orca-sdk 0.1.4__py3-none-any.whl → 0.1.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orca_sdk/_shared/metrics.py +186 -43
- orca_sdk/_shared/metrics_test.py +99 -6
- orca_sdk/_utils/data_parsing_test.py +1 -1
- orca_sdk/async_client.py +52 -14
- orca_sdk/classification_model.py +107 -30
- orca_sdk/classification_model_test.py +327 -8
- orca_sdk/client.py +52 -14
- orca_sdk/conftest.py +140 -21
- orca_sdk/embedding_model.py +0 -2
- orca_sdk/memoryset.py +141 -26
- orca_sdk/memoryset_test.py +253 -4
- orca_sdk/regression_model.py +73 -16
- orca_sdk/regression_model_test.py +213 -0
- {orca_sdk-0.1.4.dist-info → orca_sdk-0.1.6.dist-info}/METADATA +1 -1
- {orca_sdk-0.1.4.dist-info → orca_sdk-0.1.6.dist-info}/RECORD +16 -16
- {orca_sdk-0.1.4.dist-info → orca_sdk-0.1.6.dist-info}/WHEEL +0 -0
orca_sdk/client.py
CHANGED
|
@@ -135,6 +135,8 @@ class ClassificationEvaluationRequest(TypedDict):
|
|
|
135
135
|
telemetry_tags: NotRequired[list[str] | None]
|
|
136
136
|
subsample: NotRequired[int | float | None]
|
|
137
137
|
ignore_unlabeled: NotRequired[bool]
|
|
138
|
+
datasource_partition_column: NotRequired[str | None]
|
|
139
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
138
140
|
|
|
139
141
|
|
|
140
142
|
class CleanupResponse(TypedDict):
|
|
@@ -315,12 +317,16 @@ class ListMemoriesRequest(TypedDict):
|
|
|
315
317
|
offset: NotRequired[int]
|
|
316
318
|
limit: NotRequired[int]
|
|
317
319
|
filters: NotRequired[list[FilterItem]]
|
|
320
|
+
partition_id: NotRequired[str | None]
|
|
321
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
318
322
|
|
|
319
323
|
|
|
320
324
|
class LookupRequest(TypedDict):
|
|
321
325
|
query: list[str]
|
|
322
326
|
count: NotRequired[int]
|
|
323
327
|
prompt: NotRequired[str | None]
|
|
328
|
+
partition_id: NotRequired[str | list[str | None] | None]
|
|
329
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
324
330
|
|
|
325
331
|
|
|
326
332
|
class LookupScoreMetrics(TypedDict):
|
|
@@ -547,16 +553,7 @@ class PredictiveModelUpdate(TypedDict):
|
|
|
547
553
|
|
|
548
554
|
|
|
549
555
|
PretrainedEmbeddingModelName = Literal[
|
|
550
|
-
"CLIP_BASE",
|
|
551
|
-
"GTE_BASE",
|
|
552
|
-
"CDE_SMALL",
|
|
553
|
-
"DISTILBERT",
|
|
554
|
-
"GTE_SMALL",
|
|
555
|
-
"MXBAI_LARGE",
|
|
556
|
-
"E5_LARGE",
|
|
557
|
-
"QWEN2_1_5B",
|
|
558
|
-
"BGE_BASE",
|
|
559
|
-
"GIST_LARGE",
|
|
556
|
+
"CLIP_BASE", "GTE_BASE", "CDE_SMALL", "DISTILBERT", "GTE_SMALL", "MXBAI_LARGE", "E5_LARGE", "BGE_BASE", "GIST_LARGE"
|
|
560
557
|
]
|
|
561
558
|
|
|
562
559
|
|
|
@@ -586,6 +583,8 @@ class RegressionEvaluationRequest(TypedDict):
|
|
|
586
583
|
telemetry_tags: NotRequired[list[str] | None]
|
|
587
584
|
subsample: NotRequired[int | float | None]
|
|
588
585
|
ignore_unlabeled: NotRequired[bool]
|
|
586
|
+
datasource_partition_column: NotRequired[str | None]
|
|
587
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
589
588
|
|
|
590
589
|
|
|
591
590
|
class RegressionMetrics(TypedDict):
|
|
@@ -629,6 +628,8 @@ class RegressionPredictionRequest(TypedDict):
|
|
|
629
628
|
use_lookup_cache: NotRequired[bool]
|
|
630
629
|
consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
|
|
631
630
|
ignore_unlabeled: NotRequired[bool]
|
|
631
|
+
partition_ids: NotRequired[str | list[str | None] | None]
|
|
632
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
632
633
|
|
|
633
634
|
|
|
634
635
|
class ScorePredictionMemoryLookup(TypedDict):
|
|
@@ -1163,7 +1164,14 @@ class BootstrapClassificationModelRequest(TypedDict):
|
|
|
1163
1164
|
num_examples_per_label: NotRequired[int]
|
|
1164
1165
|
|
|
1165
1166
|
|
|
1166
|
-
class
|
|
1167
|
+
class BootstrapLabeledMemoryDataInput(TypedDict):
|
|
1168
|
+
model_description: str
|
|
1169
|
+
label_names: list[str]
|
|
1170
|
+
initial_examples: NotRequired[list[LabeledExample]]
|
|
1171
|
+
num_examples_per_label: NotRequired[int]
|
|
1172
|
+
|
|
1173
|
+
|
|
1174
|
+
class BootstrapLabeledMemoryDataResult(TypedDict):
|
|
1167
1175
|
model_description: str
|
|
1168
1176
|
label_names: list[str]
|
|
1169
1177
|
model_name: str
|
|
@@ -1216,6 +1224,8 @@ class ClassificationPredictionRequest(TypedDict):
|
|
|
1216
1224
|
use_lookup_cache: NotRequired[bool]
|
|
1217
1225
|
consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
|
|
1218
1226
|
ignore_unlabeled: NotRequired[bool]
|
|
1227
|
+
partition_ids: NotRequired[str | list[str | None] | None]
|
|
1228
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
1219
1229
|
|
|
1220
1230
|
|
|
1221
1231
|
class CloneMemorysetRequest(TypedDict):
|
|
@@ -1269,6 +1279,7 @@ class CreateMemorysetRequest(TypedDict):
|
|
|
1269
1279
|
datasource_score_column: NotRequired[str | None]
|
|
1270
1280
|
datasource_value_column: str
|
|
1271
1281
|
datasource_source_id_column: NotRequired[str | None]
|
|
1282
|
+
datasource_partition_id_column: NotRequired[str | None]
|
|
1272
1283
|
remove_duplicates: NotRequired[bool]
|
|
1273
1284
|
pretrained_embedding_model_name: NotRequired[PretrainedEmbeddingModelName | None]
|
|
1274
1285
|
finetuned_embedding_model_name_or_id: NotRequired[str | None]
|
|
@@ -1539,6 +1550,7 @@ class MemorysetAnalysisRequest(TypedDict):
|
|
|
1539
1550
|
batch_size: NotRequired[int]
|
|
1540
1551
|
clear_metrics: NotRequired[bool]
|
|
1541
1552
|
configs: MemorysetAnalysisConfigs
|
|
1553
|
+
partition_filter_mode: NotRequired[Literal["ignore_partitions", "include_global", "exclude_global", "only_global"]]
|
|
1542
1554
|
|
|
1543
1555
|
|
|
1544
1556
|
class MemorysetConceptMetrics(TypedDict):
|
|
@@ -1664,7 +1676,7 @@ class BootstrapClassificationModelMeta(TypedDict):
|
|
|
1664
1676
|
datasource_meta: DatasourceMetadata
|
|
1665
1677
|
memoryset_meta: MemorysetMetadata
|
|
1666
1678
|
model_meta: ClassificationModelMetadata
|
|
1667
|
-
agent_output:
|
|
1679
|
+
agent_output: BootstrapLabeledMemoryDataResult
|
|
1668
1680
|
|
|
1669
1681
|
|
|
1670
1682
|
class BootstrapClassificationModelResponse(TypedDict):
|
|
@@ -2554,7 +2566,7 @@ class OrcaClient(Client):
|
|
|
2554
2566
|
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
2555
2567
|
extensions: RequestExtensions | None = None,
|
|
2556
2568
|
) -> BootstrapClassificationModelResponse:
|
|
2557
|
-
"""Get the status of a bootstrap
|
|
2569
|
+
"""Get the status of a bootstrap labeled memory data job"""
|
|
2558
2570
|
pass
|
|
2559
2571
|
|
|
2560
2572
|
def GET(
|
|
@@ -3276,6 +3288,32 @@ class OrcaClient(Client):
|
|
|
3276
3288
|
"""Get row count from a specific datasource with optional filtering."""
|
|
3277
3289
|
pass
|
|
3278
3290
|
|
|
3291
|
+
@overload
|
|
3292
|
+
def POST(
|
|
3293
|
+
self,
|
|
3294
|
+
path: Literal["/datasource/bootstrap_memory_data"],
|
|
3295
|
+
*,
|
|
3296
|
+
params: None = None,
|
|
3297
|
+
json: BootstrapLabeledMemoryDataInput,
|
|
3298
|
+
data: None = None,
|
|
3299
|
+
files: None = None,
|
|
3300
|
+
content: None = None,
|
|
3301
|
+
parse_as: Literal["json"] = "json",
|
|
3302
|
+
headers: HeaderTypes | None = None,
|
|
3303
|
+
cookies: CookieTypes | None = None,
|
|
3304
|
+
auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3305
|
+
follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3306
|
+
timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
|
|
3307
|
+
extensions: RequestExtensions | None = None,
|
|
3308
|
+
) -> BootstrapLabeledMemoryDataResult:
|
|
3309
|
+
"""
|
|
3310
|
+
Bootstrap memory data using an AI agent.
|
|
3311
|
+
|
|
3312
|
+
This endpoint uses the bootstrap labeled memory data agent to generate
|
|
3313
|
+
high-quality, diverse training examples for a classification model.
|
|
3314
|
+
"""
|
|
3315
|
+
pass
|
|
3316
|
+
|
|
3279
3317
|
@overload
|
|
3280
3318
|
def POST(
|
|
3281
3319
|
self,
|
|
@@ -3524,7 +3562,7 @@ class OrcaClient(Client):
|
|
|
3524
3562
|
"""
|
|
3525
3563
|
Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
|
|
3526
3564
|
|
|
3527
|
-
This endpoint uses the
|
|
3565
|
+
This endpoint uses the bootstrap_labeled_memory_data agent to generate:
|
|
3528
3566
|
1. Memoryset configuration with appropriate settings
|
|
3529
3567
|
2. Model configuration with optimal parameters
|
|
3530
3568
|
3. High-quality training memories for each label
|
orca_sdk/conftest.py
CHANGED
|
@@ -99,34 +99,105 @@ def label_names():
|
|
|
99
99
|
|
|
100
100
|
|
|
101
101
|
SAMPLE_DATA = [
|
|
102
|
-
{"value": "i love soup", "label": 0, "key": "g1", "score": 0.1, "source_id": "s1"},
|
|
103
|
-
{"value": "cats are cute", "label": 1, "key": "g1", "score": 0.9, "source_id": "s2"},
|
|
104
|
-
{"value": "soup is good", "label": 0, "key": "g1", "score": 0.1, "source_id": "s3"},
|
|
105
|
-
{"value": "i love cats", "label": 1, "key": "g1", "score": 0.9, "source_id": "s4"},
|
|
106
|
-
{"value": "everyone loves cats", "label": 1, "key": "g1", "score": 0.9, "source_id": "s5"},
|
|
107
|
-
{
|
|
108
|
-
|
|
109
|
-
|
|
110
|
-
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
{
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
102
|
+
{"value": "i love soup", "label": 0, "key": "g1", "score": 0.1, "source_id": "s1", "partition_id": "p1"},
|
|
103
|
+
{"value": "cats are cute", "label": 1, "key": "g1", "score": 0.9, "source_id": "s2", "partition_id": "p1"},
|
|
104
|
+
{"value": "soup is good", "label": 0, "key": "g1", "score": 0.1, "source_id": "s3", "partition_id": "p1"},
|
|
105
|
+
{"value": "i love cats", "label": 1, "key": "g1", "score": 0.9, "source_id": "s4", "partition_id": "p1"},
|
|
106
|
+
{"value": "everyone loves cats", "label": 1, "key": "g1", "score": 0.9, "source_id": "s5", "partition_id": "p1"},
|
|
107
|
+
{
|
|
108
|
+
"value": "soup is great for the winter",
|
|
109
|
+
"label": 0,
|
|
110
|
+
"key": "g1",
|
|
111
|
+
"score": 0.1,
|
|
112
|
+
"source_id": "s6",
|
|
113
|
+
"partition_id": "p1",
|
|
114
|
+
},
|
|
115
|
+
{
|
|
116
|
+
"value": "hot soup on a rainy day!",
|
|
117
|
+
"label": 0,
|
|
118
|
+
"key": "g1",
|
|
119
|
+
"score": 0.1,
|
|
120
|
+
"source_id": "s7",
|
|
121
|
+
"partition_id": "p1",
|
|
122
|
+
},
|
|
123
|
+
{"value": "cats sleep all day", "label": 1, "key": "g1", "score": 0.9, "source_id": "s8", "partition_id": "p1"},
|
|
124
|
+
{"value": "homemade soup recipes", "label": 0, "key": "g1", "score": 0.1, "source_id": "s9", "partition_id": "p2"},
|
|
125
|
+
{"value": "cats purr when happy", "label": 1, "key": "g2", "score": 0.9, "source_id": "s10", "partition_id": "p2"},
|
|
126
|
+
{
|
|
127
|
+
"value": "chicken noodle soup is classic",
|
|
128
|
+
"label": 0,
|
|
129
|
+
"key": "g1",
|
|
130
|
+
"score": 0.1,
|
|
131
|
+
"source_id": "s11",
|
|
132
|
+
"partition_id": "p2",
|
|
133
|
+
},
|
|
134
|
+
{"value": "kittens are baby cats", "label": 1, "key": "g2", "score": 0.9, "source_id": "s12", "partition_id": "p2"},
|
|
135
|
+
{
|
|
136
|
+
"value": "soup can be served cold too",
|
|
137
|
+
"label": 0,
|
|
138
|
+
"key": "g1",
|
|
139
|
+
"score": 0.1,
|
|
140
|
+
"source_id": "s13",
|
|
141
|
+
"partition_id": "p2",
|
|
142
|
+
},
|
|
143
|
+
{"value": "cats have nine lives", "label": 1, "key": "g2", "score": 0.9, "source_id": "s14", "partition_id": "p2"},
|
|
144
|
+
{
|
|
145
|
+
"value": "tomato soup with grilled cheese",
|
|
146
|
+
"label": 0,
|
|
147
|
+
"key": "g1",
|
|
148
|
+
"score": 0.1,
|
|
149
|
+
"source_id": "s15",
|
|
150
|
+
"partition_id": "p2",
|
|
151
|
+
},
|
|
152
|
+
{
|
|
153
|
+
"value": "cats are independent animals",
|
|
154
|
+
"label": 1,
|
|
155
|
+
"key": "g2",
|
|
156
|
+
"score": 0.9,
|
|
157
|
+
"source_id": "s16",
|
|
158
|
+
"partition_id": None,
|
|
159
|
+
},
|
|
160
|
+
{
|
|
161
|
+
"value": "the beach is always fun",
|
|
162
|
+
"label": None,
|
|
163
|
+
"key": "g3",
|
|
164
|
+
"score": None,
|
|
165
|
+
"source_id": "s17",
|
|
166
|
+
"partition_id": None,
|
|
167
|
+
},
|
|
168
|
+
{"value": "i love the beach", "label": None, "key": "g3", "score": None, "source_id": "s18", "partition_id": None},
|
|
169
|
+
{
|
|
170
|
+
"value": "the ocean is healing",
|
|
171
|
+
"label": None,
|
|
172
|
+
"key": "g3",
|
|
173
|
+
"score": None,
|
|
174
|
+
"source_id": "s19",
|
|
175
|
+
"partition_id": None,
|
|
176
|
+
},
|
|
121
177
|
{
|
|
122
178
|
"value": "sandy feet, sand between my toes at the beach",
|
|
123
179
|
"label": None,
|
|
124
180
|
"key": "g3",
|
|
125
181
|
"score": None,
|
|
126
182
|
"source_id": "s20",
|
|
183
|
+
"partition_id": None,
|
|
184
|
+
},
|
|
185
|
+
{
|
|
186
|
+
"value": "i am such a beach bum",
|
|
187
|
+
"label": None,
|
|
188
|
+
"key": "g3",
|
|
189
|
+
"score": None,
|
|
190
|
+
"source_id": "s21",
|
|
191
|
+
"partition_id": None,
|
|
192
|
+
},
|
|
193
|
+
{
|
|
194
|
+
"value": "i will always want to be at the beach",
|
|
195
|
+
"label": None,
|
|
196
|
+
"key": "g3",
|
|
197
|
+
"score": None,
|
|
198
|
+
"source_id": "s22",
|
|
199
|
+
"partition_id": None,
|
|
127
200
|
},
|
|
128
|
-
{"value": "i am such a beach bum", "label": None, "key": "g3", "score": None, "source_id": "s21"},
|
|
129
|
-
{"value": "i will always want to be at the beach", "label": None, "key": "g3", "score": None, "source_id": "s22"},
|
|
130
201
|
]
|
|
131
202
|
|
|
132
203
|
|
|
@@ -141,6 +212,7 @@ def hf_dataset(label_names: list[str]) -> Dataset:
|
|
|
141
212
|
"key": Value("string"),
|
|
142
213
|
"score": Value("float"),
|
|
143
214
|
"source_id": Value("string"),
|
|
215
|
+
"partition_id": Value("string"),
|
|
144
216
|
}
|
|
145
217
|
),
|
|
146
218
|
)
|
|
@@ -186,6 +258,18 @@ def readonly_memoryset(datasource: Datasource) -> LabeledMemoryset:
|
|
|
186
258
|
return memoryset
|
|
187
259
|
|
|
188
260
|
|
|
261
|
+
@pytest.fixture(scope="session")
|
|
262
|
+
def readonly_partitioned_memoryset(datasource: Datasource) -> LabeledMemoryset:
|
|
263
|
+
memoryset = LabeledMemoryset.create(
|
|
264
|
+
"test_readonly_partitioned_memoryset",
|
|
265
|
+
datasource=datasource,
|
|
266
|
+
embedding_model=PretrainedEmbeddingModel.GTE_BASE,
|
|
267
|
+
source_id_column="source_id",
|
|
268
|
+
partition_id_column="partition_id",
|
|
269
|
+
)
|
|
270
|
+
return memoryset
|
|
271
|
+
|
|
272
|
+
|
|
189
273
|
@pytest.fixture(scope="function")
|
|
190
274
|
def writable_memoryset(datasource: Datasource, api_key: str) -> Generator[LabeledMemoryset, None, None]:
|
|
191
275
|
"""
|
|
@@ -237,6 +321,18 @@ def classification_model(readonly_memoryset: LabeledMemoryset) -> Classification
|
|
|
237
321
|
return model
|
|
238
322
|
|
|
239
323
|
|
|
324
|
+
@pytest.fixture(scope="session")
|
|
325
|
+
def partitioned_classification_model(readonly_partitioned_memoryset: LabeledMemoryset) -> ClassificationModel:
|
|
326
|
+
model = ClassificationModel.create(
|
|
327
|
+
"test_partitioned_classification_model",
|
|
328
|
+
readonly_partitioned_memoryset,
|
|
329
|
+
num_classes=2,
|
|
330
|
+
memory_lookup_count=3,
|
|
331
|
+
description="test_partitioned_description",
|
|
332
|
+
)
|
|
333
|
+
return model
|
|
334
|
+
|
|
335
|
+
|
|
240
336
|
# Add scored memoryset and regression model fixtures
|
|
241
337
|
@pytest.fixture(scope="session")
|
|
242
338
|
def scored_memoryset(datasource: Datasource) -> ScoredMemoryset:
|
|
@@ -261,3 +357,26 @@ def regression_model(scored_memoryset: ScoredMemoryset) -> RegressionModel:
|
|
|
261
357
|
description="test_regression_description",
|
|
262
358
|
)
|
|
263
359
|
return model
|
|
360
|
+
|
|
361
|
+
|
|
362
|
+
@pytest.fixture(scope="session")
|
|
363
|
+
def readonly_partitioned_scored_memoryset(datasource: Datasource) -> ScoredMemoryset:
|
|
364
|
+
memoryset = ScoredMemoryset.create(
|
|
365
|
+
"test_readonly_partitioned_scored_memoryset",
|
|
366
|
+
datasource=datasource,
|
|
367
|
+
embedding_model=PretrainedEmbeddingModel.GTE_BASE,
|
|
368
|
+
source_id_column="source_id",
|
|
369
|
+
partition_id_column="partition_id",
|
|
370
|
+
)
|
|
371
|
+
return memoryset
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
@pytest.fixture(scope="session")
|
|
375
|
+
def partitioned_regression_model(readonly_partitioned_scored_memoryset: ScoredMemoryset) -> RegressionModel:
|
|
376
|
+
model = RegressionModel.create(
|
|
377
|
+
"test_partitioned_regression_model",
|
|
378
|
+
readonly_partitioned_scored_memoryset,
|
|
379
|
+
memory_lookup_count=3,
|
|
380
|
+
description="test_partitioned_regression_description",
|
|
381
|
+
)
|
|
382
|
+
return model
|
orca_sdk/embedding_model.py
CHANGED
|
@@ -340,7 +340,6 @@ class PretrainedEmbeddingModel(EmbeddingModelBase):
|
|
|
340
340
|
- **`E5_LARGE`**: E5-Large instruction-tuned embedding model from Hugging Face ([intfloat/multilingual-e5-large-instruct](https://huggingface.co/intfloat/multilingual-e5-large-instruct))
|
|
341
341
|
- **`GIST_LARGE`**: GIST-Large embedding model from Hugging Face ([avsolatorio/GIST-large-Embedding-v0](https://huggingface.co/avsolatorio/GIST-large-Embedding-v0))
|
|
342
342
|
- **`MXBAI_LARGE`**: Mixbreas's Large embedding model from Hugging Face ([mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1))
|
|
343
|
-
- **`QWEN2_1_5B`**: Alibaba's Qwen2-1.5B instruction-tuned embedding model from Hugging Face ([Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct))
|
|
344
343
|
- **`BGE_BASE`**: BAAI's BGE-Base instruction-tuned embedding model from Hugging Face ([BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5))
|
|
345
344
|
|
|
346
345
|
**Instruction Support:**
|
|
@@ -373,7 +372,6 @@ class PretrainedEmbeddingModel(EmbeddingModelBase):
|
|
|
373
372
|
E5_LARGE = _ModelDescriptor("E5_LARGE")
|
|
374
373
|
GIST_LARGE = _ModelDescriptor("GIST_LARGE")
|
|
375
374
|
MXBAI_LARGE = _ModelDescriptor("MXBAI_LARGE")
|
|
376
|
-
QWEN2_1_5B = _ModelDescriptor("QWEN2_1_5B")
|
|
377
375
|
BGE_BASE = _ModelDescriptor("BGE_BASE")
|
|
378
376
|
|
|
379
377
|
name: PretrainedEmbeddingModelName
|