orchestrator-core 4.4.1__py3-none-any.whl → 4.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orchestrator/__init__.py +17 -2
- orchestrator/agentic_app.py +103 -0
- orchestrator/api/api_v1/api.py +14 -2
- orchestrator/api/api_v1/endpoints/processes.py +2 -0
- orchestrator/api/api_v1/endpoints/search.py +296 -0
- orchestrator/app.py +32 -0
- orchestrator/cli/main.py +22 -1
- orchestrator/cli/search/__init__.py +32 -0
- orchestrator/cli/search/index_llm.py +73 -0
- orchestrator/cli/search/resize_embedding.py +135 -0
- orchestrator/cli/search/search_explore.py +208 -0
- orchestrator/cli/search/speedtest.py +151 -0
- orchestrator/db/models.py +37 -1
- orchestrator/devtools/populator.py +16 -0
- orchestrator/domain/base.py +2 -7
- orchestrator/domain/lifecycle.py +24 -7
- orchestrator/llm_settings.py +57 -0
- orchestrator/log_config.py +1 -0
- orchestrator/migrations/helpers.py +7 -1
- orchestrator/schemas/search.py +130 -0
- orchestrator/schemas/workflow.py +1 -0
- orchestrator/search/__init__.py +12 -0
- orchestrator/search/agent/__init__.py +21 -0
- orchestrator/search/agent/agent.py +62 -0
- orchestrator/search/agent/prompts.py +100 -0
- orchestrator/search/agent/state.py +21 -0
- orchestrator/search/agent/tools.py +258 -0
- orchestrator/search/core/__init__.py +12 -0
- orchestrator/search/core/embedding.py +73 -0
- orchestrator/search/core/exceptions.py +36 -0
- orchestrator/search/core/types.py +296 -0
- orchestrator/search/core/validators.py +40 -0
- orchestrator/search/docs/index.md +37 -0
- orchestrator/search/docs/running_local_text_embedding_inference.md +46 -0
- orchestrator/search/filters/__init__.py +40 -0
- orchestrator/search/filters/base.py +295 -0
- orchestrator/search/filters/date_filters.py +88 -0
- orchestrator/search/filters/definitions.py +107 -0
- orchestrator/search/filters/ltree_filters.py +56 -0
- orchestrator/search/filters/numeric_filter.py +73 -0
- orchestrator/search/indexing/__init__.py +16 -0
- orchestrator/search/indexing/indexer.py +334 -0
- orchestrator/search/indexing/registry.py +101 -0
- orchestrator/search/indexing/tasks.py +69 -0
- orchestrator/search/indexing/traverse.py +334 -0
- orchestrator/search/llm_migration.py +108 -0
- orchestrator/search/retrieval/__init__.py +16 -0
- orchestrator/search/retrieval/builder.py +123 -0
- orchestrator/search/retrieval/engine.py +154 -0
- orchestrator/search/retrieval/exceptions.py +90 -0
- orchestrator/search/retrieval/pagination.py +96 -0
- orchestrator/search/retrieval/retrievers/__init__.py +26 -0
- orchestrator/search/retrieval/retrievers/base.py +123 -0
- orchestrator/search/retrieval/retrievers/fuzzy.py +94 -0
- orchestrator/search/retrieval/retrievers/hybrid.py +277 -0
- orchestrator/search/retrieval/retrievers/semantic.py +94 -0
- orchestrator/search/retrieval/retrievers/structured.py +39 -0
- orchestrator/search/retrieval/utils.py +120 -0
- orchestrator/search/retrieval/validation.py +152 -0
- orchestrator/search/schemas/__init__.py +12 -0
- orchestrator/search/schemas/parameters.py +129 -0
- orchestrator/search/schemas/results.py +77 -0
- orchestrator/services/processes.py +2 -1
- orchestrator/services/settings_env_variables.py +2 -2
- orchestrator/settings.py +8 -1
- orchestrator/utils/state.py +6 -1
- orchestrator/workflows/steps.py +15 -1
- orchestrator/workflows/tasks/validate_products.py +1 -1
- {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0.dist-info}/METADATA +15 -8
- {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0.dist-info}/RECORD +72 -22
- {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0.dist-info}/WHEEL +0 -0
- {orchestrator_core-4.4.1.dist-info → orchestrator_core-4.5.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,334 @@
|
|
|
1
|
+
# Copyright 2019-2025 SURF, GÉANT.
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
|
|
14
|
+
import re
|
|
15
|
+
from abc import ABC, abstractmethod
|
|
16
|
+
from collections.abc import Iterable
|
|
17
|
+
from enum import Enum
|
|
18
|
+
from typing import Any, cast, get_args
|
|
19
|
+
from uuid import uuid4
|
|
20
|
+
|
|
21
|
+
import structlog
|
|
22
|
+
|
|
23
|
+
from orchestrator.db import ProcessTable, ProductTable, SubscriptionTable, WorkflowTable
|
|
24
|
+
from orchestrator.domain import (
|
|
25
|
+
SUBSCRIPTION_MODEL_REGISTRY,
|
|
26
|
+
SubscriptionModel,
|
|
27
|
+
)
|
|
28
|
+
from orchestrator.domain.base import ProductBlockModel, ProductModel
|
|
29
|
+
from orchestrator.domain.lifecycle import (
|
|
30
|
+
lookup_specialized_type,
|
|
31
|
+
)
|
|
32
|
+
from orchestrator.schemas.process import ProcessSchema
|
|
33
|
+
from orchestrator.schemas.workflow import WorkflowSchema
|
|
34
|
+
from orchestrator.search.core.exceptions import ModelLoadError, ProductNotInRegistryError
|
|
35
|
+
from orchestrator.search.core.types import LTREE_SEPARATOR, ExtractedField, FieldType
|
|
36
|
+
from orchestrator.types import SubscriptionLifecycle
|
|
37
|
+
|
|
38
|
+
logger = structlog.get_logger(__name__)
|
|
39
|
+
|
|
40
|
+
DatabaseEntity = SubscriptionTable | ProductTable | ProcessTable | WorkflowTable
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
class BaseTraverser(ABC):
|
|
44
|
+
"""Base class for traversing database models and extracting searchable fields."""
|
|
45
|
+
|
|
46
|
+
_MAX_DEPTH = 40
|
|
47
|
+
|
|
48
|
+
@classmethod
|
|
49
|
+
def get_fields(cls, entity: DatabaseEntity, pk_name: str, root_name: str) -> list[ExtractedField]:
|
|
50
|
+
"""Main entry point for extracting fields from an entity. Default implementation delegates to _load_model."""
|
|
51
|
+
try:
|
|
52
|
+
model = cls._load_model(entity)
|
|
53
|
+
if model is None:
|
|
54
|
+
return []
|
|
55
|
+
return sorted(cls.traverse(model, root_name), key=lambda f: f.path)
|
|
56
|
+
|
|
57
|
+
except (ProductNotInRegistryError, ModelLoadError) as e:
|
|
58
|
+
entity_id = getattr(entity, pk_name, "unknown")
|
|
59
|
+
logger.error(f"Failed to extract fields from {entity.__class__.__name__}", id=str(entity_id), error=str(e))
|
|
60
|
+
return []
|
|
61
|
+
|
|
62
|
+
@classmethod
|
|
63
|
+
def traverse(cls, instance: Any, path: str = "") -> Iterable[ExtractedField]:
|
|
64
|
+
"""Walks the fields of a Pydantic model, dispatching each to a field handler."""
|
|
65
|
+
model_class = type(instance)
|
|
66
|
+
|
|
67
|
+
# Handle both standard and computed fields from the Pydantic model
|
|
68
|
+
all_fields = model_class.model_fields.copy()
|
|
69
|
+
all_fields.update(getattr(model_class, "__pydantic_computed_fields__", {}))
|
|
70
|
+
|
|
71
|
+
for name, field in all_fields.items():
|
|
72
|
+
try:
|
|
73
|
+
value = getattr(instance, name, None)
|
|
74
|
+
except Exception as e:
|
|
75
|
+
logger.error(f"Failed to access field '{name}' on {model_class.__name__}", error=str(e))
|
|
76
|
+
continue
|
|
77
|
+
new_path = f"{path}{LTREE_SEPARATOR}{name}" if path else name
|
|
78
|
+
annotation = field.annotation if hasattr(field, "annotation") else field.return_type
|
|
79
|
+
yield from cls._yield_fields_for_value(value, new_path, annotation)
|
|
80
|
+
|
|
81
|
+
@classmethod
|
|
82
|
+
def _yield_fields_for_value(cls, value: Any, path: str, annotation: Any) -> Iterable[ExtractedField]:
|
|
83
|
+
"""Yields fields for a given value based on its type (model, list, or scalar)."""
|
|
84
|
+
if value is None:
|
|
85
|
+
return
|
|
86
|
+
|
|
87
|
+
# If the value is a list, pass it to the list traverser
|
|
88
|
+
if isinstance(value, list):
|
|
89
|
+
if element_annotation := get_args(annotation):
|
|
90
|
+
yield from cls._traverse_list(value, path, element_annotation[0])
|
|
91
|
+
return
|
|
92
|
+
|
|
93
|
+
# If the value is another Pydantic model, recurse into it
|
|
94
|
+
if hasattr(type(value), "model_fields"):
|
|
95
|
+
yield from cls.traverse(value, path)
|
|
96
|
+
return
|
|
97
|
+
|
|
98
|
+
ftype = FieldType.from_type_hint(annotation)
|
|
99
|
+
|
|
100
|
+
if isinstance(value, Enum):
|
|
101
|
+
yield ExtractedField(path, str(value.value), ftype)
|
|
102
|
+
else:
|
|
103
|
+
yield ExtractedField(path, str(value), ftype)
|
|
104
|
+
|
|
105
|
+
@classmethod
|
|
106
|
+
def _traverse_list(cls, items: list[Any], path: str, element_annotation: Any) -> Iterable[ExtractedField]:
|
|
107
|
+
"""Recursively traverses items in a list."""
|
|
108
|
+
for i, item in enumerate(items):
|
|
109
|
+
item_path = f"{path}.{i}"
|
|
110
|
+
yield from cls._yield_fields_for_value(item, item_path, element_annotation)
|
|
111
|
+
|
|
112
|
+
@classmethod
|
|
113
|
+
def _load_model_with_schema(cls, entity: Any, schema_class: type[Any], pk_name: str) -> Any:
|
|
114
|
+
"""Generic helper for loading models using Pydantic schema validation."""
|
|
115
|
+
try:
|
|
116
|
+
return schema_class.model_validate(entity)
|
|
117
|
+
except Exception as e:
|
|
118
|
+
entity_id = getattr(entity, pk_name, "unknown")
|
|
119
|
+
raise ModelLoadError(f"Failed to load {schema_class.__name__} for {pk_name} '{entity_id}'") from e
|
|
120
|
+
|
|
121
|
+
@classmethod
|
|
122
|
+
@abstractmethod
|
|
123
|
+
def _load_model(cls, entity: Any) -> Any: ...
|
|
124
|
+
|
|
125
|
+
|
|
126
|
+
class SubscriptionTraverser(BaseTraverser):
|
|
127
|
+
"""Traverser for subscription entities using full Pydantic model extraction."""
|
|
128
|
+
|
|
129
|
+
@classmethod
|
|
130
|
+
def _load_model(cls, sub: SubscriptionTable) -> SubscriptionModel | None:
|
|
131
|
+
base_model_cls = SUBSCRIPTION_MODEL_REGISTRY.get(sub.product.name)
|
|
132
|
+
if not base_model_cls:
|
|
133
|
+
raise ProductNotInRegistryError(f"Product '{sub.product.name}' not in registry.")
|
|
134
|
+
|
|
135
|
+
specialized_model_cls = cast(type[SubscriptionModel], lookup_specialized_type(base_model_cls, sub.status))
|
|
136
|
+
|
|
137
|
+
try:
|
|
138
|
+
return specialized_model_cls.from_subscription(sub.subscription_id)
|
|
139
|
+
except Exception as e:
|
|
140
|
+
raise ModelLoadError(f"Failed to load model for subscription_id '{sub.subscription_id}'") from e
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
class ProductTraverser(BaseTraverser):
|
|
144
|
+
"""Traverser for product entities using a template SubscriptionModel instance."""
|
|
145
|
+
|
|
146
|
+
@classmethod
|
|
147
|
+
def _sanitize_for_ltree(cls, name: str) -> str:
|
|
148
|
+
"""Sanitizes a string to be a valid ltree path label."""
|
|
149
|
+
# Convert to lowercase
|
|
150
|
+
sanitized = name.lower()
|
|
151
|
+
|
|
152
|
+
# Replace all non-alphanumeric (and non-underscore) characters with an underscore
|
|
153
|
+
sanitized = re.sub(r"[^a-z0-9_]", "_", sanitized)
|
|
154
|
+
|
|
155
|
+
# Collapse multiple underscores into a single one
|
|
156
|
+
sanitized = re.sub(r"__+", "_", sanitized)
|
|
157
|
+
|
|
158
|
+
# Remove leading or trailing underscores
|
|
159
|
+
sanitized = sanitized.strip("_")
|
|
160
|
+
|
|
161
|
+
# Handle cases where the name was only invalid characters
|
|
162
|
+
if not sanitized:
|
|
163
|
+
return "unnamed_product"
|
|
164
|
+
|
|
165
|
+
return sanitized
|
|
166
|
+
|
|
167
|
+
@classmethod
|
|
168
|
+
def get_fields(cls, entity: ProductTable, pk_name: str, root_name: str) -> list[ExtractedField]: # type: ignore[override]
|
|
169
|
+
"""Extracts fields by creating a template SubscriptionModel instance for the product.
|
|
170
|
+
|
|
171
|
+
Extracts product metadata and block schema structure.
|
|
172
|
+
"""
|
|
173
|
+
try:
|
|
174
|
+
model = cls._load_model(entity)
|
|
175
|
+
|
|
176
|
+
if not model:
|
|
177
|
+
return []
|
|
178
|
+
|
|
179
|
+
fields: list[ExtractedField] = []
|
|
180
|
+
|
|
181
|
+
product_fields = cls.traverse(model.product, root_name)
|
|
182
|
+
fields.extend(product_fields)
|
|
183
|
+
|
|
184
|
+
product_name = cls._sanitize_for_ltree(model.product.name)
|
|
185
|
+
|
|
186
|
+
product_block_root = f"{root_name}.{product_name}.product_block"
|
|
187
|
+
|
|
188
|
+
# Extract product block schema structure
|
|
189
|
+
model_class = type(model)
|
|
190
|
+
product_block_fields = getattr(model_class, "_product_block_fields_", {})
|
|
191
|
+
|
|
192
|
+
for field_name in product_block_fields:
|
|
193
|
+
block_value = getattr(model, field_name, None)
|
|
194
|
+
if block_value is not None:
|
|
195
|
+
block_path = f"{product_block_root}.{field_name}"
|
|
196
|
+
schema_fields = cls._extract_block_schema(block_value, block_path)
|
|
197
|
+
fields.extend(schema_fields)
|
|
198
|
+
|
|
199
|
+
return sorted(fields, key=lambda f: f.path)
|
|
200
|
+
|
|
201
|
+
except (ProductNotInRegistryError, ModelLoadError) as e:
|
|
202
|
+
entity_id = getattr(entity, pk_name, "unknown")
|
|
203
|
+
logger.error(f"Failed to extract fields from {entity.__class__.__name__}", id=str(entity_id), error=str(e))
|
|
204
|
+
return []
|
|
205
|
+
|
|
206
|
+
@classmethod
|
|
207
|
+
def _extract_block_schema(cls, block_instance: ProductBlockModel, block_path: str) -> list[ExtractedField]:
|
|
208
|
+
"""Extract schema information from a block instance, returning field names as RESOURCE_TYPE."""
|
|
209
|
+
fields = []
|
|
210
|
+
|
|
211
|
+
# Add the block itself as a BLOCK type
|
|
212
|
+
block_name = block_path.split(LTREE_SEPARATOR)[-1]
|
|
213
|
+
fields.append(ExtractedField(path=block_path, value=block_name, value_type=FieldType.BLOCK))
|
|
214
|
+
|
|
215
|
+
# Extract all field names from the block as RESOURCE_TYPE
|
|
216
|
+
if hasattr(type(block_instance), "model_fields"):
|
|
217
|
+
all_fields = type(block_instance).model_fields
|
|
218
|
+
computed_fields = getattr(block_instance, "__pydantic_computed_fields__", None)
|
|
219
|
+
if computed_fields:
|
|
220
|
+
all_fields.update(computed_fields)
|
|
221
|
+
|
|
222
|
+
for field_name in all_fields:
|
|
223
|
+
field_value = getattr(block_instance, field_name, None)
|
|
224
|
+
field_path = f"{block_path}.{field_name}"
|
|
225
|
+
|
|
226
|
+
# If it's a nested block, recurse
|
|
227
|
+
if field_value is not None and isinstance(field_value, ProductBlockModel):
|
|
228
|
+
nested_fields = cls._extract_block_schema(field_value, field_path)
|
|
229
|
+
fields.extend(nested_fields)
|
|
230
|
+
elif field_value is not None and isinstance(field_value, list):
|
|
231
|
+
# Handle list of blocks
|
|
232
|
+
if field_value and isinstance(field_value[0], ProductBlockModel):
|
|
233
|
+
# For lists, we still add the list field as a resource type
|
|
234
|
+
fields.append(
|
|
235
|
+
ExtractedField(path=field_path, value=field_name, value_type=FieldType.RESOURCE_TYPE)
|
|
236
|
+
)
|
|
237
|
+
# And potentially traverse the first item for schema
|
|
238
|
+
first_item_path = f"{field_path}{LTREE_SEPARATOR}0"
|
|
239
|
+
nested_fields = cls._extract_block_schema(field_value[0], first_item_path)
|
|
240
|
+
fields.extend(nested_fields)
|
|
241
|
+
else:
|
|
242
|
+
fields.append(
|
|
243
|
+
ExtractedField(path=field_path, value=field_name, value_type=FieldType.RESOURCE_TYPE)
|
|
244
|
+
)
|
|
245
|
+
else:
|
|
246
|
+
# Regular fields are resource types
|
|
247
|
+
fields.append(ExtractedField(path=field_path, value=field_name, value_type=FieldType.RESOURCE_TYPE))
|
|
248
|
+
|
|
249
|
+
return fields
|
|
250
|
+
|
|
251
|
+
@classmethod
|
|
252
|
+
def _load_model(cls, product: ProductTable) -> SubscriptionModel | None:
|
|
253
|
+
"""Creates a template instance of a SubscriptionModel for a given product.
|
|
254
|
+
|
|
255
|
+
This allows us to traverse the product's defined block structure, even
|
|
256
|
+
without a real subscription instance in the database.
|
|
257
|
+
"""
|
|
258
|
+
# Find the SubscriptionModel class associated with this product's name.
|
|
259
|
+
domain_model_cls = SUBSCRIPTION_MODEL_REGISTRY.get(product.name)
|
|
260
|
+
if not domain_model_cls:
|
|
261
|
+
raise ProductNotInRegistryError(f"Product '{product.name}' not in registry.")
|
|
262
|
+
|
|
263
|
+
# Get the initial lifecycle version of that class, as it represents the base structure.
|
|
264
|
+
try:
|
|
265
|
+
subscription_model_cls = cast(
|
|
266
|
+
type[SubscriptionModel], lookup_specialized_type(domain_model_cls, SubscriptionLifecycle.INITIAL)
|
|
267
|
+
)
|
|
268
|
+
except Exception:
|
|
269
|
+
subscription_model_cls = domain_model_cls
|
|
270
|
+
|
|
271
|
+
try:
|
|
272
|
+
product_model = ProductModel(
|
|
273
|
+
product_id=product.product_id,
|
|
274
|
+
name=product.name,
|
|
275
|
+
description=product.description,
|
|
276
|
+
product_type=product.product_type,
|
|
277
|
+
tag=product.tag,
|
|
278
|
+
status=product.status,
|
|
279
|
+
)
|
|
280
|
+
|
|
281
|
+
# Generate a fake subscription ID for the template
|
|
282
|
+
subscription_id = uuid4()
|
|
283
|
+
|
|
284
|
+
# Get fixed inputs for the product
|
|
285
|
+
fixed_inputs = {fi.name: fi.value for fi in product.fixed_inputs}
|
|
286
|
+
|
|
287
|
+
# Initialize product blocks
|
|
288
|
+
instances = subscription_model_cls._init_instances(subscription_id)
|
|
289
|
+
|
|
290
|
+
return subscription_model_cls(
|
|
291
|
+
product=product_model,
|
|
292
|
+
customer_id="traverser_template",
|
|
293
|
+
subscription_id=subscription_id,
|
|
294
|
+
description="Template for schema traversal",
|
|
295
|
+
status=SubscriptionLifecycle.INITIAL,
|
|
296
|
+
insync=False,
|
|
297
|
+
start_date=None,
|
|
298
|
+
end_date=None,
|
|
299
|
+
note=None,
|
|
300
|
+
version=1,
|
|
301
|
+
**fixed_inputs,
|
|
302
|
+
**instances,
|
|
303
|
+
)
|
|
304
|
+
except Exception:
|
|
305
|
+
logger.exception("Failed to instantiate template model for product", product_name=product.name)
|
|
306
|
+
return None
|
|
307
|
+
|
|
308
|
+
|
|
309
|
+
class ProcessTraverser(BaseTraverser):
|
|
310
|
+
"""Traverser for process entities using ProcessSchema model.
|
|
311
|
+
|
|
312
|
+
Note: Currently extracts only top-level process fields. Could be extended to include:
|
|
313
|
+
- Related subscriptions (entity.subscriptions)
|
|
314
|
+
- Related workflow information beyond workflow_name
|
|
315
|
+
"""
|
|
316
|
+
|
|
317
|
+
@classmethod
|
|
318
|
+
def _load_model(cls, process: ProcessTable) -> ProcessSchema:
|
|
319
|
+
"""Load process model using ProcessSchema."""
|
|
320
|
+
return cls._load_model_with_schema(process, ProcessSchema, "process_id")
|
|
321
|
+
|
|
322
|
+
|
|
323
|
+
class WorkflowTraverser(BaseTraverser):
|
|
324
|
+
"""Traverser for workflow entities using WorkflowSchema model.
|
|
325
|
+
|
|
326
|
+
Note: Currently extracts only top-level workflow fields. Could be extended to include:
|
|
327
|
+
- Related products (entity.products) - each with their own block structures
|
|
328
|
+
- Related processes (entity.processes) - each with their own process data
|
|
329
|
+
"""
|
|
330
|
+
|
|
331
|
+
@classmethod
|
|
332
|
+
def _load_model(cls, workflow: WorkflowTable) -> WorkflowSchema:
|
|
333
|
+
"""Load workflow model using WorkflowSchema."""
|
|
334
|
+
return cls._load_model_with_schema(workflow, WorkflowSchema, "workflow_id")
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
# Copyright 2019-2025 SURF
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
|
|
14
|
+
"""Simple search migration function that runs when SEARCH_ENABLED = True."""
|
|
15
|
+
|
|
16
|
+
from sqlalchemy import text
|
|
17
|
+
from sqlalchemy.engine import Connection
|
|
18
|
+
from structlog import get_logger
|
|
19
|
+
|
|
20
|
+
from orchestrator.llm_settings import llm_settings
|
|
21
|
+
from orchestrator.search.core.types import FieldType
|
|
22
|
+
|
|
23
|
+
logger = get_logger(__name__)
|
|
24
|
+
|
|
25
|
+
TABLE = "ai_search_index"
|
|
26
|
+
TARGET_DIM = 1536
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def run_migration(connection: Connection) -> None:
|
|
30
|
+
"""Run LLM migration with ON CONFLICT DO NOTHING pattern."""
|
|
31
|
+
logger.info("Running LLM migration")
|
|
32
|
+
|
|
33
|
+
try:
|
|
34
|
+
# Test to see if the extenstion exists and then skip the migration; Needed for certain situations where db user
|
|
35
|
+
# has insufficient priviledges to run the `CREATE EXTENSION ...` command.
|
|
36
|
+
res = connection.execute(text("SELECT * FROM pg_extension where extname = 'vector';"))
|
|
37
|
+
if llm_settings.LLM_FORCE_EXTENTION_MIGRATION or res.rowcount == 0:
|
|
38
|
+
# Create PostgreSQL extensions
|
|
39
|
+
logger.info("Attempting to run the extention creation;")
|
|
40
|
+
connection.execute(text("CREATE EXTENSION IF NOT EXISTS ltree;"))
|
|
41
|
+
connection.execute(text("CREATE EXTENSION IF NOT EXISTS unaccent;"))
|
|
42
|
+
connection.execute(text("CREATE EXTENSION IF NOT EXISTS pg_trgm;"))
|
|
43
|
+
connection.execute(text("CREATE EXTENSION IF NOT EXISTS vector;"))
|
|
44
|
+
|
|
45
|
+
# Create field_type enum
|
|
46
|
+
field_type_values = "', '".join([ft.value for ft in FieldType])
|
|
47
|
+
connection.execute(
|
|
48
|
+
text(
|
|
49
|
+
f"""
|
|
50
|
+
DO $$
|
|
51
|
+
BEGIN
|
|
52
|
+
IF NOT EXISTS (SELECT 1 FROM pg_type WHERE typname = 'field_type') THEN
|
|
53
|
+
CREATE TYPE field_type AS ENUM ('{field_type_values}');
|
|
54
|
+
END IF;
|
|
55
|
+
END $$;
|
|
56
|
+
"""
|
|
57
|
+
)
|
|
58
|
+
)
|
|
59
|
+
|
|
60
|
+
# Create table with ON CONFLICT DO NOTHING pattern
|
|
61
|
+
connection.execute(
|
|
62
|
+
text(
|
|
63
|
+
f"""
|
|
64
|
+
CREATE TABLE IF NOT EXISTS {TABLE} (
|
|
65
|
+
entity_type TEXT NOT NULL,
|
|
66
|
+
entity_id UUID NOT NULL,
|
|
67
|
+
path LTREE NOT NULL,
|
|
68
|
+
value TEXT NOT NULL,
|
|
69
|
+
embedding VECTOR({TARGET_DIM}),
|
|
70
|
+
content_hash VARCHAR(64) NOT NULL,
|
|
71
|
+
value_type field_type NOT NULL DEFAULT '{FieldType.STRING.value}',
|
|
72
|
+
CONSTRAINT pk_ai_search_index PRIMARY KEY (entity_id, path)
|
|
73
|
+
);
|
|
74
|
+
"""
|
|
75
|
+
)
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
# Drop default
|
|
79
|
+
connection.execute(text(f"ALTER TABLE {TABLE} ALTER COLUMN value_type DROP DEFAULT;"))
|
|
80
|
+
|
|
81
|
+
# Create indexes with IF NOT EXISTS
|
|
82
|
+
connection.execute(text(f"CREATE INDEX IF NOT EXISTS ix_ai_search_index_entity_id ON {TABLE} (entity_id);"))
|
|
83
|
+
connection.execute(
|
|
84
|
+
text(f"CREATE INDEX IF NOT EXISTS idx_ai_search_index_content_hash ON {TABLE} (content_hash);")
|
|
85
|
+
)
|
|
86
|
+
connection.execute(
|
|
87
|
+
text(f"CREATE INDEX IF NOT EXISTS ix_flat_path_gist ON {TABLE} USING GIST (path gist_ltree_ops);")
|
|
88
|
+
)
|
|
89
|
+
connection.execute(text(f"CREATE INDEX IF NOT EXISTS ix_flat_path_btree ON {TABLE} (path);"))
|
|
90
|
+
connection.execute(
|
|
91
|
+
text(f"CREATE INDEX IF NOT EXISTS ix_flat_value_trgm ON {TABLE} USING GIN (value gin_trgm_ops);")
|
|
92
|
+
)
|
|
93
|
+
connection.execute(
|
|
94
|
+
text(
|
|
95
|
+
f"CREATE INDEX IF NOT EXISTS ix_flat_embed_hnsw ON {TABLE} USING HNSW (embedding vector_l2_ops) WITH (m = 16, ef_construction = 64);"
|
|
96
|
+
)
|
|
97
|
+
)
|
|
98
|
+
|
|
99
|
+
connection.commit()
|
|
100
|
+
logger.info("LLM migration completed successfully")
|
|
101
|
+
|
|
102
|
+
except Exception as e:
|
|
103
|
+
logger.error("LLM migration failed", error=str(e))
|
|
104
|
+
raise Exception(
|
|
105
|
+
f"LLM migration failed. This likely means the pgvector extension "
|
|
106
|
+
f"is not installed. Please install pgvector and ensure your PostgreSQL "
|
|
107
|
+
f"version supports it. Error: {e}"
|
|
108
|
+
) from e
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
# Copyright 2019-2025 SURF, GÉANT.
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
|
|
14
|
+
from .engine import execute_search
|
|
15
|
+
|
|
16
|
+
__all__ = ["execute_search"]
|
|
@@ -0,0 +1,123 @@
|
|
|
1
|
+
# Copyright 2019-2025 SURF, GÉANT.
|
|
2
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
3
|
+
# you may not use this file except in compliance with the License.
|
|
4
|
+
# You may obtain a copy of the License at
|
|
5
|
+
#
|
|
6
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
7
|
+
#
|
|
8
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
9
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
10
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
11
|
+
# See the License for the specific language governing permissions and
|
|
12
|
+
# limitations under the License.
|
|
13
|
+
|
|
14
|
+
from collections import defaultdict
|
|
15
|
+
from typing import Sequence
|
|
16
|
+
|
|
17
|
+
from sqlalchemy import Select, String, cast, func, select
|
|
18
|
+
from sqlalchemy.engine import Row
|
|
19
|
+
|
|
20
|
+
from orchestrator.db.models import AiSearchIndex
|
|
21
|
+
from orchestrator.search.core.types import EntityType, FieldType, FilterOp, UIType
|
|
22
|
+
from orchestrator.search.filters import LtreeFilter
|
|
23
|
+
from orchestrator.search.schemas.parameters import BaseSearchParameters
|
|
24
|
+
from orchestrator.search.schemas.results import ComponentInfo, LeafInfo
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
def create_path_autocomplete_lquery(prefix: str) -> str:
|
|
28
|
+
"""Create the lquery pattern for a multi-level path autocomplete search."""
|
|
29
|
+
return f"{prefix}*.*"
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def build_candidate_query(params: BaseSearchParameters) -> Select:
|
|
33
|
+
"""Build the base query for retrieving candidate entities.
|
|
34
|
+
|
|
35
|
+
Constructs a `SELECT` statement that retrieves distinct `entity_id` values
|
|
36
|
+
from the index table for the given entity type, applying any structured
|
|
37
|
+
filters from the provided search parameters.
|
|
38
|
+
|
|
39
|
+
Args:
|
|
40
|
+
params (BaseSearchParameters): The search parameters containing the entity type and optional filters.
|
|
41
|
+
|
|
42
|
+
Returns:
|
|
43
|
+
Select: The SQLAlchemy `Select` object representing the query.
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
stmt = select(AiSearchIndex.entity_id).where(AiSearchIndex.entity_type == params.entity_type.value).distinct()
|
|
47
|
+
|
|
48
|
+
if params.filters is not None:
|
|
49
|
+
entity_id_col = AiSearchIndex.entity_id
|
|
50
|
+
stmt = stmt.where(
|
|
51
|
+
params.filters.to_expression(
|
|
52
|
+
entity_id_col,
|
|
53
|
+
entity_type_value=params.entity_type.value,
|
|
54
|
+
)
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
return stmt
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def build_paths_query(entity_type: EntityType, prefix: str | None = None, q: str | None = None) -> Select:
|
|
61
|
+
"""Build the query for retrieving paths and their value types for leaves/components processing."""
|
|
62
|
+
stmt = select(AiSearchIndex.path, AiSearchIndex.value_type).where(AiSearchIndex.entity_type == entity_type.value)
|
|
63
|
+
|
|
64
|
+
if prefix:
|
|
65
|
+
lquery_pattern = create_path_autocomplete_lquery(prefix)
|
|
66
|
+
ltree_filter = LtreeFilter(op=FilterOp.MATCHES_LQUERY, value=lquery_pattern)
|
|
67
|
+
stmt = stmt.where(ltree_filter.to_expression(AiSearchIndex.path, path=""))
|
|
68
|
+
|
|
69
|
+
stmt = stmt.group_by(AiSearchIndex.path, AiSearchIndex.value_type)
|
|
70
|
+
|
|
71
|
+
if q:
|
|
72
|
+
score = func.similarity(cast(AiSearchIndex.path, String), q)
|
|
73
|
+
stmt = stmt.order_by(score.desc(), AiSearchIndex.path)
|
|
74
|
+
else:
|
|
75
|
+
stmt = stmt.order_by(AiSearchIndex.path)
|
|
76
|
+
|
|
77
|
+
return stmt
|
|
78
|
+
|
|
79
|
+
|
|
80
|
+
def process_path_rows(rows: Sequence[Row]) -> tuple[list[LeafInfo], list[ComponentInfo]]:
|
|
81
|
+
"""Process query results to extract leaves and components information.
|
|
82
|
+
|
|
83
|
+
Parameters
|
|
84
|
+
----------
|
|
85
|
+
rows : Sequence[Row]
|
|
86
|
+
Database rows containing path and value_type information
|
|
87
|
+
|
|
88
|
+
Returns:
|
|
89
|
+
-------
|
|
90
|
+
tuple[list[LeafInfo], list[ComponentInfo]]
|
|
91
|
+
Processed leaves and components
|
|
92
|
+
"""
|
|
93
|
+
leaves_dict: dict[str, set[UIType]] = defaultdict(set)
|
|
94
|
+
leaves_paths_dict: dict[str, set[str]] = defaultdict(set)
|
|
95
|
+
components_set: set[str] = set()
|
|
96
|
+
|
|
97
|
+
for row in rows:
|
|
98
|
+
path, value_type = row
|
|
99
|
+
|
|
100
|
+
path_str = str(path)
|
|
101
|
+
path_segments = path_str.split(".")
|
|
102
|
+
|
|
103
|
+
# Remove numeric segments
|
|
104
|
+
clean_segments = [seg for seg in path_segments if not seg.isdigit()]
|
|
105
|
+
|
|
106
|
+
if clean_segments:
|
|
107
|
+
# Last segment is a leaf
|
|
108
|
+
leaf_name = clean_segments[-1]
|
|
109
|
+
ui_type = UIType.from_field_type(FieldType(value_type))
|
|
110
|
+
leaves_dict[leaf_name].add(ui_type)
|
|
111
|
+
leaves_paths_dict[leaf_name].add(path_str)
|
|
112
|
+
|
|
113
|
+
# All segments except the first/last are components
|
|
114
|
+
for component in clean_segments[1:-1]:
|
|
115
|
+
components_set.add(component)
|
|
116
|
+
|
|
117
|
+
leaves = [
|
|
118
|
+
LeafInfo(name=leaf, ui_types=list(types), paths=sorted(leaves_paths_dict[leaf]))
|
|
119
|
+
for leaf, types in leaves_dict.items()
|
|
120
|
+
]
|
|
121
|
+
components = [ComponentInfo(name=component, ui_types=[UIType.COMPONENT]) for component in sorted(components_set)]
|
|
122
|
+
|
|
123
|
+
return leaves, components
|