48
+ -------
49
+ Retriever
50
+ A concrete retriever instance (semantic, fuzzy, hybrid, or structured).
51
+ """
52
+ fuzzy_term = params.fuzzy_term
53
+ q_vec = await cls._get_query_vector(params.vector_query, pagination_params.q_vec_override)
54
+
55
+ # If semantic search was attempted but failed, fall back to fuzzy with the full query
56
+ fallback_fuzzy_term = fuzzy_term
57
+ if q_vec is None and params.vector_query is not None and params.query is not None:
58
+ fallback_fuzzy_term = params.query
59
+
60
+ if q_vec is not None and fallback_fuzzy_term is not None:
61
+ return RrfHybridRetriever(q_vec, fallback_fuzzy_term, pagination_params)
62
+ if q_vec is not None:
63
+ return SemanticRetriever(q_vec, pagination_params)
64
+ if fallback_fuzzy_term is not None:
65
+ return FuzzyRetriever(fallback_fuzzy_term, pagination_params)
66
+
67
+ return StructuredRetriever(pagination_params)
68
+
69
+ @classmethod
70
+ async def _get_query_vector(
71
+ cls, vector_query: str | None, q_vec_override: list[float] | None
72
+ ) -> list[float] | None:
73
+ """Get query vector either from override or by generating from text."""
74
+ if q_vec_override:
75
+ return q_vec_override
76
+
77
+ if not vector_query:
78
+ return None
79
+
80
+ from orchestrator.search.core.embedding import QueryEmbedder
81
+
82
+ q_vec = await QueryEmbedder.generate_for_text_async(vector_query)
83
+ if not q_vec:
84
+ logger.warning("Embedding generation failed; using non-semantic retriever")
85
+ return None
86
+
87
+ return q_vec
88
+
89
+ @abstractmethod
90
+ def apply(self, candidate_query: Select) -> Select:
91
+ """Apply the ranking logic to the given candidate query.
92
+
93
+ Parameters
94
+ ----------
95
+ candidate_query : Select
96
+ A SQLAlchemy `Select` statement returning candidate entity IDs.
97
+
98
+ Returns:
99
+ -------
100
+ Select
101
+ A new `Select` statement with ranking expressions applied.
102
+ """
103
+ ...
104
+
105
+ def _quantize_score_for_pagination(self, score_value: float) -> BindParameter[Decimal]:
106
+ """Convert score value to properly quantized Decimal parameter for pagination."""
107
+ pas_dec = Decimal(str(score_value)).quantize(Decimal("0.000000000001"))
108
+ return literal(pas_dec, type_=self.SCORE_NUMERIC_TYPE)
109
+
110
+ @property
111
+ @abstractmethod
112
+ def metadata(self) -> SearchMetadata:
113
+ """Return metadata describing this search strategy."""
114
+ ...
115
+
116
+
117
+ class StructuredRetriever(Retriever):
118
+ """Applies a dummy score for purely structured searches with no text query."""
119
+
120
+ def __init__(self, pagination_params: PaginationParams) -> None:
121
+ self.page_after_id = pagination_params.page_after_id
122
+
123
+ def apply(self, candidate_query: Select) -> Select:
124
+ cand = candidate_query.subquery()
125
+ stmt = select(cand.c.entity_id, literal(1.0).label("score")).select_from(cand)
126
+
127
+ if self.page_after_id:
128
+ stmt = stmt.where(cand.c.entity_id > self.page_after_id)
129
+
130
+ return stmt.order_by(cand.c.entity_id.asc())
131
+
132
+ @property
133
+ def metadata(self) -> SearchMetadata:
134
+ return SearchMetadata.structured()
135
+
136
+
137
+ class FuzzyRetriever(Retriever):
138
+ """Ranks results based on the max of fuzzy text similarity scores."""
139
+
140
+ def __init__(self, fuzzy_term: str, pagination_params: PaginationParams) -> None:
141
+ self.fuzzy_term = fuzzy_term
142
+ self.page_after_score = pagination_params.page_after_score
143
+ self.page_after_id = pagination_params.page_after_id
144
+
145
+ def apply(self, candidate_query: Select) -> Select:
146
+ cand = candidate_query.subquery()
147
+
148
+ similarity_expr = func.word_similarity(self.fuzzy_term, AiSearchIndex.value)
149
+
150
+ raw_max = func.max(similarity_expr).over(partition_by=AiSearchIndex.entity_id)
151
+ score = cast(
152
+ func.round(cast(raw_max, self.SCORE_NUMERIC_TYPE), self.SCORE_PRECISION), self.SCORE_NUMERIC_TYPE
153
+ ).label(self.SCORE_LABEL)
154
+
155
+ combined_query = (
156
+ select(
157
+ AiSearchIndex.entity_id,
158
+ score,
159
+ func.first_value(AiSearchIndex.value)
160
+ .over(partition_by=AiSearchIndex.entity_id, order_by=[similarity_expr.desc(), AiSearchIndex.path.asc()])
161
+ .label(self.HIGHLIGHT_TEXT_LABEL),
162
+ func.first_value(AiSearchIndex.path)
163
+ .over(partition_by=AiSearchIndex.entity_id, order_by=[similarity_expr.desc(), AiSearchIndex.path.asc()])
164
+ .label(self.HIGHLIGHT_PATH_LABEL),
165
+ )
166
+ .select_from(AiSearchIndex)
167
+ .join(cand, cand.c.entity_id == AiSearchIndex.entity_id)
168
+ .where(
169
+ and_(
170
+ AiSearchIndex.value_type.in_(self.SEARCHABLE_FIELD_TYPES),
171
+ literal(self.fuzzy_term).op("<%")(AiSearchIndex.value),
172
+ )
173
+ )
174
+ .distinct(AiSearchIndex.entity_id)
175
+ )
176
+ final_query = combined_query.subquery("ranked_fuzzy")
177
+
178
+ stmt = select(
179
+ final_query.c.entity_id,
180
+ final_query.c.score,
181
+ final_query.c.highlight_text,
182
+ final_query.c.highlight_path,
183
+ ).select_from(final_query)
184
+
185
+ stmt = self._apply_score_pagination(stmt, final_query.c.score, final_query.c.entity_id)
186
+
187
+ return stmt.order_by(final_query.c.score.desc().nulls_last(), final_query.c.entity_id.asc())
188
+
189
+ @property
190
+ def metadata(self) -> SearchMetadata:
191
+ return SearchMetadata.fuzzy()
192
+
193
+ def _apply_score_pagination(
194
+ self, stmt: Select, score_column: ColumnElement, entity_id_column: ColumnElement
195
+ ) -> Select:
196
+ """Apply standard score + entity_id pagination."""
197
+ if self.page_after_score is not None and self.page_after_id is not None:
198
+ stmt = stmt.where(
199
+ or_(
200
+ score_column < self.page_after_score,
201
+ and_(
202
+ score_column == self.page_after_score,
203
+ entity_id_column > self.page_after_id,
204
+ ),
205
+ )
206
+ )
207
+ return stmt
208
+
209
+
210
+ class SemanticRetriever(Retriever):
211
+ """Ranks results based on the minimum semantic vector distance."""
212
+
213
+ def __init__(self, vector_query: list[float], pagination_params: PaginationParams) -> None:
214
+ self.vector_query = vector_query
215
+ self.page_after_score = pagination_params.page_after_score
216
+ self.page_after_id = pagination_params.page_after_id
217
+
218
+ def apply(self, candidate_query: Select) -> Select:
219
+ cand = candidate_query.subquery()
220
+
221
+ dist = AiSearchIndex.embedding.l2_distance(self.vector_query)
222
+
223
+ raw_min = func.min(dist).over(partition_by=AiSearchIndex.entity_id)
224
+
225
+ # Normalize score to preserve ordering in accordance with other retrievers:
226
+ # smaller distance = higher score
227
+ similarity = literal(1.0, type_=self.SCORE_NUMERIC_TYPE) / (
228
+ literal(1.0, type_=self.SCORE_NUMERIC_TYPE) + cast(raw_min, self.SCORE_NUMERIC_TYPE)
229
+ )
230
+
231
+ score = cast(
232
+ func.round(cast(similarity, self.SCORE_NUMERIC_TYPE), self.SCORE_PRECISION), self.SCORE_NUMERIC_TYPE
233
+ ).label(self.SCORE_LABEL)
234
+
235
+ combined_query = (
236
+ select(
237
+ AiSearchIndex.entity_id,
238
+ score,
239
+ func.first_value(AiSearchIndex.value)
240
+ .over(partition_by=AiSearchIndex.entity_id, order_by=[dist.asc(), AiSearchIndex.path.asc()])
241
+ .label(self.HIGHLIGHT_TEXT_LABEL),
242
+ func.first_value(AiSearchIndex.path)
243
+ .over(partition_by=AiSearchIndex.entity_id, order_by=[dist.asc(), AiSearchIndex.path.asc()])
244
+ .label(self.HIGHLIGHT_PATH_LABEL),
245
+ )
246
+ .select_from(AiSearchIndex)
247
+ .join(cand, cand.c.entity_id == AiSearchIndex.entity_id)
248
+ .where(AiSearchIndex.embedding.isnot(None))
249
+ .distinct(AiSearchIndex.entity_id)
250
+ )
251
+ final_query = combined_query.subquery("ranked_semantic")
252
+
253
+ stmt = select(
254
+ final_query.c.entity_id,
255
+ final_query.c.score,
256
+ final_query.c.highlight_text,
257
+ final_query.c.highlight_path,
258
+ ).select_from(final_query)
259
+
260
+ stmt = self._apply_semantic_pagination(stmt, final_query.c.score, final_query.c.entity_id)
261
+
262
+ return stmt.order_by(final_query.c.score.desc().nulls_last(), final_query.c.entity_id.asc())
263
+
264
+ @property
265
+ def metadata(self) -> SearchMetadata:
266
+ return SearchMetadata.semantic()
267
+
268
+ def _apply_semantic_pagination(
269
+ self, stmt: Select, score_column: ColumnElement, entity_id_column: ColumnElement
270
+ ) -> Select:
271
+ """Apply semantic score pagination with precise Decimal handling."""
272
+ if self.page_after_score is not None and self.page_after_id is not None:
273
+ score_param = self._quantize_score_for_pagination(self.page_after_score)
274
+ stmt = stmt.where(
275
+ or_(
276
+ score_column < score_param,
277
+ and_(score_column == score_param, entity_id_column > self.page_after_id),
278
+ )
279
+ )
280
+ return stmt
281
+
282
+
283
+ class RrfHybridRetriever(Retriever):
284
+ """Reciprocal Rank Fusion of semantic and fuzzy ranking with parent-child retrieval."""
285
+
286
+ def __init__(
287
+ self,
288
+ q_vec: list[float],
289
+ fuzzy_term: str,
290
+ pagination_params: PaginationParams,
291
+ k: int = 60,
292
+ field_candidates_limit: int = 100,
293
+ ) -> None:
294
+ self.q_vec = q_vec
295
+ self.fuzzy_term = fuzzy_term
296
+ self.page_after_score = pagination_params.page_after_score
297
+ self.page_after_id = pagination_params.page_after_id
298
+ self.k = k
299
+ self.field_candidates_limit = field_candidates_limit
300
+
301
+ def apply(self, candidate_query: Select) -> Select:
302
+ cand = candidate_query.subquery()
303
+ q_param: BindParameter[list[float]] = bindparam("q_vec", self.q_vec, type_=AiSearchIndex.embedding.type)
304
+
305
+ best_similarity = func.word_similarity(self.fuzzy_term, AiSearchIndex.value)
306
+ sem_expr = case(
307
+ (AiSearchIndex.embedding.is_(None), None),
308
+ else_=AiSearchIndex.embedding.op("<->")(q_param),
309
+ )
310
+ sem_val = func.coalesce(sem_expr, literal(1.0)).label("semantic_distance")
311
+
312
+ filter_condition = literal(self.fuzzy_term).op("<%")(AiSearchIndex.value)
313
+
314
+ field_candidates = (
315
+ select(
316
+ AiSearchIndex.entity_id,
317
+ AiSearchIndex.path,
318
+ AiSearchIndex.value,
319
+ sem_val,
320
+ best_similarity.label("fuzzy_score"),
321
+ )
322
+ .select_from(AiSearchIndex)
323
+ .join(cand, cand.c.entity_id == AiSearchIndex.entity_id)
324
+ .where(
325
+ and_(
326
+ AiSearchIndex.value_type.in_(self.SEARCHABLE_FIELD_TYPES),
327
+ filter_condition,
328
+ )
329
+ )
330
+ .order_by(
331
+ best_similarity.desc().nulls_last(),
332
+ sem_expr.asc().nulls_last(),
333
+ AiSearchIndex.entity_id.asc(),
334
+ )
335
+ .limit(self.field_candidates_limit)
336
+ ).cte("field_candidates")
337
+
338
+ entity_scores = (
339
+ select(
340
+ field_candidates.c.entity_id,
341
+ func.avg(field_candidates.c.semantic_distance).label("avg_semantic_distance"),
342
+ func.avg(field_candidates.c.fuzzy_score).label("avg_fuzzy_score"),
343
+ ).group_by(field_candidates.c.entity_id)
344
+ ).cte("entity_scores")
345
+
346
+ entity_highlights = (
347
+ select(
348
+ field_candidates.c.entity_id,
349
+ func.first_value(field_candidates.c.value)
350
+ .over(
351
+ partition_by=field_candidates.c.entity_id,
352
+ order_by=[field_candidates.c.fuzzy_score.desc(), field_candidates.c.path.asc()],
353
+ )
354
+ .label(self.HIGHLIGHT_TEXT_LABEL),
355
+ func.first_value(field_candidates.c.path)
356
+ .over(
357
+ partition_by=field_candidates.c.entity_id,
358
+ order_by=[field_candidates.c.fuzzy_score.desc(), field_candidates.c.path.asc()],
359
+ )
360
+ .label(self.HIGHLIGHT_PATH_LABEL),
361
+ ).distinct(field_candidates.c.entity_id)
362
+ ).cte("entity_highlights")
363
+
364
+ ranked = (
365
+ select(
366
+ entity_scores.c.entity_id,
367
+ entity_scores.c.avg_semantic_distance,
368
+ entity_scores.c.avg_fuzzy_score,
369
+ entity_highlights.c.highlight_text,
370
+ entity_highlights.c.highlight_path,
371
+ func.dense_rank()
372
+ .over(
373
+ order_by=[entity_scores.c.avg_semantic_distance.asc().nulls_last(), entity_scores.c.entity_id.asc()]
374
+ )
375
+ .label("sem_rank"),
376
+ func.dense_rank()
377
+ .over(order_by=[entity_scores.c.avg_fuzzy_score.desc().nulls_last(), entity_scores.c.entity_id.asc()])
378
+ .label("fuzzy_rank"),
379
+ ).select_from(
380
+ entity_scores.join(entity_highlights, entity_scores.c.entity_id == entity_highlights.c.entity_id)
381
+ )
382
+ ).cte("ranked_results")
383
+
384
+ # RRF (rank-based)
385
+ rrf_raw = (1.0 / (self.k + ranked.c.sem_rank)) + (1.0 / (self.k + ranked.c.fuzzy_rank))
386
+ rrf_num = cast(rrf_raw, self.SCORE_NUMERIC_TYPE)
387
+
388
+ # Perfect flag to boost near perfect fuzzy matches as this most likely indicates the desired record.
389
+ perfect = case((ranked.c.avg_fuzzy_score >= 0.9, 1), else_=0).label("perfect_match")
390
+
391
+ # Dynamic beta based on k (and number of sources)
392
+ # rrf_max = n_sources / (k + 1)
393
+ k_num = literal(float(self.k), type_=self.SCORE_NUMERIC_TYPE)
394
+ n_sources = literal(2.0, type_=self.SCORE_NUMERIC_TYPE) # semantic + fuzzy
395
+ rrf_max = n_sources / (k_num + literal(1.0, type_=self.SCORE_NUMERIC_TYPE))
396
+
397
+ # Choose a small positive margin above rrf_max to ensure strict separation
398
+ # Keep it small to avoid compressing perfects near 1 after normalization
399
+ margin = rrf_max * literal(0.05, type_=self.SCORE_NUMERIC_TYPE) # 5% above bound
400
+ beta = rrf_max + margin
401
+
402
+ fused_num = rrf_num + beta * cast(perfect, self.SCORE_NUMERIC_TYPE)
403
+
404
+ # Normalize to [0,1] via the theoretical max (beta + rrf_max)
405
+ norm_den = beta + rrf_max
406
+ normalized_score = fused_num / norm_den
407
+
408
+ score = cast(
409
+ func.round(cast(normalized_score, self.SCORE_NUMERIC_TYPE), self.SCORE_PRECISION),
410
+ self.SCORE_NUMERIC_TYPE,
411
+ ).label(self.SCORE_LABEL)
412
+
413
+ stmt = select(
414
+ ranked.c.entity_id,
415
+ score,
416
+ ranked.c.highlight_text,
417
+ ranked.c.highlight_path,
418
+ perfect.label("perfect_match"),
419
+ ).select_from(ranked)
420
+
421
+ stmt = self._apply_fused_pagination(stmt, score, ranked.c.entity_id)
422
+
423
+ return stmt.order_by(
424
+ score.desc().nulls_last(),
425
+ ranked.c.entity_id.asc(),
426
+ ).params(q_vec=self.q_vec)
427
+
428
+ def _apply_fused_pagination(
429
+ self,
430
+ stmt: Select,
431
+ score_column: ColumnElement,
432
+ entity_id_column: ColumnElement,
433
+ ) -> Select:
434
+ """Keyset paginate by fused score + id."""
435
+ if self.page_after_score is not None and self.page_after_id is not None:
436
+ score_param = self._quantize_score_for_pagination(self.page_after_score)
437
+ stmt = stmt.where(
438
+ or_(
439
+ score_column < score_param,
440
+ and_(score_column == score_param, entity_id_column > self.page_after_id),
441
+ )
442
+ )
443
+ return stmt
444
+
445
+ @property
446
+ def metadata(self) -> SearchMetadata:
447
+ return SearchMetadata.hybrid()
@@ -0,0 +1,106 @@
1
+ import json
2
+ import re
3
+
4
+ import structlog
5
+ from sqlalchemy import and_
6
+ from sqlalchemy_utils.types.ltree import Ltree
7
+
8
+ from orchestrator.db.database import WrappedSession
9
+ from orchestrator.db.models import AiSearchIndex
10
+ from orchestrator.search.core.types import EntityType
11
+ from orchestrator.search.indexing.registry import ENTITY_CONFIG_REGISTRY
12
+ from orchestrator.search.schemas.parameters import BaseSearchParameters
13
+ from orchestrator.search.schemas.results import SearchResult
14
+
15
+ logger = structlog.get_logger(__name__)
16
+
17
+
18
+ def generate_highlight_indices(text: str, term: str) -> list[tuple[int, int]]:
19
+ """Finds all occurrences of individual words from the term with word boundary matching case-insensitively."""
20
+ if not text or not term:
21
+ return []
22
+
23
+ all_matches = []
24
+ words = [w.strip() for w in term.split() if w.strip()]
25
+
26
+ for word in words:
27
+ word_boundary_pattern = rf"\b{re.escape(word)}\b"
28
+ matches = list(re.finditer(word_boundary_pattern, text, re.IGNORECASE))
29
+
30
+ if not matches:
31
+ substring_pattern = re.escape(word)
32
+ matches = list(re.finditer(substring_pattern, text, re.IGNORECASE))
33
+
34
+ all_matches.extend([(m.start(), m.end()) for m in matches])
35
+
36
+ return sorted(set(all_matches))
37
+
38
+
39
+ def display_filtered_paths_only(
40
+ results: list[SearchResult], search_params: BaseSearchParameters, db_session: WrappedSession
41
+ ) -> None:
42
+ """Display only the paths that were searched for in the results."""
43
+ if not results:
44
+ logger.info("No results found.")
45
+ return
46
+
47
+ logger.info("--- Search Results ---")
48
+
49
+ searched_paths = search_params.filters.get_all_paths() if search_params.filters else []
50
+ if not searched_paths:
51
+ return
52
+
53
+ for result in results:
54
+ for path in searched_paths:
55
+ record: AiSearchIndex | None = (
56
+ db_session.query(AiSearchIndex)
57
+ .filter(and_(AiSearchIndex.entity_id == result.entity_id, AiSearchIndex.path == Ltree(path)))
58
+ .first()
59
+ )
60
+
61
+ if record:
62
+ logger.info(f" {record.path}: {record.value}")
63
+
64
+ logger.info("-" * 40)
65
+
66
+
67
+ def display_results(
68
+ results: list[SearchResult],
69
+ db_session: WrappedSession,
70
+ score_label: str = "Score",
71
+ ) -> None:
72
+ """Display search results, showing matched field when available or uuid+name for vector search."""
73
+ if not results:
74
+ logger.info("No results found.")
75
+ return
76
+
77
+ logger.info("--- Search Results ---")
78
+ for result in results:
79
+ entity_id = result.entity_id
80
+ score = result.score
81
+
82
+ # If we have a matching field from fuzzy search, display only that
83
+ if result.matching_field:
84
+ logger.info(f"Entity ID: {entity_id}")
85
+ logger.info(f"Matched field ({result.matching_field.path}): {result.matching_field.text}")
86
+ logger.info(f"{score_label}: {score:.4f}\n" + "-" * 20)
87
+ continue
88
+
89
+ index_records = db_session.query(AiSearchIndex).filter(AiSearchIndex.entity_id == entity_id).all()
90
+ if not index_records:
91
+ logger.warning(f"Could not find indexed records for entity_id={entity_id}")
92
+ continue
93
+
94
+ first_record = index_records[0]
95
+ kind = EntityType(first_record.entity_type)
96
+ config = ENTITY_CONFIG_REGISTRY[kind]
97
+
98
+ db_entity = db_session.get(config.table, entity_id) if config.table else None
99
+
100
+ if db_entity and config.traverser:
101
+ fields = config.traverser.get_fields(db_entity, config.pk_name, config.root_name)
102
+ result_obj = {p: v for p, v, _ in fields}
103
+ logger.info(json.dumps(result_obj, indent=2, default=str))
104
+ logger.info(f"{score_label}: {score:.4f}\n" + "-" * 20)
105
+ else:
106
+ logger.warning(f"Could not display entity {kind.value} with id={entity_id}")