orca-sdk 0.1.8__py3-none-any.whl → 0.1.10__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orca_sdk/_utils/analysis_ui.py +1 -1
- orca_sdk/_utils/data_parsing.py +16 -12
- orca_sdk/_utils/data_parsing_test.py +8 -8
- orca_sdk/async_client.py +96 -28
- orca_sdk/classification_model.py +184 -104
- orca_sdk/classification_model_test.py +8 -4
- orca_sdk/client.py +96 -28
- orca_sdk/credentials.py +8 -10
- orca_sdk/datasource.py +3 -3
- orca_sdk/memoryset.py +64 -38
- orca_sdk/memoryset_test.py +5 -3
- orca_sdk/regression_model.py +124 -67
- orca_sdk/regression_model_test.py +8 -4
- {orca_sdk-0.1.8.dist-info → orca_sdk-0.1.10.dist-info}/METADATA +4 -4
- {orca_sdk-0.1.8.dist-info → orca_sdk-0.1.10.dist-info}/RECORD +16 -16
- {orca_sdk-0.1.8.dist-info → orca_sdk-0.1.10.dist-info}/WHEEL +0 -0
orca_sdk/memoryset_test.py
CHANGED
|
@@ -856,7 +856,8 @@ def test_insert_memories(writable_memoryset: LabeledMemoryset):
|
|
|
856
856
|
[
|
|
857
857
|
dict(value="tomato soup is my favorite", label=0),
|
|
858
858
|
dict(value="cats are fun to play with", label=1),
|
|
859
|
-
]
|
|
859
|
+
],
|
|
860
|
+
batch_size=1,
|
|
860
861
|
)
|
|
861
862
|
writable_memoryset.refresh()
|
|
862
863
|
assert writable_memoryset.length == prev_length + 2
|
|
@@ -897,7 +898,8 @@ def test_update_memories(writable_memoryset: LabeledMemoryset, hf_dataset: Datas
|
|
|
897
898
|
[
|
|
898
899
|
dict(memory_id=memory_ids[0], value="i love soup so much"),
|
|
899
900
|
dict(memory_id=memory_ids[1], value="cats are so cute"),
|
|
900
|
-
]
|
|
901
|
+
],
|
|
902
|
+
batch_size=1,
|
|
901
903
|
)
|
|
902
904
|
assert updated_memories[0].value == "i love soup so much"
|
|
903
905
|
assert updated_memories[1].value == "cats are so cute"
|
|
@@ -916,7 +918,7 @@ def test_delete_memories(writable_memoryset: LabeledMemoryset):
|
|
|
916
918
|
|
|
917
919
|
# test deleting multiple memories
|
|
918
920
|
prev_length = writable_memoryset.length
|
|
919
|
-
writable_memoryset.delete([writable_memoryset[0].memory_id, writable_memoryset[1].memory_id])
|
|
921
|
+
writable_memoryset.delete([writable_memoryset[0].memory_id, writable_memoryset[1].memory_id], batch_size=1)
|
|
920
922
|
assert writable_memoryset.length == prev_length - 2
|
|
921
923
|
|
|
922
924
|
|
orca_sdk/regression_model.py
CHANGED
|
@@ -10,6 +10,7 @@ from datasets import Dataset
|
|
|
10
10
|
from ._shared.metrics import RegressionMetrics, calculate_regression_metrics
|
|
11
11
|
from ._utils.common import UNSET, CreateMode, DropMode
|
|
12
12
|
from .client import (
|
|
13
|
+
ListPredictionsRequest,
|
|
13
14
|
OrcaClient,
|
|
14
15
|
PredictiveModelUpdate,
|
|
15
16
|
RARHeadType,
|
|
@@ -295,6 +296,7 @@ class RegressionModel:
|
|
|
295
296
|
"ignore_partitions", "include_global", "exclude_global", "only_global"
|
|
296
297
|
] = "include_global",
|
|
297
298
|
use_gpu: bool = True,
|
|
299
|
+
batch_size: int = 100,
|
|
298
300
|
) -> RegressionPrediction: ...
|
|
299
301
|
|
|
300
302
|
@overload
|
|
@@ -313,6 +315,7 @@ class RegressionModel:
|
|
|
313
315
|
"ignore_partitions", "include_global", "exclude_global", "only_global"
|
|
314
316
|
] = "include_global",
|
|
315
317
|
use_gpu: bool = True,
|
|
318
|
+
batch_size: int = 100,
|
|
316
319
|
) -> list[RegressionPrediction]: ...
|
|
317
320
|
|
|
318
321
|
# TODO: add filter support
|
|
@@ -331,6 +334,7 @@ class RegressionModel:
|
|
|
331
334
|
"ignore_partitions", "include_global", "exclude_global", "only_global"
|
|
332
335
|
] = "include_global",
|
|
333
336
|
use_gpu: bool = True,
|
|
337
|
+
batch_size: int = 100,
|
|
334
338
|
) -> RegressionPrediction | list[RegressionPrediction]:
|
|
335
339
|
"""
|
|
336
340
|
Make predictions using the regression model.
|
|
@@ -355,6 +359,7 @@ class RegressionModel:
|
|
|
355
359
|
* `"exclude_global"`: Exclude global memories
|
|
356
360
|
* `"only_global"`: Only include global memories
|
|
357
361
|
use_gpu: Whether to use GPU for the prediction (defaults to True)
|
|
362
|
+
batch_size: Number of values to process in a single API call
|
|
358
363
|
|
|
359
364
|
Returns:
|
|
360
365
|
Single RegressionPrediction or list of RegressionPrediction objects
|
|
@@ -366,6 +371,8 @@ class RegressionModel:
|
|
|
366
371
|
"""
|
|
367
372
|
if timeout_seconds <= 0:
|
|
368
373
|
raise ValueError("timeout_seconds must be a positive integer")
|
|
374
|
+
if batch_size <= 0 or batch_size > 500:
|
|
375
|
+
raise ValueError("batch_size must be between 1 and 500")
|
|
369
376
|
|
|
370
377
|
if use_gpu:
|
|
371
378
|
endpoint = "/gpu/regression_model/{name_or_id}/prediction"
|
|
@@ -374,75 +381,98 @@ class RegressionModel:
|
|
|
374
381
|
|
|
375
382
|
telemetry_on, telemetry_sync = _get_telemetry_config(save_telemetry)
|
|
376
383
|
client = OrcaClient._resolve_client()
|
|
377
|
-
request_json: RegressionPredictionRequest = {
|
|
378
|
-
"input_values": value if isinstance(value, list) else [value],
|
|
379
|
-
"memoryset_override_name_or_id": self._memoryset_override_id,
|
|
380
|
-
"expected_scores": (
|
|
381
|
-
expected_scores
|
|
382
|
-
if isinstance(expected_scores, list)
|
|
383
|
-
else [expected_scores] if expected_scores is not None else None
|
|
384
|
-
),
|
|
385
|
-
"tags": list(tags or set()),
|
|
386
|
-
"save_telemetry": telemetry_on,
|
|
387
|
-
"save_telemetry_synchronously": telemetry_sync,
|
|
388
|
-
"prompt": prompt,
|
|
389
|
-
"use_lookup_cache": use_lookup_cache,
|
|
390
|
-
"ignore_unlabeled": ignore_unlabeled,
|
|
391
|
-
"partition_filter_mode": partition_filter_mode,
|
|
392
|
-
}
|
|
393
|
-
# Don't send partition_ids when partition_filter_mode is "ignore_partitions"
|
|
394
|
-
if partition_filter_mode != "ignore_partitions":
|
|
395
|
-
request_json["partition_ids"] = partition_id
|
|
396
|
-
response = client.POST(
|
|
397
|
-
endpoint,
|
|
398
|
-
params={"name_or_id": self.id},
|
|
399
|
-
json=request_json,
|
|
400
|
-
timeout=timeout_seconds,
|
|
401
|
-
)
|
|
402
384
|
|
|
403
|
-
|
|
404
|
-
|
|
385
|
+
# Convert to list for batching
|
|
386
|
+
values = value if isinstance(value, list) else [value]
|
|
387
|
+
if isinstance(expected_scores, list) and len(expected_scores) != len(values):
|
|
388
|
+
raise ValueError("Invalid input: \n\texpected_scores must be the same length as values")
|
|
389
|
+
if isinstance(partition_id, list) and len(partition_id) != len(values):
|
|
390
|
+
raise ValueError("Invalid input: \n\tpartition_id must be the same length as values")
|
|
391
|
+
|
|
392
|
+
if isinstance(expected_scores, list):
|
|
393
|
+
expected_scores = expected_scores
|
|
394
|
+
elif expected_scores is not None:
|
|
395
|
+
expected_scores = [float(expected_scores)] * len(values)
|
|
396
|
+
|
|
397
|
+
predictions: list[RegressionPrediction] = []
|
|
398
|
+
for i in range(0, len(values), batch_size):
|
|
399
|
+
batch_values = values[i : i + batch_size]
|
|
400
|
+
batch_expected_scores = expected_scores[i : i + batch_size] if expected_scores else None
|
|
401
|
+
|
|
402
|
+
request_json: RegressionPredictionRequest = {
|
|
403
|
+
"input_values": batch_values,
|
|
404
|
+
"memoryset_override_name_or_id": self._memoryset_override_id,
|
|
405
|
+
"expected_scores": batch_expected_scores,
|
|
406
|
+
"tags": list(tags or set()),
|
|
407
|
+
"save_telemetry": telemetry_on,
|
|
408
|
+
"save_telemetry_synchronously": telemetry_sync,
|
|
409
|
+
"prompt": prompt,
|
|
410
|
+
"use_lookup_cache": use_lookup_cache,
|
|
411
|
+
"ignore_unlabeled": ignore_unlabeled,
|
|
412
|
+
"partition_filter_mode": partition_filter_mode,
|
|
413
|
+
}
|
|
414
|
+
if partition_filter_mode != "ignore_partitions":
|
|
415
|
+
request_json["partition_ids"] = (
|
|
416
|
+
partition_id[i : i + batch_size] if isinstance(partition_id, list) else partition_id
|
|
417
|
+
)
|
|
418
|
+
|
|
419
|
+
response = client.POST(
|
|
420
|
+
endpoint,
|
|
421
|
+
params={"name_or_id": self.id},
|
|
422
|
+
json=request_json,
|
|
423
|
+
timeout=timeout_seconds,
|
|
424
|
+
)
|
|
405
425
|
|
|
406
|
-
|
|
407
|
-
|
|
408
|
-
|
|
409
|
-
|
|
410
|
-
|
|
411
|
-
|
|
412
|
-
|
|
413
|
-
|
|
414
|
-
|
|
415
|
-
|
|
416
|
-
|
|
417
|
-
|
|
426
|
+
if telemetry_on and any(p["prediction_id"] is None for p in response):
|
|
427
|
+
raise RuntimeError("Failed to save prediction to database.")
|
|
428
|
+
|
|
429
|
+
predictions.extend(
|
|
430
|
+
RegressionPrediction(
|
|
431
|
+
prediction_id=prediction["prediction_id"],
|
|
432
|
+
label=None,
|
|
433
|
+
label_name=None,
|
|
434
|
+
score=prediction["score"],
|
|
435
|
+
confidence=prediction["confidence"],
|
|
436
|
+
anomaly_score=prediction["anomaly_score"],
|
|
437
|
+
memoryset=self.memoryset,
|
|
438
|
+
model=self,
|
|
439
|
+
logits=None,
|
|
440
|
+
input_value=input_value,
|
|
441
|
+
)
|
|
442
|
+
for prediction, input_value in zip(response, batch_values)
|
|
418
443
|
)
|
|
419
|
-
|
|
420
|
-
]
|
|
444
|
+
|
|
421
445
|
self._last_prediction_was_batch = isinstance(value, list)
|
|
422
446
|
self._last_prediction = predictions[-1]
|
|
423
447
|
return predictions if isinstance(value, list) else predictions[0]
|
|
424
448
|
|
|
425
449
|
def predictions(
|
|
426
450
|
self,
|
|
427
|
-
limit: int =
|
|
451
|
+
limit: int | None = None,
|
|
428
452
|
offset: int = 0,
|
|
429
453
|
tag: str | None = None,
|
|
430
454
|
sort: list[tuple[Literal["anomaly_score", "confidence", "timestamp"], Literal["asc", "desc"]]] = [],
|
|
455
|
+
batch_size: int = 100,
|
|
431
456
|
) -> list[RegressionPrediction]:
|
|
432
457
|
"""
|
|
433
458
|
Get a list of predictions made by this model
|
|
434
459
|
|
|
435
460
|
Params:
|
|
436
|
-
limit:
|
|
461
|
+
limit: Maximum number of predictions to return. If `None`, returns all predictions
|
|
462
|
+
by automatically paginating through results.
|
|
437
463
|
offset: Optional offset of the first prediction to return
|
|
438
464
|
tag: Optional tag to filter predictions by
|
|
439
465
|
sort: Optional list of columns and directions to sort the predictions by.
|
|
440
466
|
Predictions can be sorted by `created_at`, `confidence`, `anomaly_score`, or `score`.
|
|
467
|
+
batch_size: Number of predictions to fetch in a single API call
|
|
441
468
|
|
|
442
469
|
Returns:
|
|
443
470
|
List of score predictions
|
|
444
471
|
|
|
445
472
|
Examples:
|
|
473
|
+
Get all predictions with a specific tag:
|
|
474
|
+
>>> predictions = model.predictions(tag="evaluation")
|
|
475
|
+
|
|
446
476
|
Get the last 3 predictions:
|
|
447
477
|
>>> predictions = model.predictions(limit=3, sort=[("created_at", "desc")])
|
|
448
478
|
[
|
|
@@ -455,34 +485,61 @@ class RegressionModel:
|
|
|
455
485
|
>>> predictions = model.predictions(sort=[("confidence", "desc")], offset=1, limit=1)
|
|
456
486
|
[RegressionPrediction({score: 4.2, confidence: 0.90, anomaly_score: 0.1, input_value: 'Good service'})]
|
|
457
487
|
"""
|
|
488
|
+
if batch_size <= 0 or batch_size > 500:
|
|
489
|
+
raise ValueError("batch_size must be between 1 and 500")
|
|
490
|
+
if limit == 0:
|
|
491
|
+
return []
|
|
492
|
+
|
|
458
493
|
client = OrcaClient._resolve_client()
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
494
|
+
all_predictions: list[RegressionPrediction] = []
|
|
495
|
+
|
|
496
|
+
if limit is not None and limit < batch_size:
|
|
497
|
+
pages = [(offset, limit)]
|
|
498
|
+
else:
|
|
499
|
+
# automatically paginate the requests if necessary
|
|
500
|
+
total = client.POST(
|
|
501
|
+
"/telemetry/prediction/count",
|
|
502
|
+
json={
|
|
503
|
+
"model_id": self.id,
|
|
504
|
+
"tag": tag,
|
|
505
|
+
},
|
|
506
|
+
)
|
|
507
|
+
max_limit = max(total - offset, 0)
|
|
508
|
+
limit = min(limit, max_limit) if limit is not None else max_limit
|
|
509
|
+
pages = [(o, min(batch_size, limit - (o - offset))) for o in range(offset, offset + limit, batch_size)]
|
|
510
|
+
|
|
511
|
+
for current_offset, current_limit in pages:
|
|
512
|
+
request_json: ListPredictionsRequest = {
|
|
462
513
|
"model_id": self.id,
|
|
463
|
-
"limit":
|
|
464
|
-
"offset":
|
|
465
|
-
"sort": [list(sort_item) for sort_item in sort],
|
|
514
|
+
"limit": current_limit,
|
|
515
|
+
"offset": current_offset,
|
|
466
516
|
"tag": tag,
|
|
467
|
-
}
|
|
468
|
-
|
|
469
|
-
|
|
470
|
-
|
|
471
|
-
|
|
472
|
-
|
|
473
|
-
label_name=None,
|
|
474
|
-
score=prediction["score"],
|
|
475
|
-
confidence=prediction["confidence"],
|
|
476
|
-
anomaly_score=prediction["anomaly_score"],
|
|
477
|
-
memoryset=self.memoryset,
|
|
478
|
-
model=self,
|
|
479
|
-
telemetry=prediction,
|
|
480
|
-
logits=None,
|
|
481
|
-
input_value=None,
|
|
517
|
+
}
|
|
518
|
+
if sort:
|
|
519
|
+
request_json["sort"] = sort
|
|
520
|
+
response = client.POST(
|
|
521
|
+
"/telemetry/prediction",
|
|
522
|
+
json=request_json,
|
|
482
523
|
)
|
|
483
|
-
|
|
484
|
-
|
|
485
|
-
|
|
524
|
+
all_predictions.extend(
|
|
525
|
+
RegressionPrediction(
|
|
526
|
+
prediction_id=prediction["prediction_id"],
|
|
527
|
+
label=None,
|
|
528
|
+
label_name=None,
|
|
529
|
+
score=prediction["score"],
|
|
530
|
+
confidence=prediction["confidence"],
|
|
531
|
+
anomaly_score=prediction["anomaly_score"],
|
|
532
|
+
memoryset=self.memoryset,
|
|
533
|
+
model=self,
|
|
534
|
+
telemetry=prediction,
|
|
535
|
+
logits=None,
|
|
536
|
+
input_value=None,
|
|
537
|
+
)
|
|
538
|
+
for prediction in response
|
|
539
|
+
if "score" in prediction
|
|
540
|
+
)
|
|
541
|
+
|
|
542
|
+
return all_predictions
|
|
486
543
|
|
|
487
544
|
def _evaluate_datasource(
|
|
488
545
|
self,
|
|
@@ -183,14 +183,18 @@ def test_evaluate_dataset_with_nones_raises_error(regression_model: RegressionMo
|
|
|
183
183
|
|
|
184
184
|
|
|
185
185
|
def test_evaluate_with_telemetry(regression_model, eval_dataset: Dataset):
|
|
186
|
-
result = regression_model.evaluate(eval_dataset, record_predictions=True, tags={"test"})
|
|
186
|
+
result = regression_model.evaluate(eval_dataset, record_predictions=True, tags={"test"}, batch_size=2)
|
|
187
187
|
assert result is not None
|
|
188
188
|
assert isinstance(result, RegressionMetrics)
|
|
189
|
-
predictions = regression_model.predictions(tag="test")
|
|
189
|
+
predictions = regression_model.predictions(tag="test", batch_size=100, sort=[("timestamp", "asc")])
|
|
190
190
|
assert len(predictions) == 4
|
|
191
191
|
assert all(p.tags == {"test"} for p in predictions)
|
|
192
192
|
assert all(p.expected_score is not None for p in predictions)
|
|
193
|
-
|
|
193
|
+
prediction_expected_scores = [p.expected_score for p in predictions]
|
|
194
|
+
eval_expected_scores = list(eval_dataset["score"])
|
|
195
|
+
assert all(
|
|
196
|
+
np.allclose(p, s, atol=1e-3) for p, s in zip(prediction_expected_scores, eval_expected_scores)
|
|
197
|
+
), f"Prediction expected scores: {prediction_expected_scores} do not match eval expected scores: {eval_expected_scores}"
|
|
194
198
|
|
|
195
199
|
|
|
196
200
|
def test_evaluate_with_partition_column_dataset(partitioned_regression_model: RegressionModel):
|
|
@@ -328,7 +332,7 @@ def test_evaluate_with_partition_column_datasource(partitioned_regression_model:
|
|
|
328
332
|
|
|
329
333
|
|
|
330
334
|
def test_predict(regression_model: RegressionModel):
|
|
331
|
-
predictions = regression_model.predict(["Do you love soup?", "Are cats cute?"])
|
|
335
|
+
predictions = regression_model.predict(["Do you love soup?", "Are cats cute?"], batch_size=1)
|
|
332
336
|
assert len(predictions) == 2
|
|
333
337
|
assert predictions[0].prediction_id is not None
|
|
334
338
|
assert predictions[1].prediction_id is not None
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: orca_sdk
|
|
3
|
-
Version: 0.1.
|
|
3
|
+
Version: 0.1.10
|
|
4
4
|
Summary: SDK for interacting with Orca Services
|
|
5
5
|
License-Expression: Apache-2.0
|
|
6
6
|
Author: Orca DB Inc.
|
|
@@ -11,13 +11,13 @@ Classifier: Programming Language :: Python :: 3.11
|
|
|
11
11
|
Classifier: Programming Language :: Python :: 3.12
|
|
12
12
|
Classifier: Programming Language :: Python :: 3.13
|
|
13
13
|
Classifier: Programming Language :: Python :: 3.14
|
|
14
|
-
Requires-Dist: datasets (>=
|
|
15
|
-
Requires-Dist: gradio (>=
|
|
14
|
+
Requires-Dist: datasets (>=4.4.0,<5)
|
|
15
|
+
Requires-Dist: gradio (>=6.0.0,<7)
|
|
16
16
|
Requires-Dist: httpx (>=0.28.1)
|
|
17
17
|
Requires-Dist: httpx-retries (>=0.4.3,<0.5.0)
|
|
18
18
|
Requires-Dist: numpy (>=2.1.0,<3)
|
|
19
19
|
Requires-Dist: pandas (>=2.2.3,<3)
|
|
20
|
-
Requires-Dist: pyarrow (>=
|
|
20
|
+
Requires-Dist: pyarrow (>=22.0.0,<23)
|
|
21
21
|
Requires-Dist: python-dotenv (>=1.1.0)
|
|
22
22
|
Requires-Dist: scikit-learn (>=1.6.1,<2)
|
|
23
23
|
Requires-Dist: torch (>=2.8.0,<3)
|
|
@@ -3,13 +3,13 @@ orca_sdk/_shared/__init__.py,sha256=3Kt0Hu3QLI5FEp9nqGTxqAm3hAoBJKcagfaGQZ-lbJQ,
|
|
|
3
3
|
orca_sdk/_shared/metrics.py,sha256=faeL1B1ftmns1ikfKrIlU3xOn6j0iAGLNUupxvAFza8,24968
|
|
4
4
|
orca_sdk/_shared/metrics_test.py,sha256=vDIXoj8EuuLcdPJz_7EiVPgQ-FXiVT81JG30jxsg9HM,20752
|
|
5
5
|
orca_sdk/_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
|
-
orca_sdk/_utils/analysis_ui.py,sha256=
|
|
6
|
+
orca_sdk/_utils/analysis_ui.py,sha256=R0xc4RyJKyBHJEEF_ztI4Dm5w8Y1uF0Wpkn4LQgXqBE,9258
|
|
7
7
|
orca_sdk/_utils/analysis_ui_style.css,sha256=q_ba_-_KtgztepHg829zLzypaxKayl7ySC1-oYDzV3k,836
|
|
8
8
|
orca_sdk/_utils/auth.py,sha256=nC252O171_3_wn4KBAN7kg8GNvoZFiQ5Xtzkrm5dWDo,2645
|
|
9
9
|
orca_sdk/_utils/auth_test.py,sha256=ygVWv1Ex53LaxIP7p2hzPHl8l9qYyBD5IGmEFJMps6s,1056
|
|
10
10
|
orca_sdk/_utils/common.py,sha256=wUm2pNDWytEecC5WiDWd02-yCZw3Akx0bIutG4lHsFA,805
|
|
11
|
-
orca_sdk/_utils/data_parsing.py,sha256=
|
|
12
|
-
orca_sdk/_utils/data_parsing_test.py,sha256=
|
|
11
|
+
orca_sdk/_utils/data_parsing.py,sha256=5vaTpvUOS-ldlcgnSARYw7s9mce-imzkU7kA48-pdIM,5396
|
|
12
|
+
orca_sdk/_utils/data_parsing_test.py,sha256=u7BEjxtsU9gMs3tAZI0lJ--vOLlwKwH3hemdCedzxA0,8826
|
|
13
13
|
orca_sdk/_utils/pagination.py,sha256=986z0QPZixrZeurJWorF6eMgnTRdDF84AagEA6qNbMw,4245
|
|
14
14
|
orca_sdk/_utils/pagination_test.py,sha256=BUylCrcHnwoKEBmMUzVr0lwLpA35ivcCwdBK4rMw9y8,4887
|
|
15
15
|
orca_sdk/_utils/prediction_result_ui.css,sha256=sqBlkRLnovb5X5EcUDdB6iGpH63nVRlTW4uAmXuD0WM,258
|
|
@@ -17,25 +17,25 @@ orca_sdk/_utils/prediction_result_ui.py,sha256=Ur_FY7dz3oWNmtPiP3Wl3yRlEMgK8q9Uf
|
|
|
17
17
|
orca_sdk/_utils/tqdm_file_reader.py,sha256=Lw7Cg1UgNuRUoN6jjqZb-IlV00H-kbRcrZLdudr1GxE,324
|
|
18
18
|
orca_sdk/_utils/value_parser.py,sha256=c3qMABCCDQcIjn9N1orYYnlRwDW9JWdGwW_2TDZPLdI,1286
|
|
19
19
|
orca_sdk/_utils/value_parser_test.py,sha256=OybsiC-Obi32RRi9NIuwrVBRAnlyPMV1xVAaevSrb7M,1079
|
|
20
|
-
orca_sdk/async_client.py,sha256=
|
|
21
|
-
orca_sdk/classification_model.py,sha256=
|
|
22
|
-
orca_sdk/classification_model_test.py,sha256=
|
|
23
|
-
orca_sdk/client.py,sha256=
|
|
20
|
+
orca_sdk/async_client.py,sha256=PM7N-ggmtucfcUF1vQGtTZOCJpSNTOgd7l3LDNF5kP4,137192
|
|
21
|
+
orca_sdk/classification_model.py,sha256=C58euWnNvwXnthR9RtVVCOcgPEbxCjjp3sHMb86V6YA,50197
|
|
22
|
+
orca_sdk/classification_model_test.py,sha256=ElqxtR6gNwwk8dNXwfwAhpT7l0ZIP3H4pHmOyFXyTWk,37370
|
|
23
|
+
orca_sdk/client.py,sha256=SKZv3zGG6OwLe_FlB5wL2cxltOLPCcHvoo2CbMwyKgA,136241
|
|
24
24
|
orca_sdk/conftest.py,sha256=0O1VY-SPKNAvi9fBLdY1RMnYVgZvMjP92y99bNAqqiw,12461
|
|
25
|
-
orca_sdk/credentials.py,sha256=
|
|
25
|
+
orca_sdk/credentials.py,sha256=2SwC3tq5akP-F_u2s4xMZDp8mlsKMUT1T5T9Z99-eSY,6588
|
|
26
26
|
orca_sdk/credentials_test.py,sha256=TLbXJMz3IlThvtSrHeLM7jRsKnrncA_ahOTpHg15Ei4,4089
|
|
27
|
-
orca_sdk/datasource.py,sha256=
|
|
27
|
+
orca_sdk/datasource.py,sha256=Qn5QloE84UXeyPk2wcy1lWe5wmh1iDBS044eWnxck_E,22371
|
|
28
28
|
orca_sdk/datasource_test.py,sha256=sCk3IcQJbDut5oN4Wf7PXhTxyMwalxMuCXJekSxy9wk,16665
|
|
29
29
|
orca_sdk/embedding_model.py,sha256=vLGnlO9I-cN1lklNBl_LxZ8m9oK3vkegFOpvYYw8u8g,28038
|
|
30
30
|
orca_sdk/embedding_model_test.py,sha256=Lc6fZ0ifT0hh6ldkUfjwMPcP6OgN0Umlzu8XDLs7UO4,8144
|
|
31
31
|
orca_sdk/job.py,sha256=wHwVt-s7i-v8udhLGybB-90Kp4dwOLrY806bE4Tam5Q,13092
|
|
32
32
|
orca_sdk/job_test.py,sha256=nRSWxd_1UIfrj9oMVvrXjt6OBkBpddYAjb2y6P-DTUg,4327
|
|
33
|
-
orca_sdk/memoryset.py,sha256
|
|
34
|
-
orca_sdk/memoryset_test.py,sha256=
|
|
35
|
-
orca_sdk/regression_model.py,sha256=
|
|
36
|
-
orca_sdk/regression_model_test.py,sha256=
|
|
33
|
+
orca_sdk/memoryset.py,sha256=06v34fHabpkEaOv9VCKc0NhpMi_mNZGbQP_9GiW_nuE,157157
|
|
34
|
+
orca_sdk/memoryset_test.py,sha256=O2o42XETtffXtZy0kbLk2b8cUDXU-w2ZAzXLi5-vDPQ,51278
|
|
35
|
+
orca_sdk/regression_model.py,sha256=AXRzJG15sDJQSiDCDfRdcLnZDNkJWORYjhHqKyyL-Fc,33960
|
|
36
|
+
orca_sdk/regression_model_test.py,sha256=90EyrhaMk1kTf87RFkMNz1PTItmeUISs6AvHmyp08DU,25447
|
|
37
37
|
orca_sdk/telemetry.py,sha256=ZyCMiyyo_SchjadWZH55TlLrC4Ucq5S316NbW26LL4Y,27834
|
|
38
38
|
orca_sdk/telemetry_test.py,sha256=eT66C5lFdNg-pQdo2I__BP7Tn5fTc9aTkVo9ZhWwhU0,5519
|
|
39
|
-
orca_sdk-0.1.
|
|
40
|
-
orca_sdk-0.1.
|
|
41
|
-
orca_sdk-0.1.
|
|
39
|
+
orca_sdk-0.1.10.dist-info/METADATA,sha256=j_TIalbL8oztP39lnXjyAI6Aosvb6rnJKUc3gcuxD0k,3710
|
|
40
|
+
orca_sdk-0.1.10.dist-info/WHEEL,sha256=zp0Cn7JsFoX2ATtOhtaFYIiE2rmFAD4OcMhtUki8W3U,88
|
|
41
|
+
orca_sdk-0.1.10.dist-info/RECORD,,
|
|
File without changes
|