orca-sdk 0.1.2__py3-none-any.whl → 0.1.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
orca_sdk/client.py CHANGED
@@ -6,15 +6,31 @@ import json
6
6
  import logging
7
7
  import os
8
8
  import uuid
9
+ from contextlib import contextmanager
10
+ from contextvars import ContextVar
9
11
  from string import Formatter
10
- from typing import Any, Literal, Mapping, NotRequired, TypedDict, cast, overload
12
+ from typing import (
13
+ Any,
14
+ Callable,
15
+ Generator,
16
+ Literal,
17
+ Mapping,
18
+ NotRequired,
19
+ Self,
20
+ TypedDict,
21
+ cast,
22
+ overload,
23
+ )
11
24
 
12
25
  from httpx import (
13
26
  URL,
14
27
  USE_CLIENT_DEFAULT,
28
+ BaseTransport,
15
29
  Client,
16
30
  Headers,
17
31
  HTTPTransport,
32
+ Limits,
33
+ Proxy,
18
34
  Request,
19
35
  Response,
20
36
  Timeout,
@@ -117,6 +133,8 @@ class ClassificationEvaluationRequest(TypedDict):
117
133
  datasource_value_column: str
118
134
  record_telemetry: NotRequired[bool]
119
135
  telemetry_tags: NotRequired[list[str] | None]
136
+ subsample: NotRequired[int | float | None]
137
+ ignore_unlabeled: NotRequired[bool]
120
138
 
121
139
 
122
140
  class CleanupResponse(TypedDict):
@@ -145,6 +163,7 @@ class CountPredictionsRequest(TypedDict):
145
163
  prediction_ids: NotRequired[list[str] | None]
146
164
  start_timestamp: NotRequired[str | None]
147
165
  end_timestamp: NotRequired[str | None]
166
+ memory_id: NotRequired[str | None]
148
167
 
149
168
 
150
169
  class CreateApiKeyRequest(TypedDict):
@@ -175,6 +194,12 @@ class CreateOrgPlanRequest(TypedDict):
175
194
  tier: Literal["FREE", "PRO", "ENTERPRISE", "CANCELLED"]
176
195
 
177
196
 
197
+ class DatasetFilterItem(TypedDict):
198
+ field: str
199
+ op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
200
+ value: Any
201
+
202
+
178
203
  class DeleteMemoriesRequest(TypedDict):
179
204
  memory_ids: list[str]
180
205
 
@@ -192,7 +217,7 @@ class EmbedRequest(TypedDict):
192
217
  class EmbeddingEvaluationRequest(TypedDict):
193
218
  datasource_name_or_id: str
194
219
  eval_datasource_name_or_id: NotRequired[str | None]
195
- subsample: NotRequired[int | None]
220
+ subsample: NotRequired[int | float | None]
196
221
  datasource_value_column: NotRequired[str]
197
222
  datasource_label_column: NotRequired[str | None]
198
223
  datasource_score_column: NotRequired[str | None]
@@ -201,7 +226,7 @@ class EmbeddingEvaluationRequest(TypedDict):
201
226
  weigh_memories: NotRequired[bool]
202
227
 
203
228
 
204
- EmbeddingFinetuningMethod = Literal["classification", "batch_triplet_loss"]
229
+ EmbeddingFinetuningMethod = Literal["classification", "regression", "batch_triplet_loss"]
205
230
 
206
231
 
207
232
  class FeedbackMetrics(TypedDict):
@@ -215,7 +240,19 @@ FeedbackType = Literal["CONTINUOUS", "BINARY"]
215
240
  class FilterItem(TypedDict):
216
241
  field: list
217
242
  op: Literal["==", "!=", ">", ">=", "<", "<=", "in", "not in", "like"]
218
- value: str | int | float | bool | list[str] | list[int] | list[float] | list[bool] | None
243
+ value: str | int | float | bool | list[str | None] | list[int] | list[float] | list[bool] | None
244
+
245
+
246
+ class GetDatasourceRowCountRequest(TypedDict):
247
+ filters: NotRequired[list[DatasetFilterItem]]
248
+
249
+
250
+ class GetDatasourceRowsRequest(TypedDict):
251
+ filters: NotRequired[list[DatasetFilterItem]]
252
+ limit: NotRequired[int]
253
+ offset: NotRequired[int]
254
+ shuffle: NotRequired[bool]
255
+ shuffle_seed: NotRequired[int | None]
219
256
 
220
257
 
221
258
  class GetMemoriesRequest(TypedDict):
@@ -236,6 +273,18 @@ class InternalServerErrorResponse(TypedDict):
236
273
  request_id: str
237
274
 
238
275
 
276
+ JobStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
277
+
278
+
279
+ class JobStatusInfo(TypedDict):
280
+ status: JobStatus
281
+ steps_total: int | None
282
+ steps_completed: int | None
283
+ exception: str | None
284
+ updated_at: str
285
+ created_at: str
286
+
287
+
239
288
  class LabelClassMetrics(TypedDict):
240
289
  label: int | None
241
290
  label_name: NotRequired[str | None]
@@ -243,6 +292,11 @@ class LabelClassMetrics(TypedDict):
243
292
  memory_count: int
244
293
 
245
294
 
295
+ class LabelPercentage(TypedDict):
296
+ label: int | None
297
+ percentage: float
298
+
299
+
246
300
  class LabeledExample(TypedDict):
247
301
  text: str
248
302
  label_name: str
@@ -253,6 +307,7 @@ class LabeledMemoryInsert(TypedDict):
253
307
  value: str | bytes
254
308
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
255
309
  source_id: NotRequired[str | None]
310
+ partition_id: NotRequired[str | None]
256
311
  label: int | None
257
312
 
258
313
 
@@ -317,8 +372,6 @@ class MemorysetClassPatternsMetrics(TypedDict):
317
372
  class MemorysetClusterAnalysisConfig(TypedDict):
318
373
  min_cluster_size: NotRequired[int | None]
319
374
  max_cluster_size: NotRequired[int | None]
320
- clustering_method: NotRequired[Literal["density", "graph"]]
321
- min_cluster_distance: NotRequired[float]
322
375
  partitioning_method: NotRequired[Literal["ng", "rb", "cpm"]]
323
376
  resolution: NotRequired[float | None]
324
377
  num_iterations: NotRequired[int]
@@ -335,16 +388,32 @@ class MemorysetClusterMetrics(TypedDict):
335
388
  class MemorysetConceptAnalysisConfig(TypedDict):
336
389
  high_level_description: NotRequired[str | None]
337
390
  max_sample_rows: NotRequired[int]
391
+ min_lookup_count: NotRequired[int]
392
+ max_lookup_count: NotRequired[int]
393
+ overlap_decay_tau: NotRequired[float]
394
+ target_lcc_fraction: NotRequired[float]
395
+ min_cluster_count: NotRequired[int]
396
+ max_cluster_count: NotRequired[int]
338
397
  max_trial_count: NotRequired[int]
339
- min_desired_clusters_per_label: NotRequired[int]
340
- max_desired_clusters_per_label: NotRequired[int]
341
- accuracy_importance: NotRequired[float]
342
- noise_penalty: NotRequired[float]
398
+ resolution: NotRequired[float]
399
+ iterations: NotRequired[int]
400
+ use_generative_naming: NotRequired[bool]
343
401
  naming_examples_count: NotRequired[int]
344
402
  naming_counterexample_count: NotRequired[int]
403
+ primary_label_pct_threshold: NotRequired[float]
345
404
  seed: NotRequired[int]
346
405
 
347
406
 
407
+ class MemorysetDistributionAnalysisConfig(TypedDict):
408
+ neighbor_counts: NotRequired[list[int]]
409
+ quantiles: NotRequired[list[float]]
410
+
411
+
412
+ class MemorysetDistributionMetrics(TypedDict):
413
+ lookup_score_metrics: dict[str, LookupScoreMetrics]
414
+ updated_at: str
415
+
416
+
348
417
  class MemorysetDuplicateAnalysisConfig(TypedDict):
349
418
  potential_duplicate_threshold: NotRequired[float]
350
419
 
@@ -370,16 +439,6 @@ class MemorysetLabelMetrics(TypedDict):
370
439
  updated_at: str
371
440
 
372
441
 
373
- class MemorysetNeighborAnalysisConfig(TypedDict):
374
- neighbor_counts: NotRequired[list[int]]
375
- quantiles: NotRequired[list[float]]
376
-
377
-
378
- class MemorysetNeighborMetrics(TypedDict):
379
- lookup_score_metrics: dict[str, LookupScoreMetrics]
380
- updated_at: str
381
-
382
-
383
442
  class MemorysetProjectionAnalysisConfig(TypedDict):
384
443
  min_dist: NotRequired[float]
385
444
  spread: NotRequired[float]
@@ -411,12 +470,12 @@ class NotFoundErrorResponse(TypedDict):
411
470
  "memory",
412
471
  "evaluation",
413
472
  "analysis",
414
- "task",
473
+ "job",
415
474
  "pretrained_embedding_model",
416
475
  "finetuned_embedding_model",
417
476
  "feedback_category",
418
- "embedding_evaluation",
419
477
  "org_plan",
478
+ "worker",
420
479
  ]
421
480
  | None
422
481
  )
@@ -525,6 +584,8 @@ class RegressionEvaluationRequest(TypedDict):
525
584
  datasource_value_column: str
526
585
  record_telemetry: NotRequired[bool]
527
586
  telemetry_tags: NotRequired[list[str] | None]
587
+ subsample: NotRequired[int | float | None]
588
+ ignore_unlabeled: NotRequired[bool]
528
589
 
529
590
 
530
591
  class RegressionMetrics(TypedDict):
@@ -567,12 +628,14 @@ class RegressionPredictionRequest(TypedDict):
567
628
  prompt: NotRequired[str | None]
568
629
  use_lookup_cache: NotRequired[bool]
569
630
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
631
+ ignore_unlabeled: NotRequired[bool]
570
632
 
571
633
 
572
634
  class ScorePredictionMemoryLookup(TypedDict):
573
635
  value: str | bytes
574
636
  embedding: list[float]
575
637
  source_id: str | None
638
+ partition_id: str | None
576
639
  metadata: dict[str, str | int | float | bool | None]
577
640
  memory_id: str
578
641
  memory_version: int
@@ -610,6 +673,7 @@ class ScoredMemory(TypedDict):
610
673
  value: str | bytes
611
674
  embedding: list[float]
612
675
  source_id: str | None
676
+ partition_id: str | None
613
677
  metadata: dict[str, str | int | float | bool | None]
614
678
  memory_id: str
615
679
  memory_version: int
@@ -625,6 +689,7 @@ class ScoredMemoryInsert(TypedDict):
625
689
  value: str | bytes
626
690
  metadata: NotRequired[dict[str, str | int | float | bool | None]]
627
691
  source_id: NotRequired[str | None]
692
+ partition_id: NotRequired[str | None]
628
693
  score: float | None
629
694
 
630
695
 
@@ -632,6 +697,7 @@ class ScoredMemoryLookup(TypedDict):
632
697
  value: str | bytes
633
698
  embedding: list[float]
634
699
  source_id: str | None
700
+ partition_id: str | None
635
701
  metadata: dict[str, str | int | float | bool | None]
636
702
  memory_id: str
637
703
  memory_version: int
@@ -648,6 +714,7 @@ class ScoredMemoryUpdate(TypedDict):
648
714
  value: NotRequired[str | bytes]
649
715
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
650
716
  source_id: NotRequired[str | None]
717
+ partition_id: NotRequired[str | None]
651
718
  metrics: NotRequired[MemoryMetrics | None]
652
719
  score: NotRequired[float | None]
653
720
 
@@ -656,6 +723,7 @@ class ScoredMemoryWithFeedbackMetrics(TypedDict):
656
723
  value: str | bytes
657
724
  embedding: list[float]
658
725
  source_id: str | None
726
+ partition_id: str | None
659
727
  metadata: dict[str, str | int | float | bool | None]
660
728
  memory_id: str
661
729
  memory_version: int
@@ -681,18 +749,6 @@ class SubConceptMetrics(TypedDict):
681
749
  memory_count: int
682
750
 
683
751
 
684
- TaskStatus = Literal["INITIALIZED", "DISPATCHED", "WAITING", "PROCESSING", "COMPLETED", "FAILED", "ABORTING", "ABORTED"]
685
-
686
-
687
- class TaskStatusInfo(TypedDict):
688
- status: TaskStatus
689
- steps_total: int | None
690
- steps_completed: int | None
691
- exception: str | None
692
- updated_at: str
693
- created_at: str
694
-
695
-
696
752
  TelemetryField = list
697
753
 
698
754
 
@@ -733,6 +789,13 @@ class ValidationError(TypedDict):
733
789
  type: str
734
790
 
735
791
 
792
+ WorkerStatus = Literal["IDLE", "BUSY", "DRAINING", "SHUTDOWN", "CRASHED"]
793
+
794
+
795
+ class GetTestErrorByStatusCodeParams(TypedDict):
796
+ status_code: int | Literal["error", "warning"]
797
+
798
+
736
799
  class DeleteAuthApiKeyByNameOrIdParams(TypedDict):
737
800
  name_or_id: str
738
801
 
@@ -758,6 +821,10 @@ class DeleteMemorysetByNameOrIdParams(TypedDict):
758
821
  name_or_id: str
759
822
 
760
823
 
824
+ class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
825
+ name_or_id: str
826
+
827
+
761
828
  class GetMemorysetByNameOrIdMemoryByMemoryIdParams(TypedDict):
762
829
  name_or_id: str
763
830
  memory_id: str
@@ -790,20 +857,35 @@ class PostMemorysetByNameOrIdMemoriesDeleteParams(TypedDict):
790
857
  name_or_id: str
791
858
 
792
859
 
860
+ class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
861
+ name_or_id: str
862
+
863
+
864
+ class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
865
+ name_or_id: str
866
+
867
+
868
+ PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
869
+
870
+
871
+ class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
872
+ name_or_id: str
873
+
874
+
793
875
  class PostMemorysetByNameOrIdAnalysisParams(TypedDict):
794
876
  name_or_id: str
795
877
 
796
878
 
797
879
  class GetMemorysetByNameOrIdAnalysisParams(TypedDict):
798
880
  name_or_id: str
799
- status: NotRequired[TaskStatus | None]
881
+ status: NotRequired[JobStatus | None]
800
882
  limit: NotRequired[int | None]
801
883
  offset: NotRequired[int | None]
802
884
 
803
885
 
804
- class GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams(TypedDict):
886
+ class GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams(TypedDict):
805
887
  name_or_id: str
806
- analysis_task_id: str
888
+ analysis_job_id: str
807
889
 
808
890
 
809
891
  class PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams(TypedDict):
@@ -819,34 +901,50 @@ class DeleteFinetunedEmbeddingModelByNameOrIdParams(TypedDict):
819
901
  name_or_id: str
820
902
 
821
903
 
822
- class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
904
+ class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
823
905
  name_or_id: str
824
906
 
825
907
 
826
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams(TypedDict):
827
- name_or_id: str
828
- task_id: str
908
+ class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
909
+ model_name: PretrainedEmbeddingModelName
829
910
 
830
911
 
831
- class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
832
- name_or_id: str
912
+ class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
913
+ model_name: PretrainedEmbeddingModelName
833
914
 
834
915
 
835
- class GetPretrainedEmbeddingModelByModelNameParams(TypedDict):
836
- model_name: PretrainedEmbeddingModelName
916
+ class PostFinetunedEmbeddingModelByNameOrIdEvaluationParams(TypedDict):
917
+ name_or_id: str
837
918
 
838
919
 
839
920
  class PostPretrainedEmbeddingModelByModelNameEvaluationParams(TypedDict):
840
921
  model_name: PretrainedEmbeddingModelName
841
922
 
842
923
 
843
- class GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams(TypedDict):
924
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams(TypedDict):
925
+ name_or_id: str
926
+ job_id: str
927
+
928
+
929
+ class GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams(TypedDict):
844
930
  model_name: PretrainedEmbeddingModelName
845
- task_id: str
931
+ job_id: str
932
+
933
+
934
+ class GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams(TypedDict):
935
+ name_or_id: str
936
+ datasource: NotRequired[str | None]
937
+ value_column: NotRequired[str | None]
938
+ label_column: NotRequired[str | None]
939
+ score_column: NotRequired[str | None]
846
940
 
847
941
 
848
942
  class GetPretrainedEmbeddingModelByModelNameEvaluationsParams(TypedDict):
849
943
  model_name: PretrainedEmbeddingModelName
944
+ datasource: NotRequired[str | None]
945
+ value_column: NotRequired[str | None]
946
+ label_column: NotRequired[str | None]
947
+ score_column: NotRequired[str | None]
850
948
 
851
949
 
852
950
  class PostDatasourceUploadRequest(TypedDict):
@@ -868,20 +966,19 @@ class DeleteDatasourceByNameOrIdParams(TypedDict):
868
966
  name_or_id: str
869
967
 
870
968
 
871
- class PostDatasourceByNameOrIdEmbeddingEvaluationParams(TypedDict):
969
+ class PostDatasourceByNameOrIdRowsParams(TypedDict):
872
970
  name_or_id: str
873
971
 
874
972
 
875
- class GetDatasourceByNameOrIdEmbeddingEvaluationParams(TypedDict):
973
+ class PostDatasourceByNameOrIdRowsCountParams(TypedDict):
876
974
  name_or_id: str
877
- status: NotRequired[TaskStatus | None]
878
- limit: NotRequired[int | None]
879
- offset: NotRequired[int | None]
880
975
 
881
976
 
882
- class GetDatasourceByNameOrIdEmbeddingEvaluationByTaskIdParams(TypedDict):
977
+ class GetDatasourceByNameOrIdEmbeddingModelEvaluationsParams(TypedDict):
883
978
  name_or_id: str
884
- task_id: str
979
+ value_column: NotRequired[str | None]
980
+ label_column: NotRequired[str | None]
981
+ score_column: NotRequired[str | None]
885
982
 
886
983
 
887
984
  class GetDatasourceByNameOrIdDownloadParams(TypedDict):
@@ -907,36 +1004,42 @@ class DeleteClassificationModelByNameOrIdParams(TypedDict):
907
1004
  name_or_id: str
908
1005
 
909
1006
 
910
- class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
911
- model_name_or_id: str
1007
+ class PatchRegressionModelByNameOrIdParams(TypedDict):
1008
+ name_or_id: str
912
1009
 
913
1010
 
914
- class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
915
- model_name_or_id: str
1011
+ class GetRegressionModelByNameOrIdParams(TypedDict):
1012
+ name_or_id: str
916
1013
 
917
1014
 
918
- class GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
919
- model_name_or_id: str
920
- task_id: str
1015
+ class DeleteRegressionModelByNameOrIdParams(TypedDict):
1016
+ name_or_id: str
921
1017
 
922
1018
 
923
- class DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
924
- model_name_or_id: str
925
- task_id: str
1019
+ class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1020
+ name_or_id: str
926
1021
 
927
1022
 
928
- class PatchRegressionModelByNameOrIdParams(TypedDict):
1023
+ class PostClassificationModelByNameOrIdPredictionParams(TypedDict):
929
1024
  name_or_id: str
930
1025
 
931
1026
 
932
- class GetRegressionModelByNameOrIdParams(TypedDict):
1027
+ class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
933
1028
  name_or_id: str
934
1029
 
935
1030
 
936
- class DeleteRegressionModelByNameOrIdParams(TypedDict):
1031
+ class PostRegressionModelByNameOrIdPredictionParams(TypedDict):
937
1032
  name_or_id: str
938
1033
 
939
1034
 
1035
+ class PostClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1036
+ model_name_or_id: str
1037
+
1038
+
1039
+ class GetClassificationModelByModelNameOrIdEvaluationParams(TypedDict):
1040
+ model_name_or_id: str
1041
+
1042
+
940
1043
  class PostRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
941
1044
  model_name_or_id: str
942
1045
 
@@ -945,26 +1048,36 @@ class GetRegressionModelByModelNameOrIdEvaluationParams(TypedDict):
945
1048
  model_name_or_id: str
946
1049
 
947
1050
 
948
- class GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1051
+ class GetClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
949
1052
  model_name_or_id: str
950
- task_id: str
1053
+ job_id: str
951
1054
 
952
1055
 
953
- class DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams(TypedDict):
1056
+ class DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
954
1057
  model_name_or_id: str
955
- task_id: str
1058
+ job_id: str
956
1059
 
957
1060
 
958
- class GetTaskByTaskIdParams(TypedDict):
959
- task_id: str
1061
+ class GetRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1062
+ model_name_or_id: str
1063
+ job_id: str
960
1064
 
961
1065
 
962
- class GetTaskByTaskIdStatusParams(TypedDict):
963
- task_id: str
1066
+ class DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams(TypedDict):
1067
+ model_name_or_id: str
1068
+ job_id: str
1069
+
1070
+
1071
+ class GetJobByJobIdParams(TypedDict):
1072
+ job_id: str
964
1073
 
965
1074
 
966
- class GetTaskParams(TypedDict):
967
- status: NotRequired[TaskStatus | list[TaskStatus] | None]
1075
+ class GetJobByJobIdStatusParams(TypedDict):
1076
+ job_id: str
1077
+
1078
+
1079
+ class GetJobParams(TypedDict):
1080
+ status: NotRequired[JobStatus | list[JobStatus] | None]
968
1081
  type: NotRequired[str | list[str] | None]
969
1082
  limit: NotRequired[int | None]
970
1083
  offset: NotRequired[int]
@@ -972,8 +1085,18 @@ class GetTaskParams(TypedDict):
972
1085
  end_timestamp: NotRequired[str | None]
973
1086
 
974
1087
 
975
- class DeleteTaskByTaskIdAbortParams(TypedDict):
976
- task_id: str
1088
+ class DeleteJobByJobIdAbortParams(TypedDict):
1089
+ job_id: str
1090
+
1091
+
1092
+ class GetWorkerParams(TypedDict):
1093
+ status: NotRequired[WorkerStatus | list[WorkerStatus] | None]
1094
+ limit: NotRequired[int | None]
1095
+ offset: NotRequired[int]
1096
+
1097
+
1098
+ class GetWorkerByWorkerIdParams(TypedDict):
1099
+ worker_id: str
977
1100
 
978
1101
 
979
1102
  class GetTelemetryPredictionByPredictionIdParams(TypedDict):
@@ -1019,43 +1142,8 @@ class DeleteTelemetryFeedbackCategoryByNameOrIdParams(TypedDict):
1019
1142
  PutTelemetryPredictionFeedbackRequest = list[PredictionFeedbackRequest]
1020
1143
 
1021
1144
 
1022
- class GetAgentsBootstrapClassificationModelByTaskIdParams(TypedDict):
1023
- task_id: str
1024
-
1025
-
1026
- class PostGpuMemorysetByNameOrIdLookupParams(TypedDict):
1027
- name_or_id: str
1028
-
1029
-
1030
- class PatchGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1031
- name_or_id: str
1032
-
1033
-
1034
- class PostGpuMemorysetByNameOrIdMemoryParams(TypedDict):
1035
- name_or_id: str
1036
-
1037
-
1038
- PostGpuMemorysetByNameOrIdMemoryRequest = list[LabeledMemoryInsert] | list[ScoredMemoryInsert]
1039
-
1040
-
1041
- class PatchGpuMemorysetByNameOrIdMemoriesParams(TypedDict):
1042
- name_or_id: str
1043
-
1044
-
1045
- class PostGpuClassificationModelByNameOrIdPredictionParams(TypedDict):
1046
- name_or_id: str
1047
-
1048
-
1049
- class PostGpuRegressionModelByNameOrIdPredictionParams(TypedDict):
1050
- name_or_id: str
1051
-
1052
-
1053
- class PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams(TypedDict):
1054
- name_or_id: str
1055
-
1056
-
1057
- class PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams(TypedDict):
1058
- model_name: PretrainedEmbeddingModelName
1145
+ class GetAgentsBootstrapClassificationModelByJobIdParams(TypedDict):
1146
+ job_id: str
1059
1147
 
1060
1148
 
1061
1149
  class FieldValidationError(TypedDict):
@@ -1127,6 +1215,7 @@ class ClassificationPredictionRequest(TypedDict):
1127
1215
  prompt: NotRequired[str | None]
1128
1216
  use_lookup_cache: NotRequired[bool]
1129
1217
  consistency_level: NotRequired[Literal["Bounded", "Session", "Strong", "Eventual"] | None]
1218
+ ignore_unlabeled: NotRequired[bool]
1130
1219
 
1131
1220
 
1132
1221
  class CloneMemorysetRequest(TypedDict):
@@ -1143,6 +1232,7 @@ class ColumnInfo(TypedDict):
1143
1232
  name: str
1144
1233
  type: ColumnType
1145
1234
  enum_options: NotRequired[list[str] | None]
1235
+ string_values: NotRequired[list[str] | None]
1146
1236
  int_values: NotRequired[list[int] | None]
1147
1237
  contains_nones: NotRequired[bool]
1148
1238
 
@@ -1154,6 +1244,7 @@ class ConceptMetrics(TypedDict):
1154
1244
  primary_label: int | None
1155
1245
  memory_count: int
1156
1246
  subconcepts: list[SubConceptMetrics]
1247
+ label_percentages: list[LabelPercentage]
1157
1248
 
1158
1249
 
1159
1250
  class CreateClassificationModelRequest(TypedDict):
@@ -1187,6 +1278,9 @@ class CreateMemorysetRequest(TypedDict):
1187
1278
  index_params: NotRequired[dict[str, int | float | str]]
1188
1279
  prompt: NotRequired[str]
1189
1280
  hidden: NotRequired[bool]
1281
+ batch_size: NotRequired[int]
1282
+ subsample: NotRequired[int | float | None]
1283
+ memory_type: NotRequired[MemoryType]
1190
1284
 
1191
1285
 
1192
1286
  class CreateRegressionModelRequest(TypedDict):
@@ -1198,25 +1292,6 @@ class CreateRegressionModelRequest(TypedDict):
1198
1292
  head_type: NotRequired[RARHeadType]
1199
1293
 
1200
1294
 
1201
- class DatasourceEmbeddingEvaluationsRequest(TypedDict):
1202
- value_column: str
1203
- label_column: str
1204
- source_id_column: str | None
1205
- neighbor_count: NotRequired[int]
1206
- label_names: NotRequired[list[str] | None]
1207
- embedding_models: NotRequired[list[PretrainedEmbeddingModelName | str] | None]
1208
-
1209
-
1210
- class DatasourceEmbeddingEvaluationsTaskPayload(TypedDict):
1211
- value_column: str
1212
- label_column: str
1213
- source_id_column: str | None
1214
- neighbor_count: NotRequired[int]
1215
- label_names: NotRequired[list[str] | None]
1216
- embedding_models: NotRequired[list[PretrainedEmbeddingModelName | str] | None]
1217
- datasource_id: str
1218
-
1219
-
1220
1295
  class DatasourceMetadata(TypedDict):
1221
1296
  id: str
1222
1297
  org_id: str
@@ -1230,56 +1305,52 @@ class DatasourceMetadata(TypedDict):
1230
1305
 
1231
1306
 
1232
1307
  class EmbeddingEvaluationResponse(TypedDict):
1233
- task_id: str
1308
+ job_id: str
1234
1309
  org_id: str
1235
- status: TaskStatus
1310
+ finetuned_embedding_model_id: str | None
1311
+ pretrained_embedding_model_name: PretrainedEmbeddingModelName | None
1312
+ datasource_id: str
1313
+ subsample: int | float | None
1314
+ datasource_value_column: str
1315
+ datasource_label_column: NotRequired[str | None]
1316
+ datasource_score_column: NotRequired[str | None]
1317
+ neighbor_count: int
1318
+ weigh_memories: bool
1319
+ status: JobStatus
1236
1320
  result: ClassificationMetrics | RegressionMetrics | None
1237
1321
  created_at: str
1238
1322
  updated_at: str
1239
-
1240
-
1241
- class EmbeddingEvaluationResponseUnionClassificationMetricsRegressionMetrics(TypedDict):
1242
1323
  task_id: str
1243
- org_id: str
1244
- status: TaskStatus
1245
- result: ClassificationMetrics | RegressionMetrics | None
1246
- created_at: str
1247
- updated_at: str
1248
-
1249
-
1250
- class EmbeddingModelResult(TypedDict):
1251
- embedding_model_name: str
1252
- embedding_model_path: str
1253
- analysis_result: MemorysetLabelMetrics
1254
- memoryset_name: NotRequired[str | None]
1255
- is_finetuned: NotRequired[bool]
1256
1324
 
1257
1325
 
1258
1326
  class EvaluationResponse(TypedDict):
1259
- task_id: str
1327
+ job_id: str
1260
1328
  org_id: str
1261
- status: TaskStatus
1329
+ status: JobStatus
1262
1330
  result: ClassificationMetrics | RegressionMetrics | None
1263
1331
  created_at: str
1264
1332
  updated_at: str
1333
+ task_id: str
1265
1334
 
1266
1335
 
1267
1336
  class EvaluationResponseClassificationMetrics(TypedDict):
1268
- task_id: str
1337
+ job_id: str
1269
1338
  org_id: str
1270
- status: TaskStatus
1339
+ status: JobStatus
1271
1340
  result: ClassificationMetrics | None
1272
1341
  created_at: str
1273
1342
  updated_at: str
1343
+ task_id: str
1274
1344
 
1275
1345
 
1276
1346
  class EvaluationResponseRegressionMetrics(TypedDict):
1277
- task_id: str
1347
+ job_id: str
1278
1348
  org_id: str
1279
- status: TaskStatus
1349
+ status: JobStatus
1280
1350
  result: RegressionMetrics | None
1281
1351
  created_at: str
1282
1352
  updated_at: str
1353
+ task_id: str
1283
1354
 
1284
1355
 
1285
1356
  class FinetuneEmbeddingModelRequest(TypedDict):
@@ -1288,7 +1359,8 @@ class FinetuneEmbeddingModelRequest(TypedDict):
1288
1359
  train_memoryset_name_or_id: NotRequired[str | None]
1289
1360
  train_datasource_name_or_id: NotRequired[str | None]
1290
1361
  eval_datasource_name_or_id: NotRequired[str | None]
1291
- label_column: NotRequired[str]
1362
+ label_column: NotRequired[str | None]
1363
+ score_column: NotRequired[str | None]
1292
1364
  value_column: NotRequired[str]
1293
1365
  training_method: NotRequired[EmbeddingFinetuningMethod]
1294
1366
  training_args: NotRequired[dict[str, str | int | float | bool]]
@@ -1305,8 +1377,9 @@ class FinetunedEmbeddingModelMetadata(TypedDict):
1305
1377
  created_at: str
1306
1378
  updated_at: str
1307
1379
  base_model: PretrainedEmbeddingModelName
1380
+ finetuning_job_id: str
1381
+ finetuning_status: JobStatus
1308
1382
  finetuning_task_id: str
1309
- finetuning_status: TaskStatus
1310
1383
 
1311
1384
 
1312
1385
  class HTTPValidationError(TypedDict):
@@ -1318,10 +1391,28 @@ class InvalidInputErrorResponse(TypedDict):
1318
1391
  validation_issues: list[FieldValidationError]
1319
1392
 
1320
1393
 
1394
+ class Job(TypedDict):
1395
+ status: JobStatus
1396
+ steps_total: int | None
1397
+ steps_completed: int | None
1398
+ exception: str | None
1399
+ updated_at: str
1400
+ created_at: str
1401
+ id: str
1402
+ org_id: str
1403
+ worker_id: str | None
1404
+ type: str
1405
+ payload: BaseModel
1406
+ result: BaseModel | None
1407
+ depends_on: NotRequired[list[str]]
1408
+ lease_token: str | None
1409
+
1410
+
1321
1411
  class LabelPredictionMemoryLookup(TypedDict):
1322
1412
  value: str | bytes
1323
1413
  embedding: list[float]
1324
1414
  source_id: str | None
1415
+ partition_id: str | None
1325
1416
  metadata: dict[str, str | int | float | bool | None]
1326
1417
  memory_id: str
1327
1418
  memory_version: int
@@ -1363,6 +1454,7 @@ class LabeledMemory(TypedDict):
1363
1454
  value: str | bytes
1364
1455
  embedding: list[float]
1365
1456
  source_id: str | None
1457
+ partition_id: str | None
1366
1458
  metadata: dict[str, str | int | float | bool | None]
1367
1459
  memory_id: str
1368
1460
  memory_version: int
@@ -1378,6 +1470,7 @@ class LabeledMemoryLookup(TypedDict):
1378
1470
  value: str | bytes
1379
1471
  embedding: list[float]
1380
1472
  source_id: str | None
1473
+ partition_id: str | None
1381
1474
  metadata: dict[str, str | int | float | bool | None]
1382
1475
  memory_id: str
1383
1476
  memory_version: int
@@ -1395,6 +1488,7 @@ class LabeledMemoryUpdate(TypedDict):
1395
1488
  value: NotRequired[str | bytes]
1396
1489
  metadata: NotRequired[dict[str, str | int | float | bool | None] | None]
1397
1490
  source_id: NotRequired[str | None]
1491
+ partition_id: NotRequired[str | None]
1398
1492
  metrics: NotRequired[MemoryMetrics | None]
1399
1493
  label: NotRequired[int | None]
1400
1494
 
@@ -1403,6 +1497,7 @@ class LabeledMemoryWithFeedbackMetrics(TypedDict):
1403
1497
  value: str | bytes
1404
1498
  embedding: list[float]
1405
1499
  source_id: str | None
1500
+ partition_id: str | None
1406
1501
  metadata: dict[str, str | int | float | bool | None]
1407
1502
  memory_id: str
1408
1503
  memory_version: int
@@ -1422,14 +1517,15 @@ class ListPredictionsRequest(TypedDict):
1422
1517
  prediction_ids: NotRequired[list[str] | None]
1423
1518
  start_timestamp: NotRequired[str | None]
1424
1519
  end_timestamp: NotRequired[str | None]
1425
- limit: NotRequired[int | None]
1520
+ memory_id: NotRequired[str | None]
1521
+ limit: NotRequired[int]
1426
1522
  offset: NotRequired[int | None]
1427
1523
  sort: NotRequired[PredictionSort]
1428
1524
  expected_label_match: NotRequired[bool | None]
1429
1525
 
1430
1526
 
1431
1527
  class MemorysetAnalysisConfigs(TypedDict):
1432
- neighbor: NotRequired[MemorysetNeighborAnalysisConfig | None]
1528
+ distribution: NotRequired[MemorysetDistributionAnalysisConfig | None]
1433
1529
  label: NotRequired[MemorysetLabelAnalysisConfig | None]
1434
1530
  duplicate: NotRequired[MemorysetDuplicateAnalysisConfig | None]
1435
1531
  projection: NotRequired[MemorysetProjectionAnalysisConfig | None]
@@ -1452,7 +1548,7 @@ class MemorysetConceptMetrics(TypedDict):
1452
1548
 
1453
1549
 
1454
1550
  class MemorysetMetrics(TypedDict):
1455
- neighbor: NotRequired[MemorysetNeighborMetrics | None]
1551
+ distribution: NotRequired[MemorysetDistributionMetrics | None]
1456
1552
  label: NotRequired[MemorysetLabelMetrics | None]
1457
1553
  duplicate: NotRequired[MemorysetDuplicateMetrics | None]
1458
1554
  projection: NotRequired[MemorysetProjectionMetrics | None]
@@ -1461,6 +1557,13 @@ class MemorysetMetrics(TypedDict):
1461
1557
  concepts: NotRequired[MemorysetConceptMetrics | None]
1462
1558
 
1463
1559
 
1560
+ class PaginatedJob(TypedDict):
1561
+ items: list[Job]
1562
+ total: int
1563
+ offset: int
1564
+ limit: int
1565
+
1566
+
1464
1567
  class PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics(TypedDict):
1465
1568
  items: list[LabeledMemoryWithFeedbackMetrics | ScoredMemoryWithFeedbackMetrics]
1466
1569
  total: int
@@ -1478,21 +1581,6 @@ class PretrainedEmbeddingModelMetadata(TypedDict):
1478
1581
  num_params: int
1479
1582
 
1480
1583
 
1481
- class Task(TypedDict):
1482
- status: TaskStatus
1483
- steps_total: int | None
1484
- steps_completed: int | None
1485
- exception: str | None
1486
- updated_at: str
1487
- created_at: str
1488
- id: str
1489
- org_id: str
1490
- type: str
1491
- payload: BaseModel
1492
- result: BaseModel | None
1493
- depends_on: NotRequired[list[str]]
1494
-
1495
-
1496
1584
  class TelemetryMemoriesRequest(TypedDict):
1497
1585
  memoryset_id: str
1498
1586
  offset: NotRequired[int]
@@ -1501,6 +1589,16 @@ class TelemetryMemoriesRequest(TypedDict):
1501
1589
  sort: NotRequired[list[TelemetrySortOptions] | None]
1502
1590
 
1503
1591
 
1592
+ class WorkerInfo(TypedDict):
1593
+ id: str
1594
+ status: WorkerStatus
1595
+ started_at: str
1596
+ updated_at: str
1597
+ version: str | None
1598
+ git_sha: str
1599
+ config: dict[str, str | float | int | bool | dict[str, str] | None]
1600
+
1601
+
1504
1602
  PatchGpuMemorysetByNameOrIdMemoryRequest = LabeledMemoryUpdate | ScoredMemoryUpdate
1505
1603
 
1506
1604
 
@@ -1513,15 +1611,11 @@ class CascadingEditSuggestion(TypedDict):
1513
1611
  lookup_score: float
1514
1612
 
1515
1613
 
1516
- class EmbeddingEvaluationResult(TypedDict):
1517
- evaluation_results: list[EmbeddingModelResult]
1518
-
1519
-
1520
1614
  class MemorysetAnalysisResponse(TypedDict):
1521
- task_id: str
1615
+ job_id: str
1522
1616
  org_id: str
1523
1617
  memoryset_id: str
1524
- status: TaskStatus
1618
+ status: JobStatus
1525
1619
  lookup_count: int
1526
1620
  batch_size: int
1527
1621
  clear_metrics: bool
@@ -1529,6 +1623,7 @@ class MemorysetAnalysisResponse(TypedDict):
1529
1623
  results: MemorysetMetrics | None
1530
1624
  created_at: str
1531
1625
  updated_at: str
1626
+ task_id: str
1532
1627
 
1533
1628
 
1534
1629
  class MemorysetMetadata(TypedDict):
@@ -1544,8 +1639,8 @@ class MemorysetMetadata(TypedDict):
1544
1639
  created_at: str
1545
1640
  updated_at: str
1546
1641
  memories_updated_at: str
1547
- insertion_task_id: str
1548
- insertion_status: TaskStatus
1642
+ insertion_job_id: str
1643
+ insertion_status: JobStatus
1549
1644
  metrics: MemorysetMetrics
1550
1645
  memory_type: MemoryType
1551
1646
  label_names: list[str] | None
@@ -1555,10 +1650,11 @@ class MemorysetMetadata(TypedDict):
1555
1650
  document_prompt_override: str | None
1556
1651
  query_prompt_override: str | None
1557
1652
  hidden: bool
1653
+ insertion_task_id: str
1558
1654
 
1559
1655
 
1560
- class PaginatedTask(TypedDict):
1561
- items: list[Task]
1656
+ class PaginatedWorkerInfo(TypedDict):
1657
+ items: list[WorkerInfo]
1562
1658
  total: int
1563
1659
  offset: int
1564
1660
  limit: int
@@ -1572,22 +1668,12 @@ class BootstrapClassificationModelMeta(TypedDict):
1572
1668
 
1573
1669
 
1574
1670
  class BootstrapClassificationModelResponse(TypedDict):
1575
- task_id: str
1671
+ job_id: str
1576
1672
  org_id: str
1577
- status: TaskStatus
1673
+ status: JobStatus
1578
1674
  result: BootstrapClassificationModelMeta | None
1579
1675
  input: BootstrapClassificationModelRequest | None
1580
-
1581
-
1582
- class DatasourceEmbeddingEvaluationsResponse(TypedDict):
1583
- task_id: str
1584
- org_id: str
1585
- datasource_id: str
1586
- status: TaskStatus
1587
- result: EmbeddingEvaluationResult | None
1588
- payload: DatasourceEmbeddingEvaluationsTaskPayload
1589
- created_at: str
1590
- updated_at: str
1676
+ task_id: str
1591
1677
 
1592
1678
 
1593
1679
  class OrcaClient(Client):
@@ -1604,11 +1690,11 @@ class OrcaClient(Client):
1604
1690
  return path_params, query_params
1605
1691
 
1606
1692
  @overload
1607
- def DELETE(
1693
+ def GET(
1608
1694
  self,
1609
- path: Literal["/cleanup"],
1695
+ path: Literal["/test_error/{status_code}"],
1610
1696
  *,
1611
- params: None = None,
1697
+ params: GetTestErrorByStatusCodeParams,
1612
1698
  parse_as: Literal["json"] = "json",
1613
1699
  headers: HeaderTypes | None = None,
1614
1700
  cookies: CookieTypes | None = None,
@@ -1616,16 +1702,15 @@ class OrcaClient(Client):
1616
1702
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1617
1703
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1618
1704
  extensions: RequestExtensions | None = None,
1619
- ) -> CleanupResponse:
1620
- """Cleanup orphaned milvus collections and blobs"""
1705
+ ) -> Any:
1621
1706
  pass
1622
1707
 
1623
1708
  @overload
1624
- def DELETE(
1709
+ def GET(
1625
1710
  self,
1626
- path: Literal["/auth/api_key/{name_or_id}"],
1711
+ path: Literal["/check/alive"],
1627
1712
  *,
1628
- params: DeleteAuthApiKeyByNameOrIdParams,
1713
+ params: None = None,
1629
1714
  parse_as: Literal["json"] = "json",
1630
1715
  headers: HeaderTypes | None = None,
1631
1716
  cookies: CookieTypes | None = None,
@@ -1633,14 +1718,13 @@ class OrcaClient(Client):
1633
1718
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1634
1719
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1635
1720
  extensions: RequestExtensions | None = None,
1636
- ) -> None:
1637
- """Delete an API key by name or ID."""
1721
+ ) -> AliveResponse:
1638
1722
  pass
1639
1723
 
1640
1724
  @overload
1641
- def DELETE(
1725
+ def GET(
1642
1726
  self,
1643
- path: Literal["/auth/org"],
1727
+ path: Literal["/check/ready"],
1644
1728
  *,
1645
1729
  params: None = None,
1646
1730
  parse_as: Literal["json"] = "json",
@@ -1650,16 +1734,15 @@ class OrcaClient(Client):
1650
1734
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1651
1735
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1652
1736
  extensions: RequestExtensions | None = None,
1653
- ) -> None:
1654
- """Deletes the org and all associated resources"""
1737
+ ) -> ReadyResponse:
1655
1738
  pass
1656
1739
 
1657
1740
  @overload
1658
- def DELETE(
1741
+ def GET(
1659
1742
  self,
1660
- path: Literal["/memoryset/{name_or_id}"],
1743
+ path: Literal["/gpu/check/healthy"],
1661
1744
  *,
1662
- params: DeleteMemorysetByNameOrIdParams,
1745
+ params: None = None,
1663
1746
  parse_as: Literal["json"] = "json",
1664
1747
  headers: HeaderTypes | None = None,
1665
1748
  cookies: CookieTypes | None = None,
@@ -1667,15 +1750,15 @@ class OrcaClient(Client):
1667
1750
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1668
1751
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1669
1752
  extensions: RequestExtensions | None = None,
1670
- ) -> None:
1753
+ ) -> HealthyResponse:
1671
1754
  pass
1672
1755
 
1673
1756
  @overload
1674
- def DELETE(
1757
+ def GET(
1675
1758
  self,
1676
- path: Literal["/memoryset/{name_or_id}/memory/{memory_id}"],
1759
+ path: Literal["/check/healthy"],
1677
1760
  *,
1678
- params: DeleteMemorysetByNameOrIdMemoryByMemoryIdParams,
1761
+ params: None = None,
1679
1762
  parse_as: Literal["json"] = "json",
1680
1763
  headers: HeaderTypes | None = None,
1681
1764
  cookies: CookieTypes | None = None,
@@ -1683,15 +1766,15 @@ class OrcaClient(Client):
1683
1766
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1684
1767
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1685
1768
  extensions: RequestExtensions | None = None,
1686
- ) -> None:
1769
+ ) -> HealthyResponse:
1687
1770
  pass
1688
1771
 
1689
1772
  @overload
1690
- def DELETE(
1773
+ def GET(
1691
1774
  self,
1692
- path: Literal["/finetuned_embedding_model/{name_or_id}"],
1775
+ path: Literal["/gpu/config"],
1693
1776
  *,
1694
- params: DeleteFinetunedEmbeddingModelByNameOrIdParams,
1777
+ params: None = None,
1695
1778
  parse_as: Literal["json"] = "json",
1696
1779
  headers: HeaderTypes | None = None,
1697
1780
  cookies: CookieTypes | None = None,
@@ -1699,16 +1782,15 @@ class OrcaClient(Client):
1699
1782
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1700
1783
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1701
1784
  extensions: RequestExtensions | None = None,
1702
- ) -> None:
1703
- """Delete a finetuned embedding model by name or ID."""
1785
+ ) -> dict[str, str | float | int | bool | None]:
1704
1786
  pass
1705
1787
 
1706
1788
  @overload
1707
- def DELETE(
1789
+ def GET(
1708
1790
  self,
1709
- path: Literal["/datasource/{name_or_id}"],
1791
+ path: Literal["/config"],
1710
1792
  *,
1711
- params: DeleteDatasourceByNameOrIdParams,
1793
+ params: None = None,
1712
1794
  parse_as: Literal["json"] = "json",
1713
1795
  headers: HeaderTypes | None = None,
1714
1796
  cookies: CookieTypes | None = None,
@@ -1716,16 +1798,15 @@ class OrcaClient(Client):
1716
1798
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1717
1799
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1718
1800
  extensions: RequestExtensions | None = None,
1719
- ) -> None:
1720
- """Delete a datasource by name or ID."""
1801
+ ) -> dict[str, str | float | int | bool | None]:
1721
1802
  pass
1722
1803
 
1723
1804
  @overload
1724
- def DELETE(
1805
+ def GET(
1725
1806
  self,
1726
- path: Literal["/classification_model/{name_or_id}"],
1807
+ path: Literal["/auth/root"],
1727
1808
  *,
1728
- params: DeleteClassificationModelByNameOrIdParams,
1809
+ params: None = None,
1729
1810
  parse_as: Literal["json"] = "json",
1730
1811
  headers: HeaderTypes | None = None,
1731
1812
  cookies: CookieTypes | None = None,
@@ -1733,15 +1814,16 @@ class OrcaClient(Client):
1733
1814
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1734
1815
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1735
1816
  extensions: RequestExtensions | None = None,
1736
- ) -> None:
1817
+ ) -> bool:
1818
+ """Return true only when called with a valid root API key; otherwise 401 Unauthenticated."""
1737
1819
  pass
1738
1820
 
1739
1821
  @overload
1740
- def DELETE(
1822
+ def GET(
1741
1823
  self,
1742
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
1824
+ path: Literal["/auth/api_key"],
1743
1825
  *,
1744
- params: DeleteClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
1826
+ params: None = None,
1745
1827
  parse_as: Literal["json"] = "json",
1746
1828
  headers: HeaderTypes | None = None,
1747
1829
  cookies: CookieTypes | None = None,
@@ -1749,15 +1831,16 @@ class OrcaClient(Client):
1749
1831
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1750
1832
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1751
1833
  extensions: RequestExtensions | None = None,
1752
- ) -> None:
1834
+ ) -> list[ApiKeyMetadata]:
1835
+ """List all API keys for the organization."""
1753
1836
  pass
1754
1837
 
1755
1838
  @overload
1756
- def DELETE(
1839
+ def GET(
1757
1840
  self,
1758
- path: Literal["/regression_model/{name_or_id}"],
1841
+ path: Literal["/auth"],
1759
1842
  *,
1760
- params: DeleteRegressionModelByNameOrIdParams,
1843
+ params: None = None,
1761
1844
  parse_as: Literal["json"] = "json",
1762
1845
  headers: HeaderTypes | None = None,
1763
1846
  cookies: CookieTypes | None = None,
@@ -1765,15 +1848,16 @@ class OrcaClient(Client):
1765
1848
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1766
1849
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1767
1850
  extensions: RequestExtensions | None = None,
1768
- ) -> None:
1851
+ ) -> bool:
1852
+ """Returns true if the api key header is valid for the org (will be false for admin api key)"""
1769
1853
  pass
1770
1854
 
1771
1855
  @overload
1772
- def DELETE(
1856
+ def GET(
1773
1857
  self,
1774
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
1858
+ path: Literal["/auth/org/plan"],
1775
1859
  *,
1776
- params: DeleteRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
1860
+ params: None = None,
1777
1861
  parse_as: Literal["json"] = "json",
1778
1862
  headers: HeaderTypes | None = None,
1779
1863
  cookies: CookieTypes | None = None,
@@ -1781,15 +1865,16 @@ class OrcaClient(Client):
1781
1865
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1782
1866
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1783
1867
  extensions: RequestExtensions | None = None,
1784
- ) -> None:
1868
+ ) -> OrgPlan:
1869
+ """Get the organization plan."""
1785
1870
  pass
1786
1871
 
1787
1872
  @overload
1788
- def DELETE(
1873
+ def GET(
1789
1874
  self,
1790
- path: Literal["/task/{task_id}/abort"],
1875
+ path: Literal["/memoryset"],
1791
1876
  *,
1792
- params: DeleteTaskByTaskIdAbortParams,
1877
+ params: GetMemorysetParams,
1793
1878
  parse_as: Literal["json"] = "json",
1794
1879
  headers: HeaderTypes | None = None,
1795
1880
  cookies: CookieTypes | None = None,
@@ -1797,15 +1882,15 @@ class OrcaClient(Client):
1797
1882
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1798
1883
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1799
1884
  extensions: RequestExtensions | None = None,
1800
- ) -> None:
1885
+ ) -> list[MemorysetMetadata]:
1801
1886
  pass
1802
1887
 
1803
1888
  @overload
1804
- def DELETE(
1889
+ def GET(
1805
1890
  self,
1806
- path: Literal["/telemetry/feedback_category/{name_or_id}"],
1891
+ path: Literal["/memoryset/{name_or_id}"],
1807
1892
  *,
1808
- params: DeleteTelemetryFeedbackCategoryByNameOrIdParams,
1893
+ params: GetMemorysetByNameOrIdParams,
1809
1894
  parse_as: Literal["json"] = "json",
1810
1895
  headers: HeaderTypes | None = None,
1811
1896
  cookies: CookieTypes | None = None,
@@ -1813,46 +1898,31 @@ class OrcaClient(Client):
1813
1898
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1814
1899
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1815
1900
  extensions: RequestExtensions | None = None,
1816
- ) -> None:
1817
- """Delete a feedback category and all associated feedback records."""
1901
+ ) -> MemorysetMetadata:
1818
1902
  pass
1819
1903
 
1820
- def DELETE(
1904
+ @overload
1905
+ def GET(
1821
1906
  self,
1822
- path: str,
1907
+ path: Literal["/memoryset/{name_or_id}/memory/{memory_id}"],
1823
1908
  *,
1824
- params: Mapping[str, Any] | None = None,
1825
- parse_as: Literal["json", "text"] | None = "json",
1909
+ params: GetMemorysetByNameOrIdMemoryByMemoryIdParams,
1910
+ parse_as: Literal["json"] = "json",
1826
1911
  headers: HeaderTypes | None = None,
1827
1912
  cookies: CookieTypes | None = None,
1828
1913
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1829
1914
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1830
1915
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1831
1916
  extensions: RequestExtensions | None = None,
1832
- ) -> Any:
1833
- path_params, query_params = self._parse_params(params or {}, path)
1834
- res = self.delete(
1835
- path.format(**path_params),
1836
- params=query_params,
1837
- headers=headers,
1838
- cookies=cookies,
1839
- auth=auth,
1840
- follow_redirects=follow_redirects,
1841
- timeout=timeout,
1842
- extensions=extensions,
1843
- ).raise_for_status()
1844
- return (
1845
- None
1846
- if res.status_code == 204
1847
- else res.json() if parse_as == "json" else res.text if parse_as == "text" else res.content
1848
- )
1917
+ ) -> LabeledMemory | ScoredMemory:
1918
+ pass
1849
1919
 
1850
1920
  @overload
1851
1921
  def GET(
1852
1922
  self,
1853
- path: Literal["/check/alive"],
1923
+ path: Literal["/memoryset/{name_or_id}/potential_duplicate_groups"],
1854
1924
  *,
1855
- params: None = None,
1925
+ params: GetMemorysetByNameOrIdPotentialDuplicateGroupsParams,
1856
1926
  parse_as: Literal["json"] = "json",
1857
1927
  headers: HeaderTypes | None = None,
1858
1928
  cookies: CookieTypes | None = None,
@@ -1860,15 +1930,15 @@ class OrcaClient(Client):
1860
1930
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1861
1931
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1862
1932
  extensions: RequestExtensions | None = None,
1863
- ) -> AliveResponse:
1933
+ ) -> list[list[LabeledMemory]] | list[list[ScoredMemory]]:
1864
1934
  pass
1865
1935
 
1866
1936
  @overload
1867
1937
  def GET(
1868
1938
  self,
1869
- path: Literal["/check/ready"],
1939
+ path: Literal["/memoryset/{name_or_id}/analysis"],
1870
1940
  *,
1871
- params: None = None,
1941
+ params: GetMemorysetByNameOrIdAnalysisParams,
1872
1942
  parse_as: Literal["json"] = "json",
1873
1943
  headers: HeaderTypes | None = None,
1874
1944
  cookies: CookieTypes | None = None,
@@ -1876,15 +1946,15 @@ class OrcaClient(Client):
1876
1946
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1877
1947
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1878
1948
  extensions: RequestExtensions | None = None,
1879
- ) -> ReadyResponse:
1949
+ ) -> list[MemorysetAnalysisResponse]:
1880
1950
  pass
1881
1951
 
1882
1952
  @overload
1883
1953
  def GET(
1884
1954
  self,
1885
- path: Literal["/gpu/check/healthy"],
1955
+ path: Literal["/memoryset/{name_or_id}/analysis/{analysis_job_id}"],
1886
1956
  *,
1887
- params: None = None,
1957
+ params: GetMemorysetByNameOrIdAnalysisByAnalysisJobIdParams,
1888
1958
  parse_as: Literal["json"] = "json",
1889
1959
  headers: HeaderTypes | None = None,
1890
1960
  cookies: CookieTypes | None = None,
@@ -1892,13 +1962,13 @@ class OrcaClient(Client):
1892
1962
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1893
1963
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1894
1964
  extensions: RequestExtensions | None = None,
1895
- ) -> HealthyResponse:
1965
+ ) -> MemorysetAnalysisResponse:
1896
1966
  pass
1897
1967
 
1898
1968
  @overload
1899
1969
  def GET(
1900
1970
  self,
1901
- path: Literal["/check/healthy"],
1971
+ path: Literal["/finetuned_embedding_model"],
1902
1972
  *,
1903
1973
  params: None = None,
1904
1974
  parse_as: Literal["json"] = "json",
@@ -1908,15 +1978,16 @@ class OrcaClient(Client):
1908
1978
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1909
1979
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1910
1980
  extensions: RequestExtensions | None = None,
1911
- ) -> HealthyResponse:
1981
+ ) -> list[FinetunedEmbeddingModelMetadata]:
1982
+ """List all finetuned embedding models for the organization."""
1912
1983
  pass
1913
1984
 
1914
1985
  @overload
1915
1986
  def GET(
1916
1987
  self,
1917
- path: Literal["/gpu/config"],
1988
+ path: Literal["/finetuned_embedding_model/{name_or_id}"],
1918
1989
  *,
1919
- params: None = None,
1990
+ params: GetFinetunedEmbeddingModelByNameOrIdParams,
1920
1991
  parse_as: Literal["json"] = "json",
1921
1992
  headers: HeaderTypes | None = None,
1922
1993
  cookies: CookieTypes | None = None,
@@ -1924,13 +1995,14 @@ class OrcaClient(Client):
1924
1995
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1925
1996
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1926
1997
  extensions: RequestExtensions | None = None,
1927
- ) -> dict[str, str | float | int | bool | None]:
1998
+ ) -> FinetunedEmbeddingModelMetadata:
1999
+ """Get a finetuned embedding model by name or ID."""
1928
2000
  pass
1929
2001
 
1930
2002
  @overload
1931
2003
  def GET(
1932
2004
  self,
1933
- path: Literal["/config"],
2005
+ path: Literal["/pretrained_embedding_model"],
1934
2006
  *,
1935
2007
  params: None = None,
1936
2008
  parse_as: Literal["json"] = "json",
@@ -1940,47 +2012,50 @@ class OrcaClient(Client):
1940
2012
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1941
2013
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1942
2014
  extensions: RequestExtensions | None = None,
1943
- ) -> dict[str, str | float | int | bool | None]:
2015
+ ) -> list[PretrainedEmbeddingModelMetadata]:
2016
+ """List all available pretrained embedding models."""
1944
2017
  pass
1945
2018
 
1946
2019
  @overload
1947
2020
  def GET(
1948
2021
  self,
1949
- path: Literal["/gpu/"],
2022
+ path: Literal["/pretrained_embedding_model/{model_name}"],
1950
2023
  *,
1951
- params: None = None,
1952
- parse_as: Literal["text"],
2024
+ params: GetPretrainedEmbeddingModelByModelNameParams,
2025
+ parse_as: Literal["json"] = "json",
1953
2026
  headers: HeaderTypes | None = None,
1954
2027
  cookies: CookieTypes | None = None,
1955
2028
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1956
2029
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1957
2030
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1958
2031
  extensions: RequestExtensions | None = None,
1959
- ) -> str:
2032
+ ) -> PretrainedEmbeddingModelMetadata:
2033
+ """Get metadata for a specific pretrained embedding model."""
1960
2034
  pass
1961
2035
 
1962
2036
  @overload
1963
2037
  def GET(
1964
2038
  self,
1965
- path: Literal["/"],
2039
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{job_id}"],
1966
2040
  *,
1967
- params: None = None,
1968
- parse_as: Literal["text"],
2041
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByJobIdParams,
2042
+ parse_as: Literal["json"] = "json",
1969
2043
  headers: HeaderTypes | None = None,
1970
2044
  cookies: CookieTypes | None = None,
1971
2045
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1972
2046
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1973
2047
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1974
2048
  extensions: RequestExtensions | None = None,
1975
- ) -> str:
2049
+ ) -> EmbeddingEvaluationResponse:
2050
+ """Get evaluation results for a finetuned embedding model by job ID."""
1976
2051
  pass
1977
2052
 
1978
2053
  @overload
1979
2054
  def GET(
1980
2055
  self,
1981
- path: Literal["/auth/root"],
2056
+ path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{job_id}"],
1982
2057
  *,
1983
- params: None = None,
2058
+ params: GetPretrainedEmbeddingModelByModelNameEvaluationByJobIdParams,
1984
2059
  parse_as: Literal["json"] = "json",
1985
2060
  headers: HeaderTypes | None = None,
1986
2061
  cookies: CookieTypes | None = None,
@@ -1988,16 +2063,16 @@ class OrcaClient(Client):
1988
2063
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
1989
2064
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
1990
2065
  extensions: RequestExtensions | None = None,
1991
- ) -> bool:
1992
- """Return true only when called with a valid root API key; otherwise 401 Unauthenticated."""
2066
+ ) -> EmbeddingEvaluationResponse:
2067
+ """Get evaluation results for a pretrained embedding model by job ID."""
1993
2068
  pass
1994
2069
 
1995
2070
  @overload
1996
2071
  def GET(
1997
2072
  self,
1998
- path: Literal["/auth/api_key"],
2073
+ path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
1999
2074
  *,
2000
- params: None = None,
2075
+ params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2001
2076
  parse_as: Literal["json"] = "json",
2002
2077
  headers: HeaderTypes | None = None,
2003
2078
  cookies: CookieTypes | None = None,
@@ -2005,16 +2080,16 @@ class OrcaClient(Client):
2005
2080
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2006
2081
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2007
2082
  extensions: RequestExtensions | None = None,
2008
- ) -> list[ApiKeyMetadata]:
2009
- """List all API keys for the organization."""
2083
+ ) -> list[EmbeddingEvaluationResponse]:
2084
+ """List all evaluation results for a finetuned embedding model."""
2010
2085
  pass
2011
2086
 
2012
2087
  @overload
2013
2088
  def GET(
2014
2089
  self,
2015
- path: Literal["/auth"],
2090
+ path: Literal["/pretrained_embedding_model/{model_name}/evaluations"],
2016
2091
  *,
2017
- params: None = None,
2092
+ params: GetPretrainedEmbeddingModelByModelNameEvaluationsParams,
2018
2093
  parse_as: Literal["json"] = "json",
2019
2094
  headers: HeaderTypes | None = None,
2020
2095
  cookies: CookieTypes | None = None,
@@ -2022,14 +2097,14 @@ class OrcaClient(Client):
2022
2097
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2023
2098
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2024
2099
  extensions: RequestExtensions | None = None,
2025
- ) -> bool:
2026
- """Returns true if the api key header is valid for the org (will be false for admin api key)"""
2100
+ ) -> list[EmbeddingEvaluationResponse]:
2101
+ """List all evaluation results for a pretrained embedding model."""
2027
2102
  pass
2028
2103
 
2029
2104
  @overload
2030
2105
  def GET(
2031
2106
  self,
2032
- path: Literal["/auth/org/plan"],
2107
+ path: Literal["/datasource"],
2033
2108
  *,
2034
2109
  params: None = None,
2035
2110
  parse_as: Literal["json"] = "json",
@@ -2039,16 +2114,16 @@ class OrcaClient(Client):
2039
2114
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2040
2115
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2041
2116
  extensions: RequestExtensions | None = None,
2042
- ) -> OrgPlan:
2043
- """Get the organization plan."""
2117
+ ) -> list[DatasourceMetadata]:
2118
+ """List all datasources for the organization."""
2044
2119
  pass
2045
2120
 
2046
2121
  @overload
2047
2122
  def GET(
2048
2123
  self,
2049
- path: Literal["/memoryset"],
2124
+ path: Literal["/datasource/{name_or_id}"],
2050
2125
  *,
2051
- params: GetMemorysetParams,
2126
+ params: GetDatasourceByNameOrIdParams,
2052
2127
  parse_as: Literal["json"] = "json",
2053
2128
  headers: HeaderTypes | None = None,
2054
2129
  cookies: CookieTypes | None = None,
@@ -2056,15 +2131,16 @@ class OrcaClient(Client):
2056
2131
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2057
2132
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2058
2133
  extensions: RequestExtensions | None = None,
2059
- ) -> list[MemorysetMetadata]:
2134
+ ) -> DatasourceMetadata:
2135
+ """Get a datasource by name or ID."""
2060
2136
  pass
2061
2137
 
2062
2138
  @overload
2063
2139
  def GET(
2064
2140
  self,
2065
- path: Literal["/memoryset/{name_or_id}"],
2141
+ path: Literal["/datasource/{name_or_id}/embedding_model_evaluations"],
2066
2142
  *,
2067
- params: GetMemorysetByNameOrIdParams,
2143
+ params: GetDatasourceByNameOrIdEmbeddingModelEvaluationsParams,
2068
2144
  parse_as: Literal["json"] = "json",
2069
2145
  headers: HeaderTypes | None = None,
2070
2146
  cookies: CookieTypes | None = None,
@@ -2072,15 +2148,16 @@ class OrcaClient(Client):
2072
2148
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2073
2149
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2074
2150
  extensions: RequestExtensions | None = None,
2075
- ) -> MemorysetMetadata:
2151
+ ) -> list[EmbeddingEvaluationResponse]:
2152
+ """List all evaluation results for a datasource."""
2076
2153
  pass
2077
2154
 
2078
2155
  @overload
2079
2156
  def GET(
2080
2157
  self,
2081
- path: Literal["/memoryset/{name_or_id}/memory/{memory_id}"],
2158
+ path: Literal["/datasource/{name_or_id}/download"],
2082
2159
  *,
2083
- params: GetMemorysetByNameOrIdMemoryByMemoryIdParams,
2160
+ params: GetDatasourceByNameOrIdDownloadParams,
2084
2161
  parse_as: Literal["json"] = "json",
2085
2162
  headers: HeaderTypes | None = None,
2086
2163
  cookies: CookieTypes | None = None,
@@ -2088,47 +2165,50 @@ class OrcaClient(Client):
2088
2165
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2089
2166
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2090
2167
  extensions: RequestExtensions | None = None,
2091
- ) -> LabeledMemory | ScoredMemory:
2168
+ ) -> list[dict[str, Any]]:
2169
+ """Download datasource in the specified format."""
2092
2170
  pass
2093
2171
 
2094
2172
  @overload
2095
2173
  def GET(
2096
2174
  self,
2097
- path: Literal["/memoryset/{name_or_id}/potential_duplicate_groups"],
2175
+ path: Literal["/datasource/{name_or_id}/download"],
2098
2176
  *,
2099
- params: GetMemorysetByNameOrIdPotentialDuplicateGroupsParams,
2100
- parse_as: Literal["json"] = "json",
2177
+ params: GetDatasourceByNameOrIdDownloadParams,
2178
+ parse_as: Literal["text"],
2101
2179
  headers: HeaderTypes | None = None,
2102
2180
  cookies: CookieTypes | None = None,
2103
2181
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2104
2182
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2105
2183
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2106
2184
  extensions: RequestExtensions | None = None,
2107
- ) -> list[list[LabeledMemory]] | list[list[ScoredMemory]]:
2185
+ ) -> str:
2186
+ """Download datasource in the specified format."""
2108
2187
  pass
2109
2188
 
2110
2189
  @overload
2111
2190
  def GET(
2112
2191
  self,
2113
- path: Literal["/memoryset/{name_or_id}/analysis"],
2192
+ path: Literal["/datasource/{name_or_id}/download"],
2114
2193
  *,
2115
- params: GetMemorysetByNameOrIdAnalysisParams,
2116
- parse_as: Literal["json"] = "json",
2194
+ params: GetDatasourceByNameOrIdDownloadParams,
2195
+ parse_as: None,
2117
2196
  headers: HeaderTypes | None = None,
2118
2197
  cookies: CookieTypes | None = None,
2119
2198
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2120
2199
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2121
2200
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2122
2201
  extensions: RequestExtensions | None = None,
2123
- ) -> list[MemorysetAnalysisResponse]:
2202
+ ) -> bytes:
2203
+ """Download datasource in the specified format."""
2124
2204
  pass
2125
2205
 
2126
2206
  @overload
2127
2207
  def GET(
2128
2208
  self,
2129
- path: Literal["/memoryset/{name_or_id}/analysis/{analysis_task_id}"],
2209
+ path: Literal["/classification_model"],
2130
2210
  *,
2131
- params: GetMemorysetByNameOrIdAnalysisByAnalysisTaskIdParams,
2211
+ params: None = None,
2132
2212
  parse_as: Literal["json"] = "json",
2133
2213
  headers: HeaderTypes | None = None,
2134
2214
  cookies: CookieTypes | None = None,
@@ -2136,13 +2216,13 @@ class OrcaClient(Client):
2136
2216
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2137
2217
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2138
2218
  extensions: RequestExtensions | None = None,
2139
- ) -> MemorysetAnalysisResponse:
2219
+ ) -> list[ClassificationModelMetadata]:
2140
2220
  pass
2141
2221
 
2142
2222
  @overload
2143
2223
  def GET(
2144
2224
  self,
2145
- path: Literal["/finetuned_embedding_model"],
2225
+ path: Literal["/regression_model"],
2146
2226
  *,
2147
2227
  params: None = None,
2148
2228
  parse_as: Literal["json"] = "json",
@@ -2152,16 +2232,15 @@ class OrcaClient(Client):
2152
2232
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2153
2233
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2154
2234
  extensions: RequestExtensions | None = None,
2155
- ) -> list[FinetunedEmbeddingModelMetadata]:
2156
- """List all finetuned embedding models for the organization."""
2235
+ ) -> list[RegressionModelMetadata]:
2157
2236
  pass
2158
2237
 
2159
2238
  @overload
2160
2239
  def GET(
2161
2240
  self,
2162
- path: Literal["/finetuned_embedding_model/{name_or_id}"],
2241
+ path: Literal["/classification_model/{name_or_id}"],
2163
2242
  *,
2164
- params: GetFinetunedEmbeddingModelByNameOrIdParams,
2243
+ params: GetClassificationModelByNameOrIdParams,
2165
2244
  parse_as: Literal["json"] = "json",
2166
2245
  headers: HeaderTypes | None = None,
2167
2246
  cookies: CookieTypes | None = None,
@@ -2169,16 +2248,15 @@ class OrcaClient(Client):
2169
2248
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2170
2249
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2171
2250
  extensions: RequestExtensions | None = None,
2172
- ) -> FinetunedEmbeddingModelMetadata:
2173
- """Get a finetuned embedding model by name or ID."""
2251
+ ) -> ClassificationModelMetadata:
2174
2252
  pass
2175
2253
 
2176
2254
  @overload
2177
2255
  def GET(
2178
2256
  self,
2179
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluation/{task_id}"],
2257
+ path: Literal["/regression_model/{name_or_id}"],
2180
2258
  *,
2181
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationByTaskIdParams,
2259
+ params: GetRegressionModelByNameOrIdParams,
2182
2260
  parse_as: Literal["json"] = "json",
2183
2261
  headers: HeaderTypes | None = None,
2184
2262
  cookies: CookieTypes | None = None,
@@ -2186,16 +2264,15 @@ class OrcaClient(Client):
2186
2264
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2187
2265
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2188
2266
  extensions: RequestExtensions | None = None,
2189
- ) -> EmbeddingEvaluationResponseUnionClassificationMetricsRegressionMetrics:
2190
- """Get evaluation results for a finetuned embedding model by task ID."""
2267
+ ) -> RegressionModelMetadata:
2191
2268
  pass
2192
2269
 
2193
2270
  @overload
2194
2271
  def GET(
2195
2272
  self,
2196
- path: Literal["/finetuned_embedding_model/{name_or_id}/evaluations"],
2273
+ path: Literal["/predictive_model"],
2197
2274
  *,
2198
- params: GetFinetunedEmbeddingModelByNameOrIdEvaluationsParams,
2275
+ params: None = None,
2199
2276
  parse_as: Literal["json"] = "json",
2200
2277
  headers: HeaderTypes | None = None,
2201
2278
  cookies: CookieTypes | None = None,
@@ -2203,16 +2280,15 @@ class OrcaClient(Client):
2203
2280
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2204
2281
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2205
2282
  extensions: RequestExtensions | None = None,
2206
- ) -> list[EmbeddingEvaluationResponseUnionClassificationMetricsRegressionMetrics]:
2207
- """List all evaluation results for a finetuned embedding model."""
2283
+ ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2208
2284
  pass
2209
2285
 
2210
2286
  @overload
2211
2287
  def GET(
2212
2288
  self,
2213
- path: Literal["/pretrained_embedding_model"],
2289
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2214
2290
  *,
2215
- params: None = None,
2291
+ params: GetClassificationModelByModelNameOrIdEvaluationParams,
2216
2292
  parse_as: Literal["json"] = "json",
2217
2293
  headers: HeaderTypes | None = None,
2218
2294
  cookies: CookieTypes | None = None,
@@ -2220,16 +2296,15 @@ class OrcaClient(Client):
2220
2296
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2221
2297
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2222
2298
  extensions: RequestExtensions | None = None,
2223
- ) -> list[PretrainedEmbeddingModelMetadata]:
2224
- """List all available pretrained embedding models."""
2299
+ ) -> list[EvaluationResponseClassificationMetrics]:
2225
2300
  pass
2226
2301
 
2227
2302
  @overload
2228
2303
  def GET(
2229
2304
  self,
2230
- path: Literal["/pretrained_embedding_model/{model_name}"],
2305
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2231
2306
  *,
2232
- params: GetPretrainedEmbeddingModelByModelNameParams,
2307
+ params: GetRegressionModelByModelNameOrIdEvaluationParams,
2233
2308
  parse_as: Literal["json"] = "json",
2234
2309
  headers: HeaderTypes | None = None,
2235
2310
  cookies: CookieTypes | None = None,
@@ -2237,16 +2312,15 @@ class OrcaClient(Client):
2237
2312
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2238
2313
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2239
2314
  extensions: RequestExtensions | None = None,
2240
- ) -> PretrainedEmbeddingModelMetadata:
2241
- """Get metadata for a specific pretrained embedding model."""
2315
+ ) -> list[EvaluationResponseRegressionMetrics]:
2242
2316
  pass
2243
2317
 
2244
2318
  @overload
2245
2319
  def GET(
2246
2320
  self,
2247
- path: Literal["/pretrained_embedding_model/{model_name}/evaluation/{task_id}"],
2321
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2248
2322
  *,
2249
- params: GetPretrainedEmbeddingModelByModelNameEvaluationByTaskIdParams,
2323
+ params: GetClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2250
2324
  parse_as: Literal["json"] = "json",
2251
2325
  headers: HeaderTypes | None = None,
2252
2326
  cookies: CookieTypes | None = None,
@@ -2254,16 +2328,15 @@ class OrcaClient(Client):
2254
2328
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2255
2329
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2256
2330
  extensions: RequestExtensions | None = None,
2257
- ) -> EmbeddingEvaluationResponseUnionClassificationMetricsRegressionMetrics:
2258
- """Get evaluation results for a pretrained embedding model by task ID."""
2331
+ ) -> EvaluationResponseClassificationMetrics:
2259
2332
  pass
2260
2333
 
2261
2334
  @overload
2262
2335
  def GET(
2263
2336
  self,
2264
- path: Literal["/pretrained_embedding_model/{model_name}/evaluations"],
2337
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2265
2338
  *,
2266
- params: GetPretrainedEmbeddingModelByModelNameEvaluationsParams,
2339
+ params: GetRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2267
2340
  parse_as: Literal["json"] = "json",
2268
2341
  headers: HeaderTypes | None = None,
2269
2342
  cookies: CookieTypes | None = None,
@@ -2271,16 +2344,15 @@ class OrcaClient(Client):
2271
2344
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2272
2345
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2273
2346
  extensions: RequestExtensions | None = None,
2274
- ) -> list[EmbeddingEvaluationResponseUnionClassificationMetricsRegressionMetrics]:
2275
- """List all evaluation results for a pretrained embedding model."""
2347
+ ) -> EvaluationResponseRegressionMetrics:
2276
2348
  pass
2277
2349
 
2278
2350
  @overload
2279
2351
  def GET(
2280
2352
  self,
2281
- path: Literal["/datasource"],
2353
+ path: Literal["/job/{job_id}"],
2282
2354
  *,
2283
- params: None = None,
2355
+ params: GetJobByJobIdParams,
2284
2356
  parse_as: Literal["json"] = "json",
2285
2357
  headers: HeaderTypes | None = None,
2286
2358
  cookies: CookieTypes | None = None,
@@ -2288,16 +2360,15 @@ class OrcaClient(Client):
2288
2360
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2289
2361
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2290
2362
  extensions: RequestExtensions | None = None,
2291
- ) -> list[DatasourceMetadata]:
2292
- """List all datasources for the organization."""
2363
+ ) -> Job:
2293
2364
  pass
2294
2365
 
2295
2366
  @overload
2296
2367
  def GET(
2297
2368
  self,
2298
- path: Literal["/datasource/{name_or_id}"],
2369
+ path: Literal["/job/{job_id}/status"],
2299
2370
  *,
2300
- params: GetDatasourceByNameOrIdParams,
2371
+ params: GetJobByJobIdStatusParams,
2301
2372
  parse_as: Literal["json"] = "json",
2302
2373
  headers: HeaderTypes | None = None,
2303
2374
  cookies: CookieTypes | None = None,
@@ -2305,16 +2376,15 @@ class OrcaClient(Client):
2305
2376
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2306
2377
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2307
2378
  extensions: RequestExtensions | None = None,
2308
- ) -> DatasourceMetadata:
2309
- """Get a datasource by name or ID."""
2379
+ ) -> JobStatusInfo:
2310
2380
  pass
2311
2381
 
2312
2382
  @overload
2313
2383
  def GET(
2314
2384
  self,
2315
- path: Literal["/datasource/{name_or_id}/embedding_evaluation"],
2385
+ path: Literal["/job"],
2316
2386
  *,
2317
- params: GetDatasourceByNameOrIdEmbeddingEvaluationParams,
2387
+ params: GetJobParams,
2318
2388
  parse_as: Literal["json"] = "json",
2319
2389
  headers: HeaderTypes | None = None,
2320
2390
  cookies: CookieTypes | None = None,
@@ -2322,16 +2392,15 @@ class OrcaClient(Client):
2322
2392
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2323
2393
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2324
2394
  extensions: RequestExtensions | None = None,
2325
- ) -> list[DatasourceEmbeddingEvaluationsResponse]:
2326
- """List embedding evaluation tasks for a datasource."""
2395
+ ) -> PaginatedJob:
2327
2396
  pass
2328
2397
 
2329
2398
  @overload
2330
2399
  def GET(
2331
2400
  self,
2332
- path: Literal["/datasource/{name_or_id}/embedding_evaluation/{task_id}"],
2401
+ path: Literal["/worker"],
2333
2402
  *,
2334
- params: GetDatasourceByNameOrIdEmbeddingEvaluationByTaskIdParams,
2403
+ params: GetWorkerParams,
2335
2404
  parse_as: Literal["json"] = "json",
2336
2405
  headers: HeaderTypes | None = None,
2337
2406
  cookies: CookieTypes | None = None,
@@ -2339,16 +2408,20 @@ class OrcaClient(Client):
2339
2408
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2340
2409
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2341
2410
  extensions: RequestExtensions | None = None,
2342
- ) -> DatasourceEmbeddingEvaluationsResponse:
2343
- """Get an embedding evaluation task by ID."""
2411
+ ) -> PaginatedWorkerInfo:
2412
+ """
2413
+ List all workers in the system. Requires root access.
2414
+
2415
+ This endpoint automatically cleans up orphaned workers before returning results.
2416
+ """
2344
2417
  pass
2345
2418
 
2346
2419
  @overload
2347
2420
  def GET(
2348
2421
  self,
2349
- path: Literal["/datasource/{name_or_id}/download"],
2422
+ path: Literal["/worker/{worker_id}"],
2350
2423
  *,
2351
- params: GetDatasourceByNameOrIdDownloadParams,
2424
+ params: GetWorkerByWorkerIdParams,
2352
2425
  parse_as: Literal["json"] = "json",
2353
2426
  headers: HeaderTypes | None = None,
2354
2427
  cookies: CookieTypes | None = None,
@@ -2356,50 +2429,50 @@ class OrcaClient(Client):
2356
2429
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2357
2430
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2358
2431
  extensions: RequestExtensions | None = None,
2359
- ) -> list[dict[str, Any]]:
2360
- """Download datasource in the specified format."""
2432
+ ) -> WorkerInfo:
2433
+ """Get information about a specific worker. Requires root access."""
2361
2434
  pass
2362
2435
 
2363
2436
  @overload
2364
2437
  def GET(
2365
2438
  self,
2366
- path: Literal["/datasource/{name_or_id}/download"],
2439
+ path: Literal["/telemetry/prediction/{prediction_id}"],
2367
2440
  *,
2368
- params: GetDatasourceByNameOrIdDownloadParams,
2369
- parse_as: Literal["text"],
2441
+ params: GetTelemetryPredictionByPredictionIdParams,
2442
+ parse_as: Literal["json"] = "json",
2370
2443
  headers: HeaderTypes | None = None,
2371
2444
  cookies: CookieTypes | None = None,
2372
2445
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2373
2446
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2374
2447
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2375
2448
  extensions: RequestExtensions | None = None,
2376
- ) -> str:
2377
- """Download datasource in the specified format."""
2449
+ ) -> LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback:
2450
+ """Get a specific prediction by ID."""
2378
2451
  pass
2379
2452
 
2380
2453
  @overload
2381
2454
  def GET(
2382
2455
  self,
2383
- path: Literal["/datasource/{name_or_id}/download"],
2456
+ path: Literal["/telemetry/prediction/{prediction_id}/explanation"],
2384
2457
  *,
2385
- params: GetDatasourceByNameOrIdDownloadParams,
2386
- parse_as: None,
2458
+ params: GetTelemetryPredictionByPredictionIdExplanationParams,
2459
+ parse_as: Literal["text"],
2387
2460
  headers: HeaderTypes | None = None,
2388
2461
  cookies: CookieTypes | None = None,
2389
2462
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2390
2463
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2391
2464
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2392
2465
  extensions: RequestExtensions | None = None,
2393
- ) -> bytes:
2394
- """Download datasource in the specified format."""
2466
+ ) -> str:
2467
+ """Get explanation for a prediction, optionally streaming the response."""
2395
2468
  pass
2396
2469
 
2397
2470
  @overload
2398
2471
  def GET(
2399
2472
  self,
2400
- path: Literal["/predictive_model"],
2473
+ path: Literal["/telemetry/prediction/{prediction_id}/action"],
2401
2474
  *,
2402
- params: None = None,
2475
+ params: GetTelemetryPredictionByPredictionIdActionParams,
2403
2476
  parse_as: Literal["json"] = "json",
2404
2477
  headers: HeaderTypes | None = None,
2405
2478
  cookies: CookieTypes | None = None,
@@ -2407,15 +2480,16 @@ class OrcaClient(Client):
2407
2480
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2408
2481
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2409
2482
  extensions: RequestExtensions | None = None,
2410
- ) -> list[ClassificationModelMetadata | RegressionModelMetadata]:
2483
+ ) -> ActionRecommendation:
2484
+ """Get action recommendation for improving a specific prediction."""
2411
2485
  pass
2412
2486
 
2413
2487
  @overload
2414
2488
  def GET(
2415
2489
  self,
2416
- path: Literal["/classification_model"],
2490
+ path: Literal["/telemetry/prediction/{prediction_id}/memory_suggestions"],
2417
2491
  *,
2418
- params: None = None,
2492
+ params: GetTelemetryPredictionByPredictionIdMemorySuggestionsParams,
2419
2493
  parse_as: Literal["json"] = "json",
2420
2494
  headers: HeaderTypes | None = None,
2421
2495
  cookies: CookieTypes | None = None,
@@ -2423,15 +2497,21 @@ class OrcaClient(Client):
2423
2497
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2424
2498
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2425
2499
  extensions: RequestExtensions | None = None,
2426
- ) -> list[ClassificationModelMetadata]:
2500
+ ) -> AddMemoryRecommendations:
2501
+ """
2502
+ Generate synthetic memory suggestions to improve a specific prediction.
2503
+
2504
+ The returned suggestions have labels as string representations of integer indices
2505
+ corresponding to the memoryset's label_names.
2506
+ """
2427
2507
  pass
2428
2508
 
2429
2509
  @overload
2430
2510
  def GET(
2431
2511
  self,
2432
- path: Literal["/classification_model/{name_or_id}"],
2512
+ path: Literal["/telemetry/feedback_category"],
2433
2513
  *,
2434
- params: GetClassificationModelByNameOrIdParams,
2514
+ params: None = None,
2435
2515
  parse_as: Literal["json"] = "json",
2436
2516
  headers: HeaderTypes | None = None,
2437
2517
  cookies: CookieTypes | None = None,
@@ -2439,15 +2519,16 @@ class OrcaClient(Client):
2439
2519
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2440
2520
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2441
2521
  extensions: RequestExtensions | None = None,
2442
- ) -> ClassificationModelMetadata:
2522
+ ) -> list[PredictionFeedbackCategory]:
2523
+ """List all feedback categories for the organization."""
2443
2524
  pass
2444
2525
 
2445
2526
  @overload
2446
2527
  def GET(
2447
2528
  self,
2448
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
2529
+ path: Literal["/telemetry/feedback_category/{name_or_id}"],
2449
2530
  *,
2450
- params: GetClassificationModelByModelNameOrIdEvaluationParams,
2531
+ params: GetTelemetryFeedbackCategoryByNameOrIdParams,
2451
2532
  parse_as: Literal["json"] = "json",
2452
2533
  headers: HeaderTypes | None = None,
2453
2534
  cookies: CookieTypes | None = None,
@@ -2455,15 +2536,16 @@ class OrcaClient(Client):
2455
2536
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2456
2537
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2457
2538
  extensions: RequestExtensions | None = None,
2458
- ) -> list[EvaluationResponseClassificationMetrics]:
2539
+ ) -> PredictionFeedbackCategory:
2540
+ """Get a feedback category by name or ID."""
2459
2541
  pass
2460
2542
 
2461
2543
  @overload
2462
2544
  def GET(
2463
2545
  self,
2464
- path: Literal["/classification_model/{model_name_or_id}/evaluation/{task_id}"],
2546
+ path: Literal["/agents/bootstrap_classification_model/{job_id}"],
2465
2547
  *,
2466
- params: GetClassificationModelByModelNameOrIdEvaluationByTaskIdParams,
2548
+ params: GetAgentsBootstrapClassificationModelByJobIdParams,
2467
2549
  parse_as: Literal["json"] = "json",
2468
2550
  headers: HeaderTypes | None = None,
2469
2551
  cookies: CookieTypes | None = None,
@@ -2471,31 +2553,47 @@ class OrcaClient(Client):
2471
2553
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2472
2554
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2473
2555
  extensions: RequestExtensions | None = None,
2474
- ) -> EvaluationResponseClassificationMetrics:
2556
+ ) -> BootstrapClassificationModelResponse:
2557
+ """Get the status of a bootstrap classification model job"""
2475
2558
  pass
2476
2559
 
2477
- @overload
2478
2560
  def GET(
2479
2561
  self,
2480
- path: Literal["/regression_model"],
2562
+ path: str,
2481
2563
  *,
2482
- params: None = None,
2483
- parse_as: Literal["json"] = "json",
2564
+ params: Mapping[str, Any] | None = None,
2565
+ parse_as: Literal["json", "text"] | None = "json",
2484
2566
  headers: HeaderTypes | None = None,
2485
2567
  cookies: CookieTypes | None = None,
2486
2568
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2487
2569
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2488
2570
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2489
2571
  extensions: RequestExtensions | None = None,
2490
- ) -> list[RegressionModelMetadata]:
2491
- pass
2572
+ ) -> Any:
2573
+ path_params, query_params = self._parse_params(params or {}, path)
2574
+ res = self.get(
2575
+ path.format(**path_params),
2576
+ params=query_params,
2577
+ headers=headers,
2578
+ cookies=cookies,
2579
+ auth=auth,
2580
+ follow_redirects=follow_redirects,
2581
+ timeout=timeout,
2582
+ extensions=extensions,
2583
+ )
2584
+ res.raise_for_status()
2585
+ return (
2586
+ None
2587
+ if res.status_code == 204
2588
+ else res.json() if parse_as == "json" else res.text if parse_as == "text" else res.content
2589
+ )
2492
2590
 
2493
2591
  @overload
2494
- def GET(
2592
+ def DELETE(
2495
2593
  self,
2496
- path: Literal["/regression_model/{name_or_id}"],
2594
+ path: Literal["/cleanup"],
2497
2595
  *,
2498
- params: GetRegressionModelByNameOrIdParams,
2596
+ params: None = None,
2499
2597
  parse_as: Literal["json"] = "json",
2500
2598
  headers: HeaderTypes | None = None,
2501
2599
  cookies: CookieTypes | None = None,
@@ -2503,15 +2601,16 @@ class OrcaClient(Client):
2503
2601
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2504
2602
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2505
2603
  extensions: RequestExtensions | None = None,
2506
- ) -> RegressionModelMetadata:
2604
+ ) -> CleanupResponse:
2605
+ """Cleanup orphaned milvus collections and blobs"""
2507
2606
  pass
2508
2607
 
2509
2608
  @overload
2510
- def GET(
2609
+ def DELETE(
2511
2610
  self,
2512
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
2611
+ path: Literal["/auth/api_key/{name_or_id}"],
2513
2612
  *,
2514
- params: GetRegressionModelByModelNameOrIdEvaluationParams,
2613
+ params: DeleteAuthApiKeyByNameOrIdParams,
2515
2614
  parse_as: Literal["json"] = "json",
2516
2615
  headers: HeaderTypes | None = None,
2517
2616
  cookies: CookieTypes | None = None,
@@ -2519,15 +2618,16 @@ class OrcaClient(Client):
2519
2618
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2520
2619
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2521
2620
  extensions: RequestExtensions | None = None,
2522
- ) -> list[EvaluationResponseRegressionMetrics]:
2621
+ ) -> None:
2622
+ """Delete an API key by name or ID."""
2523
2623
  pass
2524
2624
 
2525
2625
  @overload
2526
- def GET(
2626
+ def DELETE(
2527
2627
  self,
2528
- path: Literal["/regression_model/{model_name_or_id}/evaluation/{task_id}"],
2628
+ path: Literal["/auth/org"],
2529
2629
  *,
2530
- params: GetRegressionModelByModelNameOrIdEvaluationByTaskIdParams,
2630
+ params: None = None,
2531
2631
  parse_as: Literal["json"] = "json",
2532
2632
  headers: HeaderTypes | None = None,
2533
2633
  cookies: CookieTypes | None = None,
@@ -2535,15 +2635,16 @@ class OrcaClient(Client):
2535
2635
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2536
2636
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2537
2637
  extensions: RequestExtensions | None = None,
2538
- ) -> EvaluationResponseRegressionMetrics:
2638
+ ) -> None:
2639
+ """Deletes the org and all associated resources"""
2539
2640
  pass
2540
2641
 
2541
2642
  @overload
2542
- def GET(
2643
+ def DELETE(
2543
2644
  self,
2544
- path: Literal["/task/{task_id}"],
2645
+ path: Literal["/memoryset/{name_or_id}"],
2545
2646
  *,
2546
- params: GetTaskByTaskIdParams,
2647
+ params: DeleteMemorysetByNameOrIdParams,
2547
2648
  parse_as: Literal["json"] = "json",
2548
2649
  headers: HeaderTypes | None = None,
2549
2650
  cookies: CookieTypes | None = None,
@@ -2551,15 +2652,15 @@ class OrcaClient(Client):
2551
2652
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2552
2653
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2553
2654
  extensions: RequestExtensions | None = None,
2554
- ) -> Task:
2655
+ ) -> None:
2555
2656
  pass
2556
2657
 
2557
2658
  @overload
2558
- def GET(
2659
+ def DELETE(
2559
2660
  self,
2560
- path: Literal["/task/{task_id}/status"],
2661
+ path: Literal["/memoryset/{name_or_id}/memory/{memory_id}"],
2561
2662
  *,
2562
- params: GetTaskByTaskIdStatusParams,
2663
+ params: DeleteMemorysetByNameOrIdMemoryByMemoryIdParams,
2563
2664
  parse_as: Literal["json"] = "json",
2564
2665
  headers: HeaderTypes | None = None,
2565
2666
  cookies: CookieTypes | None = None,
@@ -2567,15 +2668,15 @@ class OrcaClient(Client):
2567
2668
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2568
2669
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2569
2670
  extensions: RequestExtensions | None = None,
2570
- ) -> TaskStatusInfo:
2671
+ ) -> None:
2571
2672
  pass
2572
2673
 
2573
2674
  @overload
2574
- def GET(
2675
+ def DELETE(
2575
2676
  self,
2576
- path: Literal["/task"],
2677
+ path: Literal["/finetuned_embedding_model/{name_or_id}"],
2577
2678
  *,
2578
- params: GetTaskParams,
2679
+ params: DeleteFinetunedEmbeddingModelByNameOrIdParams,
2579
2680
  parse_as: Literal["json"] = "json",
2580
2681
  headers: HeaderTypes | None = None,
2581
2682
  cookies: CookieTypes | None = None,
@@ -2583,15 +2684,16 @@ class OrcaClient(Client):
2583
2684
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2584
2685
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2585
2686
  extensions: RequestExtensions | None = None,
2586
- ) -> PaginatedTask:
2687
+ ) -> None:
2688
+ """Delete a finetuned embedding model by name or ID."""
2587
2689
  pass
2588
2690
 
2589
2691
  @overload
2590
- def GET(
2692
+ def DELETE(
2591
2693
  self,
2592
- path: Literal["/telemetry/prediction/{prediction_id}"],
2694
+ path: Literal["/datasource/{name_or_id}"],
2593
2695
  *,
2594
- params: GetTelemetryPredictionByPredictionIdParams,
2696
+ params: DeleteDatasourceByNameOrIdParams,
2595
2697
  parse_as: Literal["json"] = "json",
2596
2698
  headers: HeaderTypes | None = None,
2597
2699
  cookies: CookieTypes | None = None,
@@ -2599,33 +2701,32 @@ class OrcaClient(Client):
2599
2701
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2600
2702
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2601
2703
  extensions: RequestExtensions | None = None,
2602
- ) -> LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback:
2603
- """Get a specific prediction by ID."""
2704
+ ) -> None:
2705
+ """Delete a datasource by name or ID."""
2604
2706
  pass
2605
2707
 
2606
2708
  @overload
2607
- def GET(
2709
+ def DELETE(
2608
2710
  self,
2609
- path: Literal["/telemetry/prediction/{prediction_id}/explanation"],
2711
+ path: Literal["/classification_model/{name_or_id}"],
2610
2712
  *,
2611
- params: GetTelemetryPredictionByPredictionIdExplanationParams,
2612
- parse_as: Literal["text"],
2713
+ params: DeleteClassificationModelByNameOrIdParams,
2714
+ parse_as: Literal["json"] = "json",
2613
2715
  headers: HeaderTypes | None = None,
2614
2716
  cookies: CookieTypes | None = None,
2615
2717
  auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2616
2718
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2617
2719
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2618
2720
  extensions: RequestExtensions | None = None,
2619
- ) -> str:
2620
- """Get explanation for a prediction, optionally streaming the response."""
2721
+ ) -> None:
2621
2722
  pass
2622
2723
 
2623
2724
  @overload
2624
- def GET(
2725
+ def DELETE(
2625
2726
  self,
2626
- path: Literal["/telemetry/prediction/{prediction_id}/action"],
2727
+ path: Literal["/regression_model/{name_or_id}"],
2627
2728
  *,
2628
- params: GetTelemetryPredictionByPredictionIdActionParams,
2729
+ params: DeleteRegressionModelByNameOrIdParams,
2629
2730
  parse_as: Literal["json"] = "json",
2630
2731
  headers: HeaderTypes | None = None,
2631
2732
  cookies: CookieTypes | None = None,
@@ -2633,16 +2734,15 @@ class OrcaClient(Client):
2633
2734
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2634
2735
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2635
2736
  extensions: RequestExtensions | None = None,
2636
- ) -> ActionRecommendation:
2637
- """Get action recommendation for improving a specific prediction."""
2737
+ ) -> None:
2638
2738
  pass
2639
2739
 
2640
2740
  @overload
2641
- def GET(
2741
+ def DELETE(
2642
2742
  self,
2643
- path: Literal["/telemetry/prediction/{prediction_id}/memory_suggestions"],
2743
+ path: Literal["/classification_model/{model_name_or_id}/evaluation/{job_id}"],
2644
2744
  *,
2645
- params: GetTelemetryPredictionByPredictionIdMemorySuggestionsParams,
2745
+ params: DeleteClassificationModelByModelNameOrIdEvaluationByJobIdParams,
2646
2746
  parse_as: Literal["json"] = "json",
2647
2747
  headers: HeaderTypes | None = None,
2648
2748
  cookies: CookieTypes | None = None,
@@ -2650,21 +2750,15 @@ class OrcaClient(Client):
2650
2750
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2651
2751
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2652
2752
  extensions: RequestExtensions | None = None,
2653
- ) -> AddMemoryRecommendations:
2654
- """
2655
- Generate synthetic memory suggestions to improve a specific prediction.
2656
-
2657
- The returned suggestions have labels as string representations of integer indices
2658
- corresponding to the memoryset's label_names.
2659
- """
2753
+ ) -> None:
2660
2754
  pass
2661
2755
 
2662
2756
  @overload
2663
- def GET(
2757
+ def DELETE(
2664
2758
  self,
2665
- path: Literal["/telemetry/feedback_category"],
2759
+ path: Literal["/regression_model/{model_name_or_id}/evaluation/{job_id}"],
2666
2760
  *,
2667
- params: None = None,
2761
+ params: DeleteRegressionModelByModelNameOrIdEvaluationByJobIdParams,
2668
2762
  parse_as: Literal["json"] = "json",
2669
2763
  headers: HeaderTypes | None = None,
2670
2764
  cookies: CookieTypes | None = None,
@@ -2672,16 +2766,15 @@ class OrcaClient(Client):
2672
2766
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2673
2767
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2674
2768
  extensions: RequestExtensions | None = None,
2675
- ) -> list[PredictionFeedbackCategory]:
2676
- """List all feedback categories for the organization."""
2769
+ ) -> None:
2677
2770
  pass
2678
2771
 
2679
2772
  @overload
2680
- def GET(
2773
+ def DELETE(
2681
2774
  self,
2682
- path: Literal["/telemetry/feedback_category/{name_or_id}"],
2775
+ path: Literal["/job/{job_id}/abort"],
2683
2776
  *,
2684
- params: GetTelemetryFeedbackCategoryByNameOrIdParams,
2777
+ params: DeleteJobByJobIdAbortParams,
2685
2778
  parse_as: Literal["json"] = "json",
2686
2779
  headers: HeaderTypes | None = None,
2687
2780
  cookies: CookieTypes | None = None,
@@ -2689,16 +2782,15 @@ class OrcaClient(Client):
2689
2782
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2690
2783
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2691
2784
  extensions: RequestExtensions | None = None,
2692
- ) -> PredictionFeedbackCategory:
2693
- """Get a feedback category by name or ID."""
2785
+ ) -> None:
2694
2786
  pass
2695
2787
 
2696
2788
  @overload
2697
- def GET(
2789
+ def DELETE(
2698
2790
  self,
2699
- path: Literal["/agents/bootstrap_classification_model/{task_id}"],
2791
+ path: Literal["/telemetry/feedback_category/{name_or_id}"],
2700
2792
  *,
2701
- params: GetAgentsBootstrapClassificationModelByTaskIdParams,
2793
+ params: DeleteTelemetryFeedbackCategoryByNameOrIdParams,
2702
2794
  parse_as: Literal["json"] = "json",
2703
2795
  headers: HeaderTypes | None = None,
2704
2796
  cookies: CookieTypes | None = None,
@@ -2706,11 +2798,11 @@ class OrcaClient(Client):
2706
2798
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2707
2799
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2708
2800
  extensions: RequestExtensions | None = None,
2709
- ) -> BootstrapClassificationModelResponse:
2710
- """Get the status of a bootstrap classification model task"""
2801
+ ) -> None:
2802
+ """Delete a feedback category and all associated feedback records."""
2711
2803
  pass
2712
2804
 
2713
- def GET(
2805
+ def DELETE(
2714
2806
  self,
2715
2807
  path: str,
2716
2808
  *,
@@ -2724,7 +2816,7 @@ class OrcaClient(Client):
2724
2816
  extensions: RequestExtensions | None = None,
2725
2817
  ) -> Any:
2726
2818
  path_params, query_params = self._parse_params(params or {}, path)
2727
- res = self.get(
2819
+ res = self.delete(
2728
2820
  path.format(**path_params),
2729
2821
  params=query_params,
2730
2822
  headers=headers,
@@ -2733,7 +2825,8 @@ class OrcaClient(Client):
2733
2825
  follow_redirects=follow_redirects,
2734
2826
  timeout=timeout,
2735
2827
  extensions=extensions,
2736
- ).raise_for_status()
2828
+ )
2829
+ res.raise_for_status()
2737
2830
  return (
2738
2831
  None
2739
2832
  if res.status_code == 204
@@ -2842,6 +2935,26 @@ class OrcaClient(Client):
2842
2935
  ) -> None:
2843
2936
  pass
2844
2937
 
2938
+ @overload
2939
+ def POST(
2940
+ self,
2941
+ path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
2942
+ *,
2943
+ params: PostGpuMemorysetByNameOrIdLookupParams,
2944
+ json: LookupRequest,
2945
+ data: None = None,
2946
+ files: None = None,
2947
+ content: None = None,
2948
+ parse_as: Literal["json"] = "json",
2949
+ headers: HeaderTypes | None = None,
2950
+ cookies: CookieTypes | None = None,
2951
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2952
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2953
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2954
+ extensions: RequestExtensions | None = None,
2955
+ ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
2956
+ pass
2957
+
2845
2958
  @overload
2846
2959
  def POST(
2847
2960
  self,
@@ -2859,16 +2972,76 @@ class OrcaClient(Client):
2859
2972
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2860
2973
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2861
2974
  extensions: RequestExtensions | None = None,
2862
- ) -> list[LabeledMemory] | list[ScoredMemory]:
2975
+ ) -> list[LabeledMemory] | list[ScoredMemory]:
2976
+ pass
2977
+
2978
+ @overload
2979
+ def POST(
2980
+ self,
2981
+ path: Literal["/memoryset/{name_or_id}/memories"],
2982
+ *,
2983
+ params: PostMemorysetByNameOrIdMemoriesParams,
2984
+ json: ListMemoriesRequest | None = None,
2985
+ data: None = None,
2986
+ files: None = None,
2987
+ content: None = None,
2988
+ parse_as: Literal["json"] = "json",
2989
+ headers: HeaderTypes | None = None,
2990
+ cookies: CookieTypes | None = None,
2991
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2992
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2993
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2994
+ extensions: RequestExtensions | None = None,
2995
+ ) -> list[LabeledMemory] | list[ScoredMemory]:
2996
+ pass
2997
+
2998
+ @overload
2999
+ def POST(
3000
+ self,
3001
+ path: Literal["/memoryset/{name_or_id}/memories/delete"],
3002
+ *,
3003
+ params: PostMemorysetByNameOrIdMemoriesDeleteParams,
3004
+ json: DeleteMemoriesRequest,
3005
+ data: None = None,
3006
+ files: None = None,
3007
+ content: None = None,
3008
+ parse_as: Literal["json"] = "json",
3009
+ headers: HeaderTypes | None = None,
3010
+ cookies: CookieTypes | None = None,
3011
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3012
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3013
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3014
+ extensions: RequestExtensions | None = None,
3015
+ ) -> None:
3016
+ pass
3017
+
3018
+ @overload
3019
+ def POST(
3020
+ self,
3021
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3022
+ *,
3023
+ params: PostGpuMemorysetByNameOrIdMemoryParams,
3024
+ json: PostGpuMemorysetByNameOrIdMemoryRequest,
3025
+ data: None = None,
3026
+ files: None = None,
3027
+ content: None = None,
3028
+ parse_as: Literal["json"] = "json",
3029
+ headers: HeaderTypes | None = None,
3030
+ cookies: CookieTypes | None = None,
3031
+ auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3032
+ follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3033
+ timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3034
+ extensions: RequestExtensions | None = None,
3035
+ ) -> list[str]:
2863
3036
  pass
2864
3037
 
2865
3038
  @overload
2866
3039
  def POST(
2867
3040
  self,
2868
- path: Literal["/memoryset/{name_or_id}/memories"],
3041
+ path: Literal["/memoryset/{name_or_id}/analysis"],
2869
3042
  *,
2870
- params: PostMemorysetByNameOrIdMemoriesParams,
2871
- json: ListMemoriesRequest | None = None,
3043
+ params: PostMemorysetByNameOrIdAnalysisParams,
3044
+ json: MemorysetAnalysisRequest,
2872
3045
  data: None = None,
2873
3046
  files: None = None,
2874
3047
  content: None = None,
@@ -2879,16 +3052,16 @@ class OrcaClient(Client):
2879
3052
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2880
3053
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2881
3054
  extensions: RequestExtensions | None = None,
2882
- ) -> list[LabeledMemory] | list[ScoredMemory]:
3055
+ ) -> MemorysetAnalysisResponse:
2883
3056
  pass
2884
3057
 
2885
3058
  @overload
2886
3059
  def POST(
2887
3060
  self,
2888
- path: Literal["/memoryset/{name_or_id}/memories/delete"],
3061
+ path: Literal["/memoryset/{name_or_id}/memory/{memory_id}/cascading_edits"],
2889
3062
  *,
2890
- params: PostMemorysetByNameOrIdMemoriesDeleteParams,
2891
- json: DeleteMemoriesRequest,
3063
+ params: PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams,
3064
+ json: CascadeEditSuggestionsRequest,
2892
3065
  data: None = None,
2893
3066
  files: None = None,
2894
3067
  content: None = None,
@@ -2899,16 +3072,16 @@ class OrcaClient(Client):
2899
3072
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2900
3073
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2901
3074
  extensions: RequestExtensions | None = None,
2902
- ) -> None:
3075
+ ) -> list[CascadingEditSuggestion]:
2903
3076
  pass
2904
3077
 
2905
3078
  @overload
2906
3079
  def POST(
2907
3080
  self,
2908
- path: Literal["/memoryset/{name_or_id}/analysis"],
3081
+ path: Literal["/finetuned_embedding_model"],
2909
3082
  *,
2910
- params: PostMemorysetByNameOrIdAnalysisParams,
2911
- json: MemorysetAnalysisRequest,
3083
+ params: None = None,
3084
+ json: FinetuneEmbeddingModelRequest,
2912
3085
  data: None = None,
2913
3086
  files: None = None,
2914
3087
  content: None = None,
@@ -2919,16 +3092,17 @@ class OrcaClient(Client):
2919
3092
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2920
3093
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2921
3094
  extensions: RequestExtensions | None = None,
2922
- ) -> MemorysetAnalysisResponse:
3095
+ ) -> FinetunedEmbeddingModelMetadata:
3096
+ """Create a finetuned embedding model."""
2923
3097
  pass
2924
3098
 
2925
3099
  @overload
2926
3100
  def POST(
2927
3101
  self,
2928
- path: Literal["/memoryset/{name_or_id}/memory/{memory_id}/cascading_edits"],
3102
+ path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
2929
3103
  *,
2930
- params: PostMemorysetByNameOrIdMemoryByMemoryIdCascadingEditsParams,
2931
- json: CascadeEditSuggestionsRequest,
3104
+ params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3105
+ json: EmbedRequest,
2932
3106
  data: None = None,
2933
3107
  files: None = None,
2934
3108
  content: None = None,
@@ -2939,16 +3113,17 @@ class OrcaClient(Client):
2939
3113
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2940
3114
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2941
3115
  extensions: RequestExtensions | None = None,
2942
- ) -> list[CascadingEditSuggestion]:
3116
+ ) -> list[list[float]]:
3117
+ """Embed values using a finetuned embedding model."""
2943
3118
  pass
2944
3119
 
2945
3120
  @overload
2946
3121
  def POST(
2947
3122
  self,
2948
- path: Literal["/finetuned_embedding_model"],
3123
+ path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
2949
3124
  *,
2950
- params: None = None,
2951
- json: FinetuneEmbeddingModelRequest,
3125
+ params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3126
+ json: EmbedRequest,
2952
3127
  data: None = None,
2953
3128
  files: None = None,
2954
3129
  content: None = None,
@@ -2959,8 +3134,8 @@ class OrcaClient(Client):
2959
3134
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
2960
3135
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
2961
3136
  extensions: RequestExtensions | None = None,
2962
- ) -> FinetunedEmbeddingModelMetadata:
2963
- """Create a finetuned embedding model."""
3137
+ ) -> list[list[float]]:
3138
+ """Embed values using a pretrained embedding model."""
2964
3139
  pass
2965
3140
 
2966
3141
  @overload
@@ -3062,10 +3237,10 @@ class OrcaClient(Client):
3062
3237
  @overload
3063
3238
  def POST(
3064
3239
  self,
3065
- path: Literal["/datasource/{name_or_id}/embedding_evaluation"],
3240
+ path: Literal["/datasource/{name_or_id}/rows"],
3066
3241
  *,
3067
- params: PostDatasourceByNameOrIdEmbeddingEvaluationParams,
3068
- json: DatasourceEmbeddingEvaluationsRequest,
3242
+ params: PostDatasourceByNameOrIdRowsParams,
3243
+ json: GetDatasourceRowsRequest,
3069
3244
  data: None = None,
3070
3245
  files: None = None,
3071
3246
  content: None = None,
@@ -3076,17 +3251,17 @@ class OrcaClient(Client):
3076
3251
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3077
3252
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3078
3253
  extensions: RequestExtensions | None = None,
3079
- ) -> DatasourceEmbeddingEvaluationsResponse:
3080
- """Create an embedding evaluation task for a datasource."""
3254
+ ) -> list[dict[str, Any]]:
3255
+ """Get rows from a specific datasource with optional filtering."""
3081
3256
  pass
3082
3257
 
3083
3258
  @overload
3084
3259
  def POST(
3085
3260
  self,
3086
- path: Literal["/classification_model"],
3261
+ path: Literal["/datasource/{name_or_id}/rows/count"],
3087
3262
  *,
3088
- params: None = None,
3089
- json: CreateClassificationModelRequest,
3263
+ params: PostDatasourceByNameOrIdRowsCountParams,
3264
+ json: GetDatasourceRowCountRequest,
3090
3265
  data: None = None,
3091
3266
  files: None = None,
3092
3267
  content: None = None,
@@ -3097,16 +3272,17 @@ class OrcaClient(Client):
3097
3272
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3098
3273
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3099
3274
  extensions: RequestExtensions | None = None,
3100
- ) -> ClassificationModelMetadata:
3275
+ ) -> int:
3276
+ """Get row count from a specific datasource with optional filtering."""
3101
3277
  pass
3102
3278
 
3103
3279
  @overload
3104
3280
  def POST(
3105
3281
  self,
3106
- path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3282
+ path: Literal["/classification_model"],
3107
3283
  *,
3108
- params: PostClassificationModelByModelNameOrIdEvaluationParams,
3109
- json: ClassificationEvaluationRequest,
3284
+ params: None = None,
3285
+ json: CreateClassificationModelRequest,
3110
3286
  data: None = None,
3111
3287
  files: None = None,
3112
3288
  content: None = None,
@@ -3117,7 +3293,7 @@ class OrcaClient(Client):
3117
3293
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3118
3294
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3119
3295
  extensions: RequestExtensions | None = None,
3120
- ) -> EvaluationResponse:
3296
+ ) -> ClassificationModelMetadata:
3121
3297
  pass
3122
3298
 
3123
3299
  @overload
@@ -3143,10 +3319,10 @@ class OrcaClient(Client):
3143
3319
  @overload
3144
3320
  def POST(
3145
3321
  self,
3146
- path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3322
+ path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3147
3323
  *,
3148
- params: PostRegressionModelByModelNameOrIdEvaluationParams,
3149
- json: RegressionEvaluationRequest,
3324
+ params: PostGpuClassificationModelByNameOrIdPredictionParams,
3325
+ json: ClassificationPredictionRequest,
3150
3326
  data: None = None,
3151
3327
  files: None = None,
3152
3328
  content: None = None,
@@ -3157,16 +3333,16 @@ class OrcaClient(Client):
3157
3333
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3158
3334
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3159
3335
  extensions: RequestExtensions | None = None,
3160
- ) -> EvaluationResponse:
3336
+ ) -> list[BaseLabelPredictionResult]:
3161
3337
  pass
3162
3338
 
3163
3339
  @overload
3164
3340
  def POST(
3165
3341
  self,
3166
- path: Literal["/telemetry/prediction"],
3342
+ path: Literal["/classification_model/{name_or_id}/prediction"],
3167
3343
  *,
3168
- params: None = None,
3169
- json: ListPredictionsRequest | None = None,
3344
+ params: PostClassificationModelByNameOrIdPredictionParams,
3345
+ json: ClassificationPredictionRequest,
3170
3346
  data: None = None,
3171
3347
  files: None = None,
3172
3348
  content: None = None,
@@ -3177,17 +3353,16 @@ class OrcaClient(Client):
3177
3353
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3178
3354
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3179
3355
  extensions: RequestExtensions | None = None,
3180
- ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3181
- """List predictions with optional filtering and sorting."""
3356
+ ) -> list[BaseLabelPredictionResult]:
3182
3357
  pass
3183
3358
 
3184
3359
  @overload
3185
3360
  def POST(
3186
3361
  self,
3187
- path: Literal["/telemetry/prediction/count"],
3362
+ path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3188
3363
  *,
3189
- params: None = None,
3190
- json: CountPredictionsRequest | None = None,
3364
+ params: PostGpuRegressionModelByNameOrIdPredictionParams,
3365
+ json: RegressionPredictionRequest,
3191
3366
  data: None = None,
3192
3367
  files: None = None,
3193
3368
  content: None = None,
@@ -3198,17 +3373,16 @@ class OrcaClient(Client):
3198
3373
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3199
3374
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3200
3375
  extensions: RequestExtensions | None = None,
3201
- ) -> int:
3202
- """Count predictions with optional filtering."""
3376
+ ) -> list[BaseScorePredictionResult]:
3203
3377
  pass
3204
3378
 
3205
3379
  @overload
3206
3380
  def POST(
3207
3381
  self,
3208
- path: Literal["/telemetry/memories"],
3382
+ path: Literal["/regression_model/{name_or_id}/prediction"],
3209
3383
  *,
3210
- params: None = None,
3211
- json: TelemetryMemoriesRequest,
3384
+ params: PostRegressionModelByNameOrIdPredictionParams,
3385
+ json: RegressionPredictionRequest,
3212
3386
  data: None = None,
3213
3387
  files: None = None,
3214
3388
  content: None = None,
@@ -3219,21 +3393,16 @@ class OrcaClient(Client):
3219
3393
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3220
3394
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3221
3395
  extensions: RequestExtensions | None = None,
3222
- ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3223
- """
3224
- List memories with feedback metrics.
3225
- **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3226
- If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3227
- """
3396
+ ) -> list[BaseScorePredictionResult]:
3228
3397
  pass
3229
3398
 
3230
3399
  @overload
3231
3400
  def POST(
3232
3401
  self,
3233
- path: Literal["/agents/bootstrap_classification_model"],
3402
+ path: Literal["/classification_model/{model_name_or_id}/evaluation"],
3234
3403
  *,
3235
- params: None = None,
3236
- json: BootstrapClassificationModelRequest,
3404
+ params: PostClassificationModelByModelNameOrIdEvaluationParams,
3405
+ json: ClassificationEvaluationRequest,
3237
3406
  data: None = None,
3238
3407
  files: None = None,
3239
3408
  content: None = None,
@@ -3244,30 +3413,16 @@ class OrcaClient(Client):
3244
3413
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3245
3414
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3246
3415
  extensions: RequestExtensions | None = None,
3247
- ) -> BootstrapClassificationModelResponse:
3248
- """
3249
- Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3250
-
3251
- This endpoint uses the bootstrap_classification_model agent to generate:
3252
- 1. Memoryset configuration with appropriate settings
3253
- 2. Model configuration with optimal parameters
3254
- 3. High-quality training memories for each label
3255
-
3256
- The process involves:
3257
- 1. Calling the agent to generate configurations and memories
3258
- 2. Creating a datasource from the generated memories
3259
- 3. Creating a memoryset from the datasource
3260
- 4. Creating a classification model from the memoryset
3261
- """
3416
+ ) -> EvaluationResponse:
3262
3417
  pass
3263
3418
 
3264
3419
  @overload
3265
3420
  def POST(
3266
3421
  self,
3267
- path: Literal["/gpu/memoryset/{name_or_id}/lookup"],
3422
+ path: Literal["/regression_model/{model_name_or_id}/evaluation"],
3268
3423
  *,
3269
- params: PostGpuMemorysetByNameOrIdLookupParams,
3270
- json: LookupRequest,
3424
+ params: PostRegressionModelByModelNameOrIdEvaluationParams,
3425
+ json: RegressionEvaluationRequest,
3271
3426
  data: None = None,
3272
3427
  files: None = None,
3273
3428
  content: None = None,
@@ -3278,16 +3433,16 @@ class OrcaClient(Client):
3278
3433
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3279
3434
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3280
3435
  extensions: RequestExtensions | None = None,
3281
- ) -> list[list[LabeledMemoryLookup | ScoredMemoryLookup]]:
3436
+ ) -> EvaluationResponse:
3282
3437
  pass
3283
3438
 
3284
3439
  @overload
3285
3440
  def POST(
3286
3441
  self,
3287
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3442
+ path: Literal["/telemetry/prediction"],
3288
3443
  *,
3289
- params: PostGpuMemorysetByNameOrIdMemoryParams,
3290
- json: PostGpuMemorysetByNameOrIdMemoryRequest,
3444
+ params: None = None,
3445
+ json: ListPredictionsRequest | None = None,
3291
3446
  data: None = None,
3292
3447
  files: None = None,
3293
3448
  content: None = None,
@@ -3298,16 +3453,17 @@ class OrcaClient(Client):
3298
3453
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3299
3454
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3300
3455
  extensions: RequestExtensions | None = None,
3301
- ) -> list[str]:
3456
+ ) -> list[LabelPredictionWithMemoriesAndFeedback | ScorePredictionWithMemoriesAndFeedback]:
3457
+ """List predictions with optional filtering and sorting."""
3302
3458
  pass
3303
3459
 
3304
3460
  @overload
3305
3461
  def POST(
3306
3462
  self,
3307
- path: Literal["/gpu/classification_model/{name_or_id}/prediction"],
3463
+ path: Literal["/telemetry/prediction/count"],
3308
3464
  *,
3309
- params: PostGpuClassificationModelByNameOrIdPredictionParams,
3310
- json: ClassificationPredictionRequest,
3465
+ params: None = None,
3466
+ json: CountPredictionsRequest | None = None,
3311
3467
  data: None = None,
3312
3468
  files: None = None,
3313
3469
  content: None = None,
@@ -3318,16 +3474,17 @@ class OrcaClient(Client):
3318
3474
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3319
3475
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3320
3476
  extensions: RequestExtensions | None = None,
3321
- ) -> list[BaseLabelPredictionResult]:
3477
+ ) -> int:
3478
+ """Count predictions with optional filtering."""
3322
3479
  pass
3323
3480
 
3324
3481
  @overload
3325
3482
  def POST(
3326
3483
  self,
3327
- path: Literal["/gpu/regression_model/{name_or_id}/prediction"],
3484
+ path: Literal["/telemetry/memories"],
3328
3485
  *,
3329
- params: PostGpuRegressionModelByNameOrIdPredictionParams,
3330
- json: RegressionPredictionRequest,
3486
+ params: None = None,
3487
+ json: TelemetryMemoriesRequest,
3331
3488
  data: None = None,
3332
3489
  files: None = None,
3333
3490
  content: None = None,
@@ -3338,16 +3495,21 @@ class OrcaClient(Client):
3338
3495
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3339
3496
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3340
3497
  extensions: RequestExtensions | None = None,
3341
- ) -> list[BaseScorePredictionResult]:
3498
+ ) -> PaginatedUnionLabeledMemoryWithFeedbackMetricsScoredMemoryWithFeedbackMetrics:
3499
+ """
3500
+ List memories with feedback metrics.
3501
+ **Note**: This endpoint will ONLY return memories that have been used in a prediction.
3502
+ If you want to query ALL memories WITHOUT feedback metrics, use the query_memoryset endpoint.
3503
+ """
3342
3504
  pass
3343
3505
 
3344
3506
  @overload
3345
3507
  def POST(
3346
3508
  self,
3347
- path: Literal["/gpu/finetuned_embedding_model/{name_or_id}/embedding"],
3509
+ path: Literal["/agents/bootstrap_classification_model"],
3348
3510
  *,
3349
- params: PostGpuFinetunedEmbeddingModelByNameOrIdEmbeddingParams,
3350
- json: EmbedRequest,
3511
+ params: None = None,
3512
+ json: BootstrapClassificationModelRequest,
3351
3513
  data: None = None,
3352
3514
  files: None = None,
3353
3515
  content: None = None,
@@ -3358,29 +3520,21 @@ class OrcaClient(Client):
3358
3520
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3359
3521
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3360
3522
  extensions: RequestExtensions | None = None,
3361
- ) -> list[list[float]]:
3362
- """Embed values using a finetuned embedding model."""
3363
- pass
3523
+ ) -> BootstrapClassificationModelResponse:
3524
+ """
3525
+ Bootstrap a classification model by creating a memoryset with generated memories and a classification model.
3364
3526
 
3365
- @overload
3366
- def POST(
3367
- self,
3368
- path: Literal["/gpu/pretrained_embedding_model/{model_name}/embedding"],
3369
- *,
3370
- params: PostGpuPretrainedEmbeddingModelByModelNameEmbeddingParams,
3371
- json: EmbedRequest,
3372
- data: None = None,
3373
- files: None = None,
3374
- content: None = None,
3375
- parse_as: Literal["json"] = "json",
3376
- headers: HeaderTypes | None = None,
3377
- cookies: CookieTypes | None = None,
3378
- auth: AuthTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3379
- follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3380
- timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3381
- extensions: RequestExtensions | None = None,
3382
- ) -> list[list[float]]:
3383
- """Embed values using a pretrained embedding model."""
3527
+ This endpoint uses the bootstrap_classification_model agent to generate:
3528
+ 1. Memoryset configuration with appropriate settings
3529
+ 2. Model configuration with optimal parameters
3530
+ 3. High-quality training memories for each label
3531
+
3532
+ The process involves:
3533
+ 1. Calling the agent to generate configurations and memories
3534
+ 2. Creating a datasource from the generated memories
3535
+ 3. Creating a memoryset from the datasource
3536
+ 4. Creating a classification model from the memoryset
3537
+ """
3384
3538
  pass
3385
3539
 
3386
3540
  def POST(
@@ -3414,7 +3568,8 @@ class OrcaClient(Client):
3414
3568
  follow_redirects=follow_redirects,
3415
3569
  timeout=timeout,
3416
3570
  extensions=extensions,
3417
- ).raise_for_status()
3571
+ )
3572
+ res.raise_for_status()
3418
3573
  return (
3419
3574
  None
3420
3575
  if res.status_code == 204
@@ -3494,7 +3649,8 @@ class OrcaClient(Client):
3494
3649
  follow_redirects=follow_redirects,
3495
3650
  timeout=timeout,
3496
3651
  extensions=extensions,
3497
- ).raise_for_status()
3652
+ )
3653
+ res.raise_for_status()
3498
3654
  return (
3499
3655
  None
3500
3656
  if res.status_code == 204
@@ -3524,10 +3680,10 @@ class OrcaClient(Client):
3524
3680
  @overload
3525
3681
  def PATCH(
3526
3682
  self,
3527
- path: Literal["/classification_model/{name_or_id}"],
3683
+ path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3528
3684
  *,
3529
- params: PatchClassificationModelByNameOrIdParams,
3530
- json: PredictiveModelUpdate,
3685
+ params: PatchGpuMemorysetByNameOrIdMemoryParams,
3686
+ json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3531
3687
  data: None = None,
3532
3688
  files: None = None,
3533
3689
  content: None = None,
@@ -3538,16 +3694,16 @@ class OrcaClient(Client):
3538
3694
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3539
3695
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3540
3696
  extensions: RequestExtensions | None = None,
3541
- ) -> ClassificationModelMetadata:
3697
+ ) -> LabeledMemory | ScoredMemory:
3542
3698
  pass
3543
3699
 
3544
3700
  @overload
3545
3701
  def PATCH(
3546
3702
  self,
3547
- path: Literal["/regression_model/{name_or_id}"],
3703
+ path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3548
3704
  *,
3549
- params: PatchRegressionModelByNameOrIdParams,
3550
- json: PredictiveModelUpdate,
3705
+ params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3706
+ json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3551
3707
  data: None = None,
3552
3708
  files: None = None,
3553
3709
  content: None = None,
@@ -3558,16 +3714,16 @@ class OrcaClient(Client):
3558
3714
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3559
3715
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3560
3716
  extensions: RequestExtensions | None = None,
3561
- ) -> RegressionModelMetadata:
3717
+ ) -> list[LabeledMemory] | list[ScoredMemory]:
3562
3718
  pass
3563
3719
 
3564
3720
  @overload
3565
3721
  def PATCH(
3566
3722
  self,
3567
- path: Literal["/telemetry/prediction/{prediction_id}"],
3723
+ path: Literal["/classification_model/{name_or_id}"],
3568
3724
  *,
3569
- params: PatchTelemetryPredictionByPredictionIdParams,
3570
- json: UpdatePredictionRequest,
3725
+ params: PatchClassificationModelByNameOrIdParams,
3726
+ json: PredictiveModelUpdate,
3571
3727
  data: None = None,
3572
3728
  files: None = None,
3573
3729
  content: None = None,
@@ -3578,17 +3734,16 @@ class OrcaClient(Client):
3578
3734
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3579
3735
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3580
3736
  extensions: RequestExtensions | None = None,
3581
- ) -> Any:
3582
- """Update a prediction with new expected values, tags, or memory ID."""
3737
+ ) -> ClassificationModelMetadata:
3583
3738
  pass
3584
3739
 
3585
3740
  @overload
3586
3741
  def PATCH(
3587
3742
  self,
3588
- path: Literal["/gpu/memoryset/{name_or_id}/memory"],
3743
+ path: Literal["/regression_model/{name_or_id}"],
3589
3744
  *,
3590
- params: PatchGpuMemorysetByNameOrIdMemoryParams,
3591
- json: PatchGpuMemorysetByNameOrIdMemoryRequest,
3745
+ params: PatchRegressionModelByNameOrIdParams,
3746
+ json: PredictiveModelUpdate,
3592
3747
  data: None = None,
3593
3748
  files: None = None,
3594
3749
  content: None = None,
@@ -3599,16 +3754,16 @@ class OrcaClient(Client):
3599
3754
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3600
3755
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3601
3756
  extensions: RequestExtensions | None = None,
3602
- ) -> LabeledMemory | ScoredMemory:
3757
+ ) -> RegressionModelMetadata:
3603
3758
  pass
3604
3759
 
3605
3760
  @overload
3606
3761
  def PATCH(
3607
3762
  self,
3608
- path: Literal["/gpu/memoryset/{name_or_id}/memories"],
3763
+ path: Literal["/telemetry/prediction/{prediction_id}"],
3609
3764
  *,
3610
- params: PatchGpuMemorysetByNameOrIdMemoriesParams,
3611
- json: PatchGpuMemorysetByNameOrIdMemoriesRequest,
3765
+ params: PatchTelemetryPredictionByPredictionIdParams,
3766
+ json: UpdatePredictionRequest,
3612
3767
  data: None = None,
3613
3768
  files: None = None,
3614
3769
  content: None = None,
@@ -3619,7 +3774,8 @@ class OrcaClient(Client):
3619
3774
  follow_redirects: bool | UseClientDefault = USE_CLIENT_DEFAULT,
3620
3775
  timeout: TimeoutTypes | UseClientDefault = USE_CLIENT_DEFAULT,
3621
3776
  extensions: RequestExtensions | None = None,
3622
- ) -> list[LabeledMemory] | list[ScoredMemory]:
3777
+ ) -> Any:
3778
+ """Update a prediction with new expected values, tags, or memory ID."""
3623
3779
  pass
3624
3780
 
3625
3781
  def PATCH(
@@ -3653,95 +3809,126 @@ class OrcaClient(Client):
3653
3809
  follow_redirects=follow_redirects,
3654
3810
  timeout=timeout,
3655
3811
  extensions=extensions,
3656
- ).raise_for_status()
3812
+ )
3813
+ res.raise_for_status()
3657
3814
  return (
3658
3815
  None
3659
3816
  if res.status_code == 204
3660
3817
  else res.json() if parse_as == "json" else res.text if parse_as == "text" else res.content
3661
3818
  )
3662
3819
 
3663
- @property
3664
- def base_url(self) -> URL:
3665
- # lazy init base_url from environment variable
3666
- if str(self._base_url) == "":
3667
- self.base_url = os.environ.get("ORCA_API_URL", "https://api.orcadb.ai/")
3668
- return self._base_url
3820
+ @staticmethod
3821
+ def _raise_error_for_response(response: Response) -> None:
3822
+ if response.status_code == 401:
3823
+ raise ValueError("Invalid API key")
3824
+ # elif response.status_code == 402:
3825
+ # res = cast(QuotaExceededErrorResponse, json.loads(response.read().decode(response.encoding or "utf-8")))
3826
+ # raise RuntimeError(
3827
+ # f"{res['quota_type'].replace('_', ' ').title()} limit reached ({res['current']}/{res['quota_limit']})"
3828
+ # )
3829
+ elif response.status_code == 403:
3830
+ raise PermissionError(json.loads(response.read().decode(response.encoding or "utf-8"))["reason"])
3831
+ elif response.status_code == 404:
3832
+ res = cast(NotFoundErrorResponse, json.loads(response.read().decode(response.encoding or "utf-8")))
3833
+ if res["resource"] is not None:
3834
+ raise LookupError(f"The {res['resource']} you are looking for does not exist")
3835
+ else:
3836
+ raise RuntimeError(f"Unknown API route: {response.url}")
3837
+ elif response.status_code == 405:
3838
+ raise RuntimeError(f"Unknown method {response.request.method} for API route: {response.url}")
3839
+ elif response.status_code == 409:
3840
+ res = cast(
3841
+ ConstraintViolationErrorResponse, json.loads(response.read().decode(response.encoding or "utf-8"))
3842
+ )
3843
+ raise RuntimeError(res["constraint"])
3844
+ elif response.status_code == 422:
3845
+ res = cast(InvalidInputErrorResponse, json.loads(response.read().decode(response.encoding or "utf-8")))
3846
+ issues = [f"{issue['loc'][-1]}: {issue['msg']}" for issue in res["validation_issues"]]
3847
+ raise ValueError("Invalid input:\n\t" + "\n\t".join(issues))
3848
+ elif response.status_code == 500:
3849
+ res = cast(InternalServerErrorResponse, json.loads(response.read().decode(response.encoding or "utf-8")))
3850
+ raise RuntimeError(f"Unexpected server error: {res['message']}")
3851
+ elif response.status_code == 503:
3852
+ raise RuntimeError("Orca API is currently unavailable, please try again later")
3853
+ elif response.status_code >= 400:
3854
+ raise RuntimeError(f"Unexpected status code: {response.status_code}")
3855
+
3856
+ @staticmethod
3857
+ def _instrument_request(request: Request) -> None:
3858
+ request.headers["X-Request-ID"] = str(uuid.uuid4())
3859
+
3860
+ def __init__(
3861
+ self,
3862
+ *,
3863
+ api_key: str | None = None,
3864
+ base_url: URL | str = "",
3865
+ headers: HeaderTypes | None = None,
3866
+ transport: BaseTransport | None = None,
3867
+ timeout: TimeoutTypes | None = None,
3868
+ limits: Limits | None = None,
3869
+ max_redirects: int = 20,
3870
+ event_hooks: None | (Mapping[str, list[Callable[..., Any]]]) = None,
3871
+ http1: bool = True,
3872
+ http2: bool = False,
3873
+ proxy: str | URL | Proxy | None = None,
3874
+ log_level: int = logging.WARNING,
3875
+ ) -> None:
3876
+ """
3877
+ Initialize an OrcaAPI httpx client
3669
3878
 
3670
- @base_url.setter
3671
- def base_url(self, url: URL | str) -> None:
3672
- Client.base_url.__set__(self, url)
3879
+ Params:
3880
+ api_key: API key to use for authentication, will default to ORCA_API_KEY if not set.
3881
+ base_url: URL of the OrcaAPI, will default to ORCA_API_URL or the cloud API URL if not set.
3882
+ """
3883
+ logging.getLogger("httpx").setLevel(log_level)
3884
+ logging.getLogger("httpcore").setLevel(log_level)
3885
+ super().__init__(
3886
+ headers={"Api-Key": api_key or os.environ.get("ORCA_API_KEY", "")} | dict(Headers(headers or {}).items()),
3887
+ http1=http1,
3888
+ http2=http2,
3889
+ proxy=proxy,
3890
+ timeout=timeout or Timeout(connect=3, read=20, write=10, pool=5),
3891
+ follow_redirects=True,
3892
+ limits=limits or Limits(max_connections=100, max_keepalive_connections=20),
3893
+ max_redirects=max_redirects,
3894
+ event_hooks=event_hooks
3895
+ or {"request": [self._instrument_request], "response": [self._raise_error_for_response]},
3896
+ base_url=base_url or os.environ.get("ORCA_API_URL", "https://api.orcadb.ai/"),
3897
+ transport=transport
3898
+ or RetryTransport(
3899
+ transport=HTTPTransport(),
3900
+ retry=Retry(
3901
+ total=5,
3902
+ backoff_factor=0.5,
3903
+ allowed_methods=["GET", "POST", "PUT", "PATCH", "DELETE"],
3904
+ status_forcelist=[429, 500, 502, 503, 504],
3905
+ ),
3906
+ ),
3907
+ )
3673
3908
 
3674
3909
  @property
3675
- def headers(self) -> Headers:
3676
- # lazy init headers from environment variable
3677
- if not self._headers.get("Api-Key"):
3678
- Client.headers.__set__(self, Headers({"Api-Key": os.environ.get("ORCA_API_KEY", "")}))
3679
- return self._headers
3680
-
3681
- @headers.setter
3682
- def headers(self, headers: HeaderTypes) -> None:
3683
- Client.headers.__set__(self, headers)
3684
-
3685
-
3686
- def _read_json_response(response: Response) -> dict[str, Any]:
3687
- content = response.read()
3688
- text = content.decode(response.encoding or "utf-8")
3689
- return json.loads(text)
3690
-
3691
-
3692
- def _raise_error_for_response(response: Response) -> None:
3693
- if response.status_code == 401:
3694
- raise ValueError("Invalid API key")
3695
- # elif response.status_code == 402:
3696
- # res = cast(QuotaExceededErrorResponse, _read_json_response(response))
3697
- # raise RuntimeError(
3698
- # f"{res['quota_type'].replace('_', ' ').title()} limit reached ({res['current']}/{res['quota_limit']})"
3699
- # )
3700
- elif response.status_code == 403:
3701
- raise PermissionError(_read_json_response(response)["reason"])
3702
- elif response.status_code == 404:
3703
- res = cast(NotFoundErrorResponse, _read_json_response(response))
3704
- if res["resource"] is not None:
3705
- raise LookupError(f"The {res['resource']} you are looking for does not exist")
3706
- else:
3707
- raise RuntimeError(f"Unknown API route: {response.url}")
3708
- elif response.status_code == 405:
3709
- raise RuntimeError(f"Unknown method {response.request.method} for API route: {response.url}")
3710
- elif response.status_code == 409:
3711
- res = cast(ConstraintViolationErrorResponse, _read_json_response(response))
3712
- raise RuntimeError(res["constraint"])
3713
- elif response.status_code == 422:
3714
- res = cast(InvalidInputErrorResponse, _read_json_response(response))
3715
- issues = [f"{issue['loc'][-1]}: {issue['msg']}" for issue in res["validation_issues"]]
3716
- raise ValueError("Invalid input:\n\t" + "\n\t".join(issues))
3717
- elif response.status_code == 500:
3718
- res = cast(InternalServerErrorResponse, _read_json_response(response))
3719
- raise RuntimeError(f"Unexpected server error: {res['message']}")
3720
- elif response.status_code == 503:
3721
- raise RuntimeError("Orca API is currently unavailable, please try again later")
3722
- elif response.status_code >= 400:
3723
- raise RuntimeError(f"Unexpected status code: {response.status_code}")
3724
-
3725
-
3726
- def _instrument_request(request: Request) -> None:
3727
- request.headers["X-Request-ID"] = str(uuid.uuid4())
3728
-
3729
-
3730
- logging.getLogger("httpx").setLevel(logging.WARNING)
3731
- logging.getLogger("httpcore").setLevel(logging.ERROR)
3732
-
3733
- orca_api = OrcaClient(
3734
- transport=RetryTransport(
3735
- transport=HTTPTransport(),
3736
- retry=Retry(
3737
- total=5,
3738
- backoff_factor=0.5,
3739
- allowed_methods=["GET", "POST", "PUT", "PATCH", "DELETE"],
3740
- status_forcelist=[429, 500, 502, 503, 504],
3741
- ),
3742
- ),
3743
- event_hooks={"request": [_instrument_request], "response": [_raise_error_for_response]},
3744
- follow_redirects=True,
3745
- timeout=Timeout(connect=3, read=20, write=10, pool=5),
3746
- )
3747
- """Typed client for the Orca API"""
3910
+ def api_key(self) -> str:
3911
+ return self.headers["Api-Key"]
3912
+
3913
+ @api_key.setter
3914
+ def api_key(self, api_key: str) -> None:
3915
+ self.headers.update(Headers({"Api-Key": api_key}))
3916
+
3917
+ client_ctx = ContextVar[Self | None]("orca_client", default=None)
3918
+ default_client: Self | None = None
3919
+
3920
+ @contextmanager
3921
+ def use(self) -> Generator[None, None, None]:
3922
+ """Context manager to inject this client into any OrcaSDK methods"""
3923
+ token = self.client_ctx.set(self)
3924
+ try:
3925
+ yield
3926
+ finally:
3927
+ self.client_ctx.reset(token)
3928
+
3929
+ @classmethod
3930
+ def _resolve_client(cls, client: Self | None = None) -> Self:
3931
+ client = client or cls.client_ctx.get() or cls.default_client
3932
+ if not client:
3933
+ client = cls.default_client = cls()
3934
+ return client