orchestrator-core 4.4.0rc3__py3-none-any.whl → 4.5.1a1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orchestrator/__init__.py +26 -2
- orchestrator/agentic_app.py +84 -0
- orchestrator/api/api_v1/api.py +10 -0
- orchestrator/api/api_v1/endpoints/search.py +277 -0
- orchestrator/app.py +32 -0
- orchestrator/cli/index_llm.py +73 -0
- orchestrator/cli/main.py +22 -1
- orchestrator/cli/resize_embedding.py +135 -0
- orchestrator/cli/search_explore.py +208 -0
- orchestrator/cli/speedtest.py +151 -0
- orchestrator/db/models.py +37 -1
- orchestrator/graphql/schemas/process.py +2 -2
- orchestrator/graphql/schemas/workflow.py +2 -2
- orchestrator/llm_settings.py +51 -0
- orchestrator/migrations/versions/schema/2025-08-12_52b37b5b2714_search_index_model_for_llm_integration.py +95 -0
- orchestrator/schedules/scheduler.py +6 -7
- orchestrator/schemas/search.py +117 -0
- orchestrator/search/__init__.py +12 -0
- orchestrator/search/agent/__init__.py +8 -0
- orchestrator/search/agent/agent.py +47 -0
- orchestrator/search/agent/prompts.py +62 -0
- orchestrator/search/agent/state.py +8 -0
- orchestrator/search/agent/tools.py +121 -0
- orchestrator/search/core/__init__.py +0 -0
- orchestrator/search/core/embedding.py +64 -0
- orchestrator/search/core/exceptions.py +22 -0
- orchestrator/search/core/types.py +281 -0
- orchestrator/search/core/validators.py +27 -0
- orchestrator/search/docs/index.md +37 -0
- orchestrator/search/docs/running_local_text_embedding_inference.md +45 -0
- orchestrator/search/filters/__init__.py +27 -0
- orchestrator/search/filters/base.py +272 -0
- orchestrator/search/filters/date_filters.py +75 -0
- orchestrator/search/filters/definitions.py +93 -0
- orchestrator/search/filters/ltree_filters.py +43 -0
- orchestrator/search/filters/numeric_filter.py +60 -0
- orchestrator/search/indexing/__init__.py +3 -0
- orchestrator/search/indexing/indexer.py +323 -0
- orchestrator/search/indexing/registry.py +88 -0
- orchestrator/search/indexing/tasks.py +53 -0
- orchestrator/search/indexing/traverse.py +322 -0
- orchestrator/search/retrieval/__init__.py +3 -0
- orchestrator/search/retrieval/builder.py +108 -0
- orchestrator/search/retrieval/engine.py +152 -0
- orchestrator/search/retrieval/pagination.py +83 -0
- orchestrator/search/retrieval/retriever.py +447 -0
- orchestrator/search/retrieval/utils.py +106 -0
- orchestrator/search/retrieval/validation.py +174 -0
- orchestrator/search/schemas/__init__.py +0 -0
- orchestrator/search/schemas/parameters.py +116 -0
- orchestrator/search/schemas/results.py +63 -0
- orchestrator/services/settings_env_variables.py +2 -2
- orchestrator/settings.py +1 -1
- {orchestrator_core-4.4.0rc3.dist-info → orchestrator_core-4.5.1a1.dist-info}/METADATA +8 -3
- {orchestrator_core-4.4.0rc3.dist-info → orchestrator_core-4.5.1a1.dist-info}/RECORD +57 -14
- {orchestrator_core-4.4.0rc3.dist-info → orchestrator_core-4.5.1a1.dist-info}/WHEEL +0 -0
- {orchestrator_core-4.4.0rc3.dist-info → orchestrator_core-4.5.1a1.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,53 @@
|
|
|
1
|
+
import structlog
|
|
2
|
+
from sqlalchemy.orm import Query
|
|
3
|
+
|
|
4
|
+
from orchestrator.db import db
|
|
5
|
+
from orchestrator.search.core.types import EntityType
|
|
6
|
+
from orchestrator.search.indexing.indexer import Indexer
|
|
7
|
+
from orchestrator.search.indexing.registry import ENTITY_CONFIG_REGISTRY
|
|
8
|
+
|
|
9
|
+
logger = structlog.get_logger(__name__)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def run_indexing_for_entity(
|
|
13
|
+
entity_kind: EntityType,
|
|
14
|
+
entity_id: str | None = None,
|
|
15
|
+
dry_run: bool = False,
|
|
16
|
+
force_index: bool = False,
|
|
17
|
+
chunk_size: int = 1000,
|
|
18
|
+
) -> None:
|
|
19
|
+
"""Stream and index entities for the given kind.
|
|
20
|
+
|
|
21
|
+
Builds a streaming query via the entity's registry config, disables ORM eager
|
|
22
|
+
loads when applicable and delegates processing to `Indexer`.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
entity_kind (EntityType): The entity type to index (must exist in
|
|
26
|
+
`ENTITY_CONFIG_REGISTRY`).
|
|
27
|
+
entity_id (Optional[str]): If provided, restricts indexing to a single
|
|
28
|
+
entity (UUID string).
|
|
29
|
+
dry_run (bool): When True, runs the full pipeline without performing
|
|
30
|
+
writes or external embedding calls.
|
|
31
|
+
force_index (bool): When True, re-indexes all fields regardless of
|
|
32
|
+
existing hashes.
|
|
33
|
+
chunk_size (int): Number of rows fetched per round-trip and passed to
|
|
34
|
+
the indexer per batch.
|
|
35
|
+
|
|
36
|
+
Returns:
|
|
37
|
+
None
|
|
38
|
+
"""
|
|
39
|
+
config = ENTITY_CONFIG_REGISTRY[entity_kind]
|
|
40
|
+
|
|
41
|
+
q = config.get_all_query(entity_id)
|
|
42
|
+
|
|
43
|
+
if isinstance(q, Query):
|
|
44
|
+
q = q.enable_eagerloads(False)
|
|
45
|
+
stmt = q.statement
|
|
46
|
+
else:
|
|
47
|
+
stmt = q
|
|
48
|
+
|
|
49
|
+
stmt = stmt.execution_options(stream_results=True, yield_per=chunk_size)
|
|
50
|
+
entities = db.session.execute(stmt).scalars()
|
|
51
|
+
|
|
52
|
+
indexer = Indexer(config=config, dry_run=dry_run, force_index=force_index, chunk_size=chunk_size)
|
|
53
|
+
indexer.run(entities)
|
|
@@ -0,0 +1,322 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from abc import ABC, abstractmethod
|
|
3
|
+
from collections.abc import Iterable
|
|
4
|
+
from enum import Enum
|
|
5
|
+
from typing import Any, cast, get_args
|
|
6
|
+
from uuid import uuid4
|
|
7
|
+
|
|
8
|
+
import structlog
|
|
9
|
+
|
|
10
|
+
from orchestrator.db import ProcessTable, ProductTable, SubscriptionTable, WorkflowTable
|
|
11
|
+
from orchestrator.domain import (
|
|
12
|
+
SUBSCRIPTION_MODEL_REGISTRY,
|
|
13
|
+
SubscriptionModel,
|
|
14
|
+
)
|
|
15
|
+
from orchestrator.domain.base import ProductBlockModel, ProductModel
|
|
16
|
+
from orchestrator.domain.lifecycle import (
|
|
17
|
+
lookup_specialized_type,
|
|
18
|
+
)
|
|
19
|
+
from orchestrator.schemas.process import ProcessSchema
|
|
20
|
+
from orchestrator.schemas.workflow import WorkflowSchema
|
|
21
|
+
from orchestrator.search.core.exceptions import ModelLoadError, ProductNotInRegistryError
|
|
22
|
+
from orchestrator.search.core.types import ExtractedField, FieldType
|
|
23
|
+
from orchestrator.types import SubscriptionLifecycle
|
|
24
|
+
|
|
25
|
+
logger = structlog.get_logger(__name__)
|
|
26
|
+
|
|
27
|
+
DatabaseEntity = SubscriptionTable | ProductTable | ProcessTable | WorkflowTable
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
class BaseTraverser(ABC):
|
|
31
|
+
"""Base class for traversing database models and extracting searchable fields."""
|
|
32
|
+
|
|
33
|
+
_LTREE_SEPARATOR = "."
|
|
34
|
+
_MAX_DEPTH = 40
|
|
35
|
+
|
|
36
|
+
@classmethod
|
|
37
|
+
def get_fields(cls, entity: DatabaseEntity, pk_name: str, root_name: str) -> list[ExtractedField]:
|
|
38
|
+
"""Main entry point for extracting fields from an entity. Default implementation delegates to _load_model."""
|
|
39
|
+
try:
|
|
40
|
+
model = cls._load_model(entity)
|
|
41
|
+
if model is None:
|
|
42
|
+
return []
|
|
43
|
+
return sorted(cls.traverse(model, root_name), key=lambda f: f.path)
|
|
44
|
+
|
|
45
|
+
except (ProductNotInRegistryError, ModelLoadError) as e:
|
|
46
|
+
entity_id = getattr(entity, pk_name, "unknown")
|
|
47
|
+
logger.error(f"Failed to extract fields from {entity.__class__.__name__}", id=str(entity_id), error=str(e))
|
|
48
|
+
return []
|
|
49
|
+
|
|
50
|
+
@classmethod
|
|
51
|
+
def traverse(cls, instance: Any, path: str = "") -> Iterable[ExtractedField]:
|
|
52
|
+
"""Walks the fields of a Pydantic model, dispatching each to a field handler."""
|
|
53
|
+
model_class = type(instance)
|
|
54
|
+
|
|
55
|
+
# Handle both standard and computed fields from the Pydantic model
|
|
56
|
+
all_fields = model_class.model_fields.copy()
|
|
57
|
+
all_fields.update(getattr(model_class, "__pydantic_computed_fields__", {}))
|
|
58
|
+
|
|
59
|
+
for name, field in all_fields.items():
|
|
60
|
+
try:
|
|
61
|
+
value = getattr(instance, name, None)
|
|
62
|
+
except Exception as e:
|
|
63
|
+
logger.error(f"Failed to access field '{name}' on {model_class.__name__}", error=str(e))
|
|
64
|
+
continue
|
|
65
|
+
new_path = f"{path}{cls._LTREE_SEPARATOR}{name}" if path else name
|
|
66
|
+
annotation = field.annotation if hasattr(field, "annotation") else field.return_type
|
|
67
|
+
yield from cls._yield_fields_for_value(value, new_path, annotation)
|
|
68
|
+
|
|
69
|
+
@classmethod
|
|
70
|
+
def _yield_fields_for_value(cls, value: Any, path: str, annotation: Any) -> Iterable[ExtractedField]:
|
|
71
|
+
"""Yields fields for a given value based on its type (model, list, or scalar)."""
|
|
72
|
+
if value is None:
|
|
73
|
+
return
|
|
74
|
+
|
|
75
|
+
# If the value is a list, pass it to the list traverser
|
|
76
|
+
if isinstance(value, list):
|
|
77
|
+
if element_annotation := get_args(annotation):
|
|
78
|
+
yield from cls._traverse_list(value, path, element_annotation[0])
|
|
79
|
+
return
|
|
80
|
+
|
|
81
|
+
# If the value is another Pydantic model, recurse into it
|
|
82
|
+
if hasattr(type(value), "model_fields"):
|
|
83
|
+
yield from cls.traverse(value, path)
|
|
84
|
+
return
|
|
85
|
+
|
|
86
|
+
ftype = FieldType.from_type_hint(annotation)
|
|
87
|
+
|
|
88
|
+
if isinstance(value, Enum):
|
|
89
|
+
yield ExtractedField(path, str(value.value), ftype)
|
|
90
|
+
else:
|
|
91
|
+
yield ExtractedField(path, str(value), ftype)
|
|
92
|
+
|
|
93
|
+
@classmethod
|
|
94
|
+
def _traverse_list(cls, items: list[Any], path: str, element_annotation: Any) -> Iterable[ExtractedField]:
|
|
95
|
+
"""Recursively traverses items in a list."""
|
|
96
|
+
for i, item in enumerate(items):
|
|
97
|
+
item_path = f"{path}.{i}"
|
|
98
|
+
yield from cls._yield_fields_for_value(item, item_path, element_annotation)
|
|
99
|
+
|
|
100
|
+
@classmethod
|
|
101
|
+
def _load_model_with_schema(cls, entity: Any, schema_class: type[Any], pk_name: str) -> Any:
|
|
102
|
+
"""Generic helper for loading models using Pydantic schema validation."""
|
|
103
|
+
try:
|
|
104
|
+
return schema_class.model_validate(entity)
|
|
105
|
+
except Exception as e:
|
|
106
|
+
entity_id = getattr(entity, pk_name, "unknown")
|
|
107
|
+
raise ModelLoadError(f"Failed to load {schema_class.__name__} for {pk_name} '{entity_id}'") from e
|
|
108
|
+
|
|
109
|
+
@classmethod
|
|
110
|
+
@abstractmethod
|
|
111
|
+
def _load_model(cls, entity: Any) -> Any: ...
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
class SubscriptionTraverser(BaseTraverser):
|
|
115
|
+
"""Traverser for subscription entities using full Pydantic model extraction."""
|
|
116
|
+
|
|
117
|
+
@classmethod
|
|
118
|
+
def _load_model(cls, sub: SubscriptionTable) -> SubscriptionModel | None:
|
|
119
|
+
base_model_cls = SUBSCRIPTION_MODEL_REGISTRY.get(sub.product.name)
|
|
120
|
+
if not base_model_cls:
|
|
121
|
+
raise ProductNotInRegistryError(f"Product '{sub.product.name}' not in registry.")
|
|
122
|
+
|
|
123
|
+
specialized_model_cls = cast(type[SubscriptionModel], lookup_specialized_type(base_model_cls, sub.status))
|
|
124
|
+
|
|
125
|
+
try:
|
|
126
|
+
return specialized_model_cls.from_subscription(sub.subscription_id)
|
|
127
|
+
except Exception as e:
|
|
128
|
+
raise ModelLoadError(f"Failed to load model for subscription_id '{sub.subscription_id}'") from e
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
class ProductTraverser(BaseTraverser):
|
|
132
|
+
"""Traverser for product entities using a template SubscriptionModel instance."""
|
|
133
|
+
|
|
134
|
+
@classmethod
|
|
135
|
+
def _sanitize_for_ltree(cls, name: str) -> str:
|
|
136
|
+
"""Sanitizes a string to be a valid ltree path label."""
|
|
137
|
+
# Convert to lowercase
|
|
138
|
+
sanitized = name.lower()
|
|
139
|
+
|
|
140
|
+
# Replace all non-alphanumeric (and non-underscore) characters with an underscore
|
|
141
|
+
sanitized = re.sub(r"[^a-z0-9_]", "_", sanitized)
|
|
142
|
+
|
|
143
|
+
# Collapse multiple underscores into a single one
|
|
144
|
+
sanitized = re.sub(r"__+", "_", sanitized)
|
|
145
|
+
|
|
146
|
+
# Remove leading or trailing underscores
|
|
147
|
+
sanitized = sanitized.strip("_")
|
|
148
|
+
|
|
149
|
+
# Handle cases where the name was only invalid characters
|
|
150
|
+
if not sanitized:
|
|
151
|
+
return "unnamed_product"
|
|
152
|
+
|
|
153
|
+
return sanitized
|
|
154
|
+
|
|
155
|
+
@classmethod
|
|
156
|
+
def get_fields(cls, entity: ProductTable, pk_name: str, root_name: str) -> list[ExtractedField]: # type: ignore[override]
|
|
157
|
+
"""Extracts fields by creating a template SubscriptionModel instance for the product.
|
|
158
|
+
|
|
159
|
+
Extracts product metadata and block schema structure.
|
|
160
|
+
"""
|
|
161
|
+
try:
|
|
162
|
+
model = cls._load_model(entity)
|
|
163
|
+
|
|
164
|
+
if not model:
|
|
165
|
+
return []
|
|
166
|
+
|
|
167
|
+
fields: list[ExtractedField] = []
|
|
168
|
+
|
|
169
|
+
product_fields = cls.traverse(model.product, root_name)
|
|
170
|
+
fields.extend(product_fields)
|
|
171
|
+
|
|
172
|
+
product_name = cls._sanitize_for_ltree(model.product.name)
|
|
173
|
+
|
|
174
|
+
product_block_root = f"{root_name}.{product_name}.product_block"
|
|
175
|
+
|
|
176
|
+
# Extract product block schema structure
|
|
177
|
+
model_class = type(model)
|
|
178
|
+
product_block_fields = getattr(model_class, "_product_block_fields_", {})
|
|
179
|
+
|
|
180
|
+
for field_name in product_block_fields:
|
|
181
|
+
block_value = getattr(model, field_name, None)
|
|
182
|
+
if block_value is not None:
|
|
183
|
+
block_path = f"{product_block_root}.{field_name}"
|
|
184
|
+
schema_fields = cls._extract_block_schema(block_value, block_path)
|
|
185
|
+
fields.extend(schema_fields)
|
|
186
|
+
|
|
187
|
+
return sorted(fields, key=lambda f: f.path)
|
|
188
|
+
|
|
189
|
+
except (ProductNotInRegistryError, ModelLoadError) as e:
|
|
190
|
+
entity_id = getattr(entity, pk_name, "unknown")
|
|
191
|
+
logger.error(f"Failed to extract fields from {entity.__class__.__name__}", id=str(entity_id), error=str(e))
|
|
192
|
+
return []
|
|
193
|
+
|
|
194
|
+
@classmethod
|
|
195
|
+
def _extract_block_schema(cls, block_instance: ProductBlockModel, block_path: str) -> list[ExtractedField]:
|
|
196
|
+
"""Extract schema information from a block instance, returning field names as RESOURCE_TYPE."""
|
|
197
|
+
fields = []
|
|
198
|
+
|
|
199
|
+
# Add the block itself as a BLOCK type
|
|
200
|
+
block_name = block_path.split(cls._LTREE_SEPARATOR)[-1]
|
|
201
|
+
fields.append(ExtractedField(path=block_path, value=block_name, value_type=FieldType.BLOCK))
|
|
202
|
+
|
|
203
|
+
# Extract all field names from the block as RESOURCE_TYPE
|
|
204
|
+
if hasattr(type(block_instance), "model_fields"):
|
|
205
|
+
all_fields = type(block_instance).model_fields
|
|
206
|
+
computed_fields = getattr(block_instance, "__pydantic_computed_fields__", None)
|
|
207
|
+
if computed_fields:
|
|
208
|
+
all_fields.update(computed_fields)
|
|
209
|
+
|
|
210
|
+
for field_name in all_fields:
|
|
211
|
+
field_value = getattr(block_instance, field_name, None)
|
|
212
|
+
field_path = f"{block_path}.{field_name}"
|
|
213
|
+
|
|
214
|
+
# If it's a nested block, recurse
|
|
215
|
+
if field_value is not None and isinstance(field_value, ProductBlockModel):
|
|
216
|
+
nested_fields = cls._extract_block_schema(field_value, field_path)
|
|
217
|
+
fields.extend(nested_fields)
|
|
218
|
+
elif field_value is not None and isinstance(field_value, list):
|
|
219
|
+
# Handle list of blocks
|
|
220
|
+
if field_value and isinstance(field_value[0], ProductBlockModel):
|
|
221
|
+
# For lists, we still add the list field as a resource type
|
|
222
|
+
fields.append(
|
|
223
|
+
ExtractedField(path=field_path, value=field_name, value_type=FieldType.RESOURCE_TYPE)
|
|
224
|
+
)
|
|
225
|
+
# And potentially traverse the first item for schema
|
|
226
|
+
first_item_path = f"{field_path}{cls._LTREE_SEPARATOR}0"
|
|
227
|
+
nested_fields = cls._extract_block_schema(field_value[0], first_item_path)
|
|
228
|
+
fields.extend(nested_fields)
|
|
229
|
+
else:
|
|
230
|
+
fields.append(
|
|
231
|
+
ExtractedField(path=field_path, value=field_name, value_type=FieldType.RESOURCE_TYPE)
|
|
232
|
+
)
|
|
233
|
+
else:
|
|
234
|
+
# Regular fields are resource types
|
|
235
|
+
fields.append(ExtractedField(path=field_path, value=field_name, value_type=FieldType.RESOURCE_TYPE))
|
|
236
|
+
|
|
237
|
+
return fields
|
|
238
|
+
|
|
239
|
+
@classmethod
|
|
240
|
+
def _load_model(cls, product: ProductTable) -> SubscriptionModel | None:
|
|
241
|
+
"""Creates a template instance of a SubscriptionModel for a given product.
|
|
242
|
+
|
|
243
|
+
This allows us to traverse the product's defined block structure, even
|
|
244
|
+
without a real subscription instance in the database.
|
|
245
|
+
"""
|
|
246
|
+
# Find the SubscriptionModel class associated with this product's name.
|
|
247
|
+
domain_model_cls = SUBSCRIPTION_MODEL_REGISTRY.get(product.name)
|
|
248
|
+
if not domain_model_cls:
|
|
249
|
+
raise ProductNotInRegistryError(f"Product '{product.name}' not in registry.")
|
|
250
|
+
|
|
251
|
+
# Get the initial lifecycle version of that class, as it represents the base structure.
|
|
252
|
+
try:
|
|
253
|
+
subscription_model_cls = cast(
|
|
254
|
+
type[SubscriptionModel], lookup_specialized_type(domain_model_cls, SubscriptionLifecycle.INITIAL)
|
|
255
|
+
)
|
|
256
|
+
except Exception:
|
|
257
|
+
subscription_model_cls = domain_model_cls
|
|
258
|
+
|
|
259
|
+
try:
|
|
260
|
+
product_model = ProductModel(
|
|
261
|
+
product_id=product.product_id,
|
|
262
|
+
name=product.name,
|
|
263
|
+
description=product.description,
|
|
264
|
+
product_type=product.product_type,
|
|
265
|
+
tag=product.tag,
|
|
266
|
+
status=product.status,
|
|
267
|
+
)
|
|
268
|
+
|
|
269
|
+
# Generate a fake subscription ID for the template
|
|
270
|
+
subscription_id = uuid4()
|
|
271
|
+
|
|
272
|
+
# Get fixed inputs for the product
|
|
273
|
+
fixed_inputs = {fi.name: fi.value for fi in product.fixed_inputs}
|
|
274
|
+
|
|
275
|
+
# Initialize product blocks
|
|
276
|
+
instances = subscription_model_cls._init_instances(subscription_id)
|
|
277
|
+
|
|
278
|
+
return subscription_model_cls(
|
|
279
|
+
product=product_model,
|
|
280
|
+
customer_id="traverser_template",
|
|
281
|
+
subscription_id=subscription_id,
|
|
282
|
+
description="Template for schema traversal",
|
|
283
|
+
status=SubscriptionLifecycle.INITIAL,
|
|
284
|
+
insync=False,
|
|
285
|
+
start_date=None,
|
|
286
|
+
end_date=None,
|
|
287
|
+
note=None,
|
|
288
|
+
version=1,
|
|
289
|
+
**fixed_inputs,
|
|
290
|
+
**instances,
|
|
291
|
+
)
|
|
292
|
+
except Exception:
|
|
293
|
+
logger.exception("Failed to instantiate template model for product", product_name=product.name)
|
|
294
|
+
return None
|
|
295
|
+
|
|
296
|
+
|
|
297
|
+
class ProcessTraverser(BaseTraverser):
|
|
298
|
+
"""Traverser for process entities using ProcessSchema model.
|
|
299
|
+
|
|
300
|
+
Note: Currently extracts only top-level process fields. Could be extended to include:
|
|
301
|
+
- Related subscriptions (entity.subscriptions)
|
|
302
|
+
- Related workflow information beyond workflow_name
|
|
303
|
+
"""
|
|
304
|
+
|
|
305
|
+
@classmethod
|
|
306
|
+
def _load_model(cls, process: ProcessTable) -> ProcessSchema:
|
|
307
|
+
"""Load process model using ProcessSchema."""
|
|
308
|
+
return cls._load_model_with_schema(process, ProcessSchema, "process_id")
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
class WorkflowTraverser(BaseTraverser):
|
|
312
|
+
"""Traverser for workflow entities using WorkflowSchema model.
|
|
313
|
+
|
|
314
|
+
Note: Currently extracts only top-level workflow fields. Could be extended to include:
|
|
315
|
+
- Related products (entity.products) - each with their own block structures
|
|
316
|
+
- Related processes (entity.processes) - each with their own process data
|
|
317
|
+
"""
|
|
318
|
+
|
|
319
|
+
@classmethod
|
|
320
|
+
def _load_model(cls, workflow: WorkflowTable) -> WorkflowSchema:
|
|
321
|
+
"""Load workflow model using WorkflowSchema."""
|
|
322
|
+
return cls._load_model_with_schema(workflow, WorkflowSchema, "workflow_id")
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
from collections import defaultdict
|
|
2
|
+
from typing import Sequence
|
|
3
|
+
|
|
4
|
+
from sqlalchemy import Select, String, cast, func, select
|
|
5
|
+
from sqlalchemy.engine import Row
|
|
6
|
+
|
|
7
|
+
from orchestrator.db.models import AiSearchIndex
|
|
8
|
+
from orchestrator.search.core.types import EntityType, FieldType, FilterOp, UIType
|
|
9
|
+
from orchestrator.search.filters import LtreeFilter
|
|
10
|
+
from orchestrator.search.schemas.parameters import BaseSearchParameters
|
|
11
|
+
from orchestrator.search.schemas.results import ComponentInfo, LeafInfo
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def create_path_autocomplete_lquery(prefix: str) -> str:
|
|
15
|
+
"""Create the lquery pattern for a multi-level path autocomplete search."""
|
|
16
|
+
return f"{prefix}*.*"
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
def build_candidate_query(params: BaseSearchParameters) -> Select:
|
|
20
|
+
"""Build the base query for retrieving candidate entities.
|
|
21
|
+
|
|
22
|
+
Constructs a `SELECT` statement that retrieves distinct `entity_id` values
|
|
23
|
+
from the index table for the given entity type, applying any structured
|
|
24
|
+
filters from the provided search parameters.
|
|
25
|
+
|
|
26
|
+
Parameters
|
|
27
|
+
----------
|
|
28
|
+
params : BaseSearchParameters
|
|
29
|
+
The search parameters containing the entity type and optional filters.
|
|
30
|
+
|
|
31
|
+
Returns:
|
|
32
|
+
-------
|
|
33
|
+
Select
|
|
34
|
+
The SQLAlchemy `Select` object representing the query.
|
|
35
|
+
"""
|
|
36
|
+
stmt = select(AiSearchIndex.entity_id).where(AiSearchIndex.entity_type == params.entity_type.value).distinct()
|
|
37
|
+
|
|
38
|
+
if params.filters is not None:
|
|
39
|
+
entity_id_col = AiSearchIndex.entity_id
|
|
40
|
+
stmt = stmt.where(
|
|
41
|
+
params.filters.to_expression(
|
|
42
|
+
entity_id_col,
|
|
43
|
+
entity_type_value=params.entity_type.value,
|
|
44
|
+
)
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
return stmt
|
|
48
|
+
|
|
49
|
+
|
|
50
|
+
def build_paths_query(entity_type: EntityType, prefix: str | None = None, q: str | None = None) -> Select:
|
|
51
|
+
"""Build the query for retrieving paths and their value types for leaves/components processing."""
|
|
52
|
+
stmt = select(AiSearchIndex.path, AiSearchIndex.value_type).where(AiSearchIndex.entity_type == entity_type.value)
|
|
53
|
+
|
|
54
|
+
if prefix:
|
|
55
|
+
lquery_pattern = create_path_autocomplete_lquery(prefix)
|
|
56
|
+
ltree_filter = LtreeFilter(op=FilterOp.MATCHES_LQUERY, value=lquery_pattern)
|
|
57
|
+
stmt = stmt.where(ltree_filter.to_expression(AiSearchIndex.path, path=""))
|
|
58
|
+
|
|
59
|
+
stmt = stmt.group_by(AiSearchIndex.path, AiSearchIndex.value_type)
|
|
60
|
+
|
|
61
|
+
if q:
|
|
62
|
+
score = func.similarity(cast(AiSearchIndex.path, String), q)
|
|
63
|
+
stmt = stmt.order_by(score.desc(), AiSearchIndex.path)
|
|
64
|
+
else:
|
|
65
|
+
stmt = stmt.order_by(AiSearchIndex.path)
|
|
66
|
+
|
|
67
|
+
return stmt
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def process_path_rows(rows: Sequence[Row]) -> tuple[list[LeafInfo], list[ComponentInfo]]:
|
|
71
|
+
"""Process query results to extract leaves and components information.
|
|
72
|
+
|
|
73
|
+
Parameters
|
|
74
|
+
----------
|
|
75
|
+
rows : Sequence[Row]
|
|
76
|
+
Database rows containing path and value_type information
|
|
77
|
+
|
|
78
|
+
Returns:
|
|
79
|
+
-------
|
|
80
|
+
tuple[list[LeafInfo], list[ComponentInfo]]
|
|
81
|
+
Processed leaves and components
|
|
82
|
+
"""
|
|
83
|
+
leaves_dict: dict[str, set[UIType]] = defaultdict(set)
|
|
84
|
+
components_set: set[str] = set()
|
|
85
|
+
|
|
86
|
+
for row in rows:
|
|
87
|
+
path, value_type = row
|
|
88
|
+
|
|
89
|
+
path_str = str(path)
|
|
90
|
+
path_segments = path_str.split(".")
|
|
91
|
+
|
|
92
|
+
# Remove numeric segments
|
|
93
|
+
clean_segments = [seg for seg in path_segments if not seg.isdigit()]
|
|
94
|
+
|
|
95
|
+
if clean_segments:
|
|
96
|
+
# Last segment is a leaf
|
|
97
|
+
leaf_name = clean_segments[-1]
|
|
98
|
+
ui_type = UIType.from_field_type(FieldType(value_type))
|
|
99
|
+
leaves_dict[leaf_name].add(ui_type)
|
|
100
|
+
|
|
101
|
+
# All segments except the first/last are components
|
|
102
|
+
for component in clean_segments[1:-1]:
|
|
103
|
+
components_set.add(component)
|
|
104
|
+
|
|
105
|
+
leaves = [LeafInfo(name=leaf, ui_types=list(types)) for leaf, types in leaves_dict.items()]
|
|
106
|
+
components = [ComponentInfo(name=component, ui_types=[UIType.COMPONENT]) for component in sorted(components_set)]
|
|
107
|
+
|
|
108
|
+
return leaves, components
|
|
@@ -0,0 +1,152 @@
|
|
|
1
|
+
from collections.abc import Sequence
|
|
2
|
+
|
|
3
|
+
import structlog
|
|
4
|
+
from sqlalchemy.engine.row import RowMapping
|
|
5
|
+
from sqlalchemy.orm import Session
|
|
6
|
+
|
|
7
|
+
from orchestrator.search.core.types import FilterOp, SearchMetadata
|
|
8
|
+
from orchestrator.search.filters import FilterTree, LtreeFilter
|
|
9
|
+
from orchestrator.search.schemas.parameters import BaseSearchParameters
|
|
10
|
+
from orchestrator.search.schemas.results import MatchingField, SearchResponse, SearchResult
|
|
11
|
+
|
|
12
|
+
from .builder import build_candidate_query
|
|
13
|
+
from .pagination import PaginationParams
|
|
14
|
+
from .retriever import Retriever
|
|
15
|
+
from .utils import generate_highlight_indices
|
|
16
|
+
|
|
17
|
+
logger = structlog.get_logger(__name__)
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
def _format_response(
|
|
21
|
+
db_rows: Sequence[RowMapping], search_params: BaseSearchParameters, metadata: SearchMetadata
|
|
22
|
+
) -> SearchResponse:
|
|
23
|
+
"""Format database query results into a `SearchResponse`.
|
|
24
|
+
|
|
25
|
+
Converts raw SQLAlchemy `RowMapping` objects into `SearchResult` instances,
|
|
26
|
+
including highlight metadata if present in the database results.
|
|
27
|
+
|
|
28
|
+
Parameters
|
|
29
|
+
----------
|
|
30
|
+
db_rows : Sequence[RowMapping]
|
|
31
|
+
The rows returned from the executed SQLAlchemy query.
|
|
32
|
+
|
|
33
|
+
Returns:
|
|
34
|
+
-------
|
|
35
|
+
SearchResponse
|
|
36
|
+
A list of `SearchResult` objects containing entity IDs, scores, and
|
|
37
|
+
optional highlight information.
|
|
38
|
+
"""
|
|
39
|
+
|
|
40
|
+
if not db_rows:
|
|
41
|
+
return SearchResponse(results=[], metadata=metadata)
|
|
42
|
+
|
|
43
|
+
user_query = search_params.query
|
|
44
|
+
|
|
45
|
+
results = []
|
|
46
|
+
for row in db_rows:
|
|
47
|
+
matching_field = None
|
|
48
|
+
|
|
49
|
+
if user_query and row.get("highlight_text") and row.get("highlight_path"):
|
|
50
|
+
# Text/semantic searches
|
|
51
|
+
text = row.highlight_text
|
|
52
|
+
path = row.highlight_path
|
|
53
|
+
|
|
54
|
+
if not isinstance(text, str):
|
|
55
|
+
text = str(text)
|
|
56
|
+
if not isinstance(path, str):
|
|
57
|
+
path = str(path)
|
|
58
|
+
|
|
59
|
+
highlight_indices = generate_highlight_indices(text, user_query) or None
|
|
60
|
+
matching_field = MatchingField(text=text, path=path, highlight_indices=highlight_indices)
|
|
61
|
+
|
|
62
|
+
elif not user_query and search_params.filters and metadata.search_type == "structured":
|
|
63
|
+
# Structured search (filter-only)
|
|
64
|
+
matching_field = _extract_matching_field_from_filters(search_params.filters)
|
|
65
|
+
|
|
66
|
+
results.append(
|
|
67
|
+
SearchResult(
|
|
68
|
+
entity_id=str(row.entity_id),
|
|
69
|
+
score=row.score,
|
|
70
|
+
perfect_match=row.get("perfect_match", 0),
|
|
71
|
+
matching_field=matching_field,
|
|
72
|
+
)
|
|
73
|
+
)
|
|
74
|
+
return SearchResponse(results=results, metadata=metadata)
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
def _extract_matching_field_from_filters(filters: FilterTree) -> MatchingField | None:
|
|
78
|
+
"""Extract the first path filter to use as matching field for structured searches.
|
|
79
|
+
|
|
80
|
+
TODO: Should we allow a list of matched fields in the MatchingField model?
|
|
81
|
+
We need a different approach, probably a cross join in StructuredRetriever.
|
|
82
|
+
"""
|
|
83
|
+
leaves = filters.get_all_leaves()
|
|
84
|
+
if len(leaves) != 1:
|
|
85
|
+
return None
|
|
86
|
+
|
|
87
|
+
pf = leaves[0]
|
|
88
|
+
|
|
89
|
+
if isinstance(pf.condition, LtreeFilter):
|
|
90
|
+
op = pf.condition.op
|
|
91
|
+
# Prefer the original component/pattern (validator may set path="*" and move the value)
|
|
92
|
+
display = str(getattr(pf.condition, "value", "") or pf.path)
|
|
93
|
+
|
|
94
|
+
# There can be no match for abscence.
|
|
95
|
+
if op == FilterOp.NOT_HAS_COMPONENT:
|
|
96
|
+
return None
|
|
97
|
+
|
|
98
|
+
return MatchingField(text=display, path=display, highlight_indices=[(0, len(display))])
|
|
99
|
+
|
|
100
|
+
# Everything thats not Ltree
|
|
101
|
+
val = getattr(pf.condition, "value", "")
|
|
102
|
+
text = "" if val is None else str(val)
|
|
103
|
+
return MatchingField(text=text, path=pf.path, highlight_indices=[(0, len(text))])
|
|
104
|
+
|
|
105
|
+
|
|
106
|
+
async def execute_search(
|
|
107
|
+
search_params: BaseSearchParameters,
|
|
108
|
+
db_session: Session,
|
|
109
|
+
pagination_params: PaginationParams | None = None,
|
|
110
|
+
) -> SearchResponse:
|
|
111
|
+
"""Execute a hybrid search and return ranked results.
|
|
112
|
+
|
|
113
|
+
Builds a candidate entity query based on the given search parameters,
|
|
114
|
+
applies the appropriate ranking strategy, and executes the final ranked
|
|
115
|
+
query to retrieve results.
|
|
116
|
+
|
|
117
|
+
Parameters
|
|
118
|
+
----------
|
|
119
|
+
search_params : BaseSearchParameters
|
|
120
|
+
The search parameters specifying vector, fuzzy, or filter criteria.
|
|
121
|
+
db_session : Session
|
|
122
|
+
The active SQLAlchemy session for executing the query.
|
|
123
|
+
limit : int, optional
|
|
124
|
+
The maximum number of search results to return, by default 5.
|
|
125
|
+
|
|
126
|
+
Returns:
|
|
127
|
+
-------
|
|
128
|
+
SearchResponse
|
|
129
|
+
A list of `SearchResult` objects containing entity IDs, scores, and
|
|
130
|
+
optional highlight metadata.
|
|
131
|
+
|
|
132
|
+
Notes:
|
|
133
|
+
-----
|
|
134
|
+
If no vector query, filters, or fuzzy term are provided, a warning is logged
|
|
135
|
+
and an empty result set is returned.
|
|
136
|
+
"""
|
|
137
|
+
if not search_params.vector_query and not search_params.filters and not search_params.fuzzy_term:
|
|
138
|
+
logger.warning("No search criteria provided (vector_query, fuzzy_term, or filters).")
|
|
139
|
+
return SearchResponse(results=[], metadata=SearchMetadata.empty())
|
|
140
|
+
|
|
141
|
+
candidate_query = build_candidate_query(search_params)
|
|
142
|
+
|
|
143
|
+
pagination_params = pagination_params or PaginationParams()
|
|
144
|
+
retriever = await Retriever.from_params(search_params, pagination_params)
|
|
145
|
+
logger.debug("Using retriever", retriever_type=retriever.__class__.__name__)
|
|
146
|
+
|
|
147
|
+
final_stmt = retriever.apply(candidate_query)
|
|
148
|
+
final_stmt = final_stmt.limit(search_params.limit)
|
|
149
|
+
logger.debug(final_stmt)
|
|
150
|
+
result = db_session.execute(final_stmt).mappings().all()
|
|
151
|
+
|
|
152
|
+
return _format_response(result, search_params, retriever.metadata)
|