orca-sdk 0.0.96__py3-none-any.whl → 0.0.97__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orca_sdk/__init__.py +1 -5
- orca_sdk/_generated_api_client/api/__init__.py +28 -8
- orca_sdk/_generated_api_client/api/{datasource/create_datasource_datasource_post.py → auth/create_org_plan_auth_org_plan_post.py} +32 -31
- orca_sdk/_generated_api_client/api/auth/get_org_plan_auth_org_plan_get.py +122 -0
- orca_sdk/_generated_api_client/api/auth/update_org_plan_auth_org_plan_put.py +168 -0
- orca_sdk/_generated_api_client/api/classification_model/{create_classification_model_gpu_classification_model_post.py → create_classification_model_classification_model_post.py} +1 -1
- orca_sdk/_generated_api_client/api/datasource/create_datasource_from_content_datasource_post.py +224 -0
- orca_sdk/_generated_api_client/api/datasource/create_datasource_from_files_datasource_upload_post.py +229 -0
- orca_sdk/_generated_api_client/api/regression_model/{create_regression_model_gpu_regression_model_post.py → create_regression_model_regression_model_post.py} +1 -1
- orca_sdk/_generated_api_client/api/task/list_tasks_task_get.py +21 -26
- orca_sdk/_generated_api_client/api/telemetry/generate_memory_suggestions_telemetry_prediction_prediction_id_memory_suggestions_post.py +239 -0
- orca_sdk/_generated_api_client/api/telemetry/get_action_recommendation_telemetry_prediction_prediction_id_action_get.py +192 -0
- orca_sdk/_generated_api_client/models/__init__.py +54 -4
- orca_sdk/_generated_api_client/models/action_recommendation.py +82 -0
- orca_sdk/_generated_api_client/models/action_recommendation_action.py +11 -0
- orca_sdk/_generated_api_client/models/add_memory_recommendations.py +85 -0
- orca_sdk/_generated_api_client/models/add_memory_suggestion.py +79 -0
- orca_sdk/_generated_api_client/models/body_create_datasource_from_files_datasource_upload_post.py +145 -0
- orca_sdk/_generated_api_client/models/class_representatives.py +92 -0
- orca_sdk/_generated_api_client/models/classification_model_metadata.py +14 -0
- orca_sdk/_generated_api_client/models/clone_memoryset_request.py +40 -0
- orca_sdk/_generated_api_client/models/constraint_violation_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/constraint_violation_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/create_classification_model_request.py +40 -0
- orca_sdk/_generated_api_client/models/create_datasource_from_content_request.py +101 -0
- orca_sdk/_generated_api_client/models/create_memoryset_request.py +40 -0
- orca_sdk/_generated_api_client/models/create_org_plan_request.py +73 -0
- orca_sdk/_generated_api_client/models/create_org_plan_request_tier.py +11 -0
- orca_sdk/_generated_api_client/models/create_regression_model_request.py +20 -0
- orca_sdk/_generated_api_client/models/embed_request.py +20 -0
- orca_sdk/_generated_api_client/models/embedding_evaluation_payload.py +28 -10
- orca_sdk/_generated_api_client/models/embedding_evaluation_request.py +28 -10
- orca_sdk/_generated_api_client/models/embedding_model_result.py +9 -0
- orca_sdk/_generated_api_client/models/filter_item.py +31 -23
- orca_sdk/_generated_api_client/models/filter_item_field_type_1_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/filter_item_field_type_2_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/filter_item_field_type_2_item_type_1.py +2 -0
- orca_sdk/_generated_api_client/models/internal_server_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/internal_server_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/labeled_memory.py +5 -5
- orca_sdk/_generated_api_client/models/labeled_memory_update.py +16 -16
- orca_sdk/_generated_api_client/models/labeled_memory_with_feedback_metrics.py +5 -5
- orca_sdk/_generated_api_client/models/lookup_request.py +20 -0
- orca_sdk/_generated_api_client/models/memory_metrics.py +98 -0
- orca_sdk/_generated_api_client/models/memoryset_analysis_configs.py +33 -0
- orca_sdk/_generated_api_client/models/memoryset_class_patterns_analysis_config.py +79 -0
- orca_sdk/_generated_api_client/models/memoryset_class_patterns_metrics.py +138 -0
- orca_sdk/_generated_api_client/models/memoryset_metadata.py +42 -0
- orca_sdk/_generated_api_client/models/memoryset_metrics.py +33 -0
- orca_sdk/_generated_api_client/models/memoryset_update.py +20 -0
- orca_sdk/_generated_api_client/models/not_found_error_response.py +6 -7
- orca_sdk/_generated_api_client/models/not_found_error_response_resource_type_0.py +1 -0
- orca_sdk/_generated_api_client/models/not_found_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/org_plan.py +99 -0
- orca_sdk/_generated_api_client/models/org_plan_tier.py +11 -0
- orca_sdk/_generated_api_client/models/paginated_task.py +108 -0
- orca_sdk/_generated_api_client/models/predictive_model_update.py +20 -0
- orca_sdk/_generated_api_client/models/pretrained_embedding_model_metadata.py +8 -0
- orca_sdk/_generated_api_client/models/regression_model_metadata.py +14 -0
- orca_sdk/_generated_api_client/models/scored_memory_update.py +9 -9
- orca_sdk/_generated_api_client/models/service_unavailable_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/service_unavailable_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_field_type_0_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_field_type_1_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_field_type_1_item_type_1.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_filter_item.py +42 -30
- orca_sdk/_generated_api_client/models/telemetry_sort_options.py +42 -30
- orca_sdk/_generated_api_client/models/unauthenticated_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/unauthenticated_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/unauthorized_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/unauthorized_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/update_org_plan_request.py +73 -0
- orca_sdk/_generated_api_client/models/update_org_plan_request_tier.py +11 -0
- orca_sdk/_shared/metrics.py +1 -1
- orca_sdk/classification_model.py +2 -2
- orca_sdk/classification_model_test.py +53 -0
- orca_sdk/credentials.py +15 -1
- orca_sdk/datasource.py +180 -41
- orca_sdk/datasource_test.py +194 -0
- orca_sdk/embedding_model.py +51 -13
- orca_sdk/embedding_model_test.py +27 -0
- orca_sdk/job.py +15 -14
- orca_sdk/job_test.py +34 -0
- orca_sdk/memoryset.py +47 -7
- orca_sdk/regression_model.py +2 -2
- orca_sdk/telemetry.py +94 -3
- {orca_sdk-0.0.96.dist-info → orca_sdk-0.0.97.dist-info}/METADATA +18 -1
- {orca_sdk-0.0.96.dist-info → orca_sdk-0.0.97.dist-info}/RECORD +89 -58
- orca_sdk/_generated_api_client/models/body_create_datasource_datasource_post.py +0 -207
- orca_sdk/_generated_api_client/models/labeled_memory_metrics.py +0 -246
- {orca_sdk-0.0.96.dist-info → orca_sdk-0.0.97.dist-info}/WHEEL +0 -0
|
@@ -32,12 +32,14 @@ class EmbeddingModelResult:
|
|
|
32
32
|
embedding_model_path (str):
|
|
33
33
|
analysis_result (AnalyzeNeighborLabelsResult):
|
|
34
34
|
memoryset_name (Union[None, Unset, str]):
|
|
35
|
+
is_finetuned (Union[Unset, bool]): Default: False.
|
|
35
36
|
"""
|
|
36
37
|
|
|
37
38
|
embedding_model_name: str
|
|
38
39
|
embedding_model_path: str
|
|
39
40
|
analysis_result: "AnalyzeNeighborLabelsResult"
|
|
40
41
|
memoryset_name: Union[None, Unset, str] = UNSET
|
|
42
|
+
is_finetuned: Union[Unset, bool] = False
|
|
41
43
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
42
44
|
|
|
43
45
|
def to_dict(self) -> dict[str, Any]:
|
|
@@ -53,6 +55,8 @@ class EmbeddingModelResult:
|
|
|
53
55
|
else:
|
|
54
56
|
memoryset_name = self.memoryset_name
|
|
55
57
|
|
|
58
|
+
is_finetuned = self.is_finetuned
|
|
59
|
+
|
|
56
60
|
field_dict: dict[str, Any] = {}
|
|
57
61
|
field_dict.update(self.additional_properties)
|
|
58
62
|
field_dict.update(
|
|
@@ -64,6 +68,8 @@ class EmbeddingModelResult:
|
|
|
64
68
|
)
|
|
65
69
|
if memoryset_name is not UNSET:
|
|
66
70
|
field_dict["memoryset_name"] = memoryset_name
|
|
71
|
+
if is_finetuned is not UNSET:
|
|
72
|
+
field_dict["is_finetuned"] = is_finetuned
|
|
67
73
|
|
|
68
74
|
return field_dict
|
|
69
75
|
|
|
@@ -87,11 +93,14 @@ class EmbeddingModelResult:
|
|
|
87
93
|
|
|
88
94
|
memoryset_name = _parse_memoryset_name(d.pop("memoryset_name", UNSET))
|
|
89
95
|
|
|
96
|
+
is_finetuned = d.pop("is_finetuned", UNSET)
|
|
97
|
+
|
|
90
98
|
embedding_model_result = cls(
|
|
91
99
|
embedding_model_name=embedding_model_name,
|
|
92
100
|
embedding_model_path=embedding_model_path,
|
|
93
101
|
analysis_result=analysis_result,
|
|
94
102
|
memoryset_name=memoryset_name,
|
|
103
|
+
is_finetuned=is_finetuned,
|
|
95
104
|
)
|
|
96
105
|
|
|
97
106
|
embedding_model_result.additional_properties = d
|
|
@@ -12,13 +12,15 @@ The main change is:
|
|
|
12
12
|
|
|
13
13
|
import datetime
|
|
14
14
|
from enum import Enum
|
|
15
|
-
from typing import Any, List,
|
|
15
|
+
from typing import Any, List, Type, TypeVar, Union, cast
|
|
16
16
|
|
|
17
17
|
from attrs import define as _attrs_define
|
|
18
18
|
from attrs import field as _attrs_field
|
|
19
19
|
from dateutil.parser import isoparse
|
|
20
20
|
|
|
21
21
|
from ..models.filter_item_field_type_0_item import FilterItemFieldType0Item
|
|
22
|
+
from ..models.filter_item_field_type_1_item_type_0 import FilterItemFieldType1ItemType0
|
|
23
|
+
from ..models.filter_item_field_type_2_item_type_0 import FilterItemFieldType2ItemType0
|
|
22
24
|
from ..models.filter_item_field_type_2_item_type_1 import FilterItemFieldType2ItemType1
|
|
23
25
|
from ..models.filter_item_op import FilterItemOp
|
|
24
26
|
|
|
@@ -29,23 +31,23 @@ T = TypeVar("T", bound="FilterItem")
|
|
|
29
31
|
class FilterItem:
|
|
30
32
|
"""
|
|
31
33
|
Attributes:
|
|
32
|
-
field (Union[List[FilterItemFieldType0Item], List[Union[
|
|
33
|
-
List[Union[
|
|
34
|
+
field (Union[List[FilterItemFieldType0Item], List[Union[FilterItemFieldType1ItemType0, str]],
|
|
35
|
+
List[Union[FilterItemFieldType2ItemType0, FilterItemFieldType2ItemType1]]]):
|
|
34
36
|
op (FilterItemOp):
|
|
35
37
|
value (Union[List[bool], List[float], List[int], List[str], None, bool, datetime.datetime, float, int, str]):
|
|
36
38
|
"""
|
|
37
39
|
|
|
38
40
|
field: Union[
|
|
39
41
|
List[FilterItemFieldType0Item],
|
|
40
|
-
List[Union[
|
|
41
|
-
List[Union[
|
|
42
|
+
List[Union[FilterItemFieldType1ItemType0, str]],
|
|
43
|
+
List[Union[FilterItemFieldType2ItemType0, FilterItemFieldType2ItemType1]],
|
|
42
44
|
]
|
|
43
45
|
op: FilterItemOp
|
|
44
46
|
value: Union[List[bool], List[float], List[int], List[str], None, bool, datetime.datetime, float, int, str]
|
|
45
47
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
46
48
|
|
|
47
49
|
def to_dict(self) -> dict[str, Any]:
|
|
48
|
-
field:
|
|
50
|
+
field: List[str]
|
|
49
51
|
if isinstance(self.field, list):
|
|
50
52
|
field = []
|
|
51
53
|
for field_type_0_item_data in self.field:
|
|
@@ -85,8 +87,8 @@ class FilterItem:
|
|
|
85
87
|
data: object,
|
|
86
88
|
) -> Union[
|
|
87
89
|
List[FilterItemFieldType0Item],
|
|
88
|
-
List[Union[
|
|
89
|
-
List[Union[
|
|
90
|
+
List[Union[FilterItemFieldType1ItemType0, str]],
|
|
91
|
+
List[Union[FilterItemFieldType2ItemType0, FilterItemFieldType2ItemType1]],
|
|
90
92
|
]:
|
|
91
93
|
try:
|
|
92
94
|
if not isinstance(data, list):
|
|
@@ -108,14 +110,16 @@ class FilterItem:
|
|
|
108
110
|
_field_type_1 = data
|
|
109
111
|
for field_type_1_item_data in _field_type_1:
|
|
110
112
|
|
|
111
|
-
def _parse_field_type_1_item(data: object) -> Union[
|
|
112
|
-
|
|
113
|
-
|
|
114
|
-
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
113
|
+
def _parse_field_type_1_item(data: object) -> Union[FilterItemFieldType1ItemType0, str]:
|
|
114
|
+
try:
|
|
115
|
+
if not isinstance(data, str):
|
|
116
|
+
raise TypeError()
|
|
117
|
+
field_type_1_item_type_0 = FilterItemFieldType1ItemType0(data)
|
|
118
|
+
|
|
119
|
+
return field_type_1_item_type_0
|
|
120
|
+
except: # noqa: E722
|
|
121
|
+
pass
|
|
122
|
+
return cast(Union[FilterItemFieldType1ItemType0, str], data)
|
|
119
123
|
|
|
120
124
|
field_type_1_item = _parse_field_type_1_item(field_type_1_item_data)
|
|
121
125
|
|
|
@@ -130,13 +134,17 @@ class FilterItem:
|
|
|
130
134
|
_field_type_2 = data
|
|
131
135
|
for field_type_2_item_data in _field_type_2:
|
|
132
136
|
|
|
133
|
-
def _parse_field_type_2_item(
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
137
|
+
def _parse_field_type_2_item(
|
|
138
|
+
data: object,
|
|
139
|
+
) -> Union[FilterItemFieldType2ItemType0, FilterItemFieldType2ItemType1]:
|
|
140
|
+
try:
|
|
141
|
+
if not isinstance(data, str):
|
|
142
|
+
raise TypeError()
|
|
143
|
+
field_type_2_item_type_0 = FilterItemFieldType2ItemType0(data)
|
|
144
|
+
|
|
145
|
+
return field_type_2_item_type_0
|
|
146
|
+
except: # noqa: E722
|
|
147
|
+
pass
|
|
140
148
|
if not isinstance(data, str):
|
|
141
149
|
raise TypeError()
|
|
142
150
|
field_type_2_item_type_1 = FilterItemFieldType2ItemType1(data)
|
|
@@ -15,6 +15,8 @@ class FilterItemFieldType2ItemType1(str, Enum):
|
|
|
15
15
|
NEIGHBOR_PREDICTED_LABEL_MATCHES_CURRENT_LABEL = "neighbor_predicted_label_matches_current_label"
|
|
16
16
|
NORMALIZED_NEIGHBOR_LABEL_ENTROPY = "normalized_neighbor_label_entropy"
|
|
17
17
|
POTENTIAL_DUPLICATE_MEMORY_IDS = "potential_duplicate_memory_ids"
|
|
18
|
+
SPREAD = "spread"
|
|
19
|
+
UNIFORMITY = "uniformity"
|
|
18
20
|
|
|
19
21
|
def __str__(self) -> str:
|
|
20
22
|
return str(self.value)
|
|
@@ -10,11 +10,14 @@ The main change is:
|
|
|
10
10
|
|
|
11
11
|
# flake8: noqa: C901
|
|
12
12
|
|
|
13
|
-
from
|
|
13
|
+
from enum import Enum
|
|
14
|
+
from typing import Any, Type, TypeVar
|
|
14
15
|
|
|
15
16
|
from attrs import define as _attrs_define
|
|
16
17
|
from attrs import field as _attrs_field
|
|
17
18
|
|
|
19
|
+
from ..models.internal_server_error_response_status_code import InternalServerErrorResponseStatusCode
|
|
20
|
+
|
|
18
21
|
T = TypeVar("T", bound="InternalServerErrorResponse")
|
|
19
22
|
|
|
20
23
|
|
|
@@ -22,16 +25,16 @@ T = TypeVar("T", bound="InternalServerErrorResponse")
|
|
|
22
25
|
class InternalServerErrorResponse:
|
|
23
26
|
"""
|
|
24
27
|
Attributes:
|
|
25
|
-
status_code (
|
|
28
|
+
status_code (InternalServerErrorResponseStatusCode):
|
|
26
29
|
message (str):
|
|
27
30
|
"""
|
|
28
31
|
|
|
29
|
-
status_code:
|
|
32
|
+
status_code: InternalServerErrorResponseStatusCode
|
|
30
33
|
message: str
|
|
31
34
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
32
35
|
|
|
33
36
|
def to_dict(self) -> dict[str, Any]:
|
|
34
|
-
status_code = self.status_code
|
|
37
|
+
status_code = self.status_code.value if isinstance(self.status_code, Enum) else self.status_code
|
|
35
38
|
|
|
36
39
|
message = self.message
|
|
37
40
|
|
|
@@ -49,9 +52,7 @@ class InternalServerErrorResponse:
|
|
|
49
52
|
@classmethod
|
|
50
53
|
def from_dict(cls: Type[T], src_dict: dict[str, Any]) -> T:
|
|
51
54
|
d = src_dict.copy()
|
|
52
|
-
status_code =
|
|
53
|
-
if status_code != 500:
|
|
54
|
-
raise ValueError(f"status_code must match const 500, got '{status_code}'")
|
|
55
|
+
status_code = InternalServerErrorResponseStatusCode(d.pop("status_code"))
|
|
55
56
|
|
|
56
57
|
message = d.pop("message")
|
|
57
58
|
|
|
@@ -19,7 +19,7 @@ from dateutil.parser import isoparse
|
|
|
19
19
|
|
|
20
20
|
if TYPE_CHECKING:
|
|
21
21
|
from ..models.labeled_memory_metadata import LabeledMemoryMetadata
|
|
22
|
-
from ..models.
|
|
22
|
+
from ..models.memory_metrics import MemoryMetrics
|
|
23
23
|
|
|
24
24
|
|
|
25
25
|
T = TypeVar("T", bound="LabeledMemory")
|
|
@@ -39,7 +39,7 @@ class LabeledMemory:
|
|
|
39
39
|
created_at (datetime.datetime):
|
|
40
40
|
updated_at (datetime.datetime):
|
|
41
41
|
edited_at (datetime.datetime):
|
|
42
|
-
metrics (
|
|
42
|
+
metrics (MemoryMetrics):
|
|
43
43
|
label (int):
|
|
44
44
|
label_name (Union[None, str]):
|
|
45
45
|
"""
|
|
@@ -53,7 +53,7 @@ class LabeledMemory:
|
|
|
53
53
|
created_at: datetime.datetime
|
|
54
54
|
updated_at: datetime.datetime
|
|
55
55
|
edited_at: datetime.datetime
|
|
56
|
-
metrics: "
|
|
56
|
+
metrics: "MemoryMetrics"
|
|
57
57
|
label: int
|
|
58
58
|
label_name: Union[None, str]
|
|
59
59
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
@@ -110,7 +110,7 @@ class LabeledMemory:
|
|
|
110
110
|
@classmethod
|
|
111
111
|
def from_dict(cls: Type[T], src_dict: dict[str, Any]) -> T:
|
|
112
112
|
from ..models.labeled_memory_metadata import LabeledMemoryMetadata
|
|
113
|
-
from ..models.
|
|
113
|
+
from ..models.memory_metrics import MemoryMetrics
|
|
114
114
|
|
|
115
115
|
d = src_dict.copy()
|
|
116
116
|
|
|
@@ -140,7 +140,7 @@ class LabeledMemory:
|
|
|
140
140
|
|
|
141
141
|
edited_at = isoparse(d.pop("edited_at"))
|
|
142
142
|
|
|
143
|
-
metrics =
|
|
143
|
+
metrics = MemoryMetrics.from_dict(d.pop("metrics"))
|
|
144
144
|
|
|
145
145
|
label = d.pop("label")
|
|
146
146
|
|
|
@@ -17,8 +17,8 @@ from attrs import define as _attrs_define
|
|
|
17
17
|
from ..types import UNSET, Unset
|
|
18
18
|
|
|
19
19
|
if TYPE_CHECKING:
|
|
20
|
-
from ..models.labeled_memory_metrics import LabeledMemoryMetrics
|
|
21
20
|
from ..models.labeled_memory_update_metadata_type_0 import LabeledMemoryUpdateMetadataType0
|
|
21
|
+
from ..models.memory_metrics import MemoryMetrics
|
|
22
22
|
|
|
23
23
|
|
|
24
24
|
T = TypeVar("T", bound="LabeledMemoryUpdate")
|
|
@@ -33,20 +33,20 @@ class LabeledMemoryUpdate:
|
|
|
33
33
|
value (Union[Unset, str]):
|
|
34
34
|
metadata (Union['LabeledMemoryUpdateMetadataType0', None, Unset]):
|
|
35
35
|
source_id (Union[None, Unset, str]):
|
|
36
|
+
metrics (Union['MemoryMetrics', None, Unset]):
|
|
36
37
|
label (Union[Unset, int]):
|
|
37
|
-
metrics (Union['LabeledMemoryMetrics', None, Unset]):
|
|
38
38
|
"""
|
|
39
39
|
|
|
40
40
|
memory_id: str
|
|
41
41
|
value: Union[Unset, str] = UNSET
|
|
42
42
|
metadata: Union["LabeledMemoryUpdateMetadataType0", None, Unset] = UNSET
|
|
43
43
|
source_id: Union[None, Unset, str] = UNSET
|
|
44
|
+
metrics: Union["MemoryMetrics", None, Unset] = UNSET
|
|
44
45
|
label: Union[Unset, int] = UNSET
|
|
45
|
-
metrics: Union["LabeledMemoryMetrics", None, Unset] = UNSET
|
|
46
46
|
|
|
47
47
|
def to_dict(self) -> dict[str, Any]:
|
|
48
|
-
from ..models.labeled_memory_metrics import LabeledMemoryMetrics
|
|
49
48
|
from ..models.labeled_memory_update_metadata_type_0 import LabeledMemoryUpdateMetadataType0
|
|
49
|
+
from ..models.memory_metrics import MemoryMetrics
|
|
50
50
|
|
|
51
51
|
memory_id = self.memory_id
|
|
52
52
|
|
|
@@ -70,16 +70,16 @@ class LabeledMemoryUpdate:
|
|
|
70
70
|
else:
|
|
71
71
|
source_id = self.source_id
|
|
72
72
|
|
|
73
|
-
label = self.label
|
|
74
|
-
|
|
75
73
|
metrics: Union[Dict[str, Any], None, Unset]
|
|
76
74
|
if isinstance(self.metrics, Unset):
|
|
77
75
|
metrics = UNSET
|
|
78
|
-
elif isinstance(self.metrics,
|
|
76
|
+
elif isinstance(self.metrics, MemoryMetrics):
|
|
79
77
|
metrics = self.metrics.to_dict()
|
|
80
78
|
else:
|
|
81
79
|
metrics = self.metrics
|
|
82
80
|
|
|
81
|
+
label = self.label
|
|
82
|
+
|
|
83
83
|
field_dict: dict[str, Any] = {}
|
|
84
84
|
field_dict.update(
|
|
85
85
|
{
|
|
@@ -92,17 +92,17 @@ class LabeledMemoryUpdate:
|
|
|
92
92
|
field_dict["metadata"] = metadata
|
|
93
93
|
if source_id is not UNSET:
|
|
94
94
|
field_dict["source_id"] = source_id
|
|
95
|
-
if label is not UNSET:
|
|
96
|
-
field_dict["label"] = label
|
|
97
95
|
if metrics is not UNSET:
|
|
98
96
|
field_dict["metrics"] = metrics
|
|
97
|
+
if label is not UNSET:
|
|
98
|
+
field_dict["label"] = label
|
|
99
99
|
|
|
100
100
|
return field_dict
|
|
101
101
|
|
|
102
102
|
@classmethod
|
|
103
103
|
def from_dict(cls: Type[T], src_dict: dict[str, Any]) -> T:
|
|
104
|
-
from ..models.labeled_memory_metrics import LabeledMemoryMetrics
|
|
105
104
|
from ..models.labeled_memory_update_metadata_type_0 import LabeledMemoryUpdateMetadataType0
|
|
105
|
+
from ..models.memory_metrics import MemoryMetrics
|
|
106
106
|
|
|
107
107
|
d = src_dict.copy()
|
|
108
108
|
memory_id = d.pop("memory_id")
|
|
@@ -140,9 +140,7 @@ class LabeledMemoryUpdate:
|
|
|
140
140
|
|
|
141
141
|
source_id = _parse_source_id(d.pop("source_id", UNSET))
|
|
142
142
|
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
def _parse_metrics(data: object) -> Union["LabeledMemoryMetrics", None, Unset]:
|
|
143
|
+
def _parse_metrics(data: object) -> Union["MemoryMetrics", None, Unset]:
|
|
146
144
|
if data is None:
|
|
147
145
|
return data
|
|
148
146
|
if isinstance(data, Unset):
|
|
@@ -150,22 +148,24 @@ class LabeledMemoryUpdate:
|
|
|
150
148
|
try:
|
|
151
149
|
if not isinstance(data, dict):
|
|
152
150
|
raise TypeError()
|
|
153
|
-
metrics_type_0 =
|
|
151
|
+
metrics_type_0 = MemoryMetrics.from_dict(data)
|
|
154
152
|
|
|
155
153
|
return metrics_type_0
|
|
156
154
|
except: # noqa: E722
|
|
157
155
|
pass
|
|
158
|
-
return cast(Union["
|
|
156
|
+
return cast(Union["MemoryMetrics", None, Unset], data)
|
|
159
157
|
|
|
160
158
|
metrics = _parse_metrics(d.pop("metrics", UNSET))
|
|
161
159
|
|
|
160
|
+
label = d.pop("label", UNSET)
|
|
161
|
+
|
|
162
162
|
labeled_memory_update = cls(
|
|
163
163
|
memory_id=memory_id,
|
|
164
164
|
value=value,
|
|
165
165
|
metadata=metadata,
|
|
166
166
|
source_id=source_id,
|
|
167
|
-
label=label,
|
|
168
167
|
metrics=metrics,
|
|
168
|
+
label=label,
|
|
169
169
|
)
|
|
170
170
|
|
|
171
171
|
return labeled_memory_update
|
|
@@ -18,11 +18,11 @@ from attrs import field as _attrs_field
|
|
|
18
18
|
from dateutil.parser import isoparse
|
|
19
19
|
|
|
20
20
|
if TYPE_CHECKING:
|
|
21
|
-
from ..models.labeled_memory_metrics import LabeledMemoryMetrics
|
|
22
21
|
from ..models.labeled_memory_with_feedback_metrics_feedback_metrics import (
|
|
23
22
|
LabeledMemoryWithFeedbackMetricsFeedbackMetrics,
|
|
24
23
|
)
|
|
25
24
|
from ..models.labeled_memory_with_feedback_metrics_metadata import LabeledMemoryWithFeedbackMetricsMetadata
|
|
25
|
+
from ..models.memory_metrics import MemoryMetrics
|
|
26
26
|
|
|
27
27
|
|
|
28
28
|
T = TypeVar("T", bound="LabeledMemoryWithFeedbackMetrics")
|
|
@@ -41,7 +41,7 @@ class LabeledMemoryWithFeedbackMetrics:
|
|
|
41
41
|
created_at (datetime.datetime):
|
|
42
42
|
updated_at (datetime.datetime):
|
|
43
43
|
edited_at (datetime.datetime):
|
|
44
|
-
metrics (
|
|
44
|
+
metrics (MemoryMetrics):
|
|
45
45
|
label (int):
|
|
46
46
|
label_name (Union[None, str]):
|
|
47
47
|
feedback_metrics (LabeledMemoryWithFeedbackMetricsFeedbackMetrics):
|
|
@@ -57,7 +57,7 @@ class LabeledMemoryWithFeedbackMetrics:
|
|
|
57
57
|
created_at: datetime.datetime
|
|
58
58
|
updated_at: datetime.datetime
|
|
59
59
|
edited_at: datetime.datetime
|
|
60
|
-
metrics: "
|
|
60
|
+
metrics: "MemoryMetrics"
|
|
61
61
|
label: int
|
|
62
62
|
label_name: Union[None, str]
|
|
63
63
|
feedback_metrics: "LabeledMemoryWithFeedbackMetricsFeedbackMetrics"
|
|
@@ -121,11 +121,11 @@ class LabeledMemoryWithFeedbackMetrics:
|
|
|
121
121
|
|
|
122
122
|
@classmethod
|
|
123
123
|
def from_dict(cls: Type[T], src_dict: dict[str, Any]) -> T:
|
|
124
|
-
from ..models.labeled_memory_metrics import LabeledMemoryMetrics
|
|
125
124
|
from ..models.labeled_memory_with_feedback_metrics_feedback_metrics import (
|
|
126
125
|
LabeledMemoryWithFeedbackMetricsFeedbackMetrics,
|
|
127
126
|
)
|
|
128
127
|
from ..models.labeled_memory_with_feedback_metrics_metadata import LabeledMemoryWithFeedbackMetricsMetadata
|
|
128
|
+
from ..models.memory_metrics import MemoryMetrics
|
|
129
129
|
|
|
130
130
|
d = src_dict.copy()
|
|
131
131
|
|
|
@@ -155,7 +155,7 @@ class LabeledMemoryWithFeedbackMetrics:
|
|
|
155
155
|
|
|
156
156
|
edited_at = isoparse(d.pop("edited_at"))
|
|
157
157
|
|
|
158
|
-
metrics =
|
|
158
|
+
metrics = MemoryMetrics.from_dict(d.pop("metrics"))
|
|
159
159
|
|
|
160
160
|
label = d.pop("label")
|
|
161
161
|
|
|
@@ -26,10 +26,12 @@ class LookupRequest:
|
|
|
26
26
|
Attributes:
|
|
27
27
|
query (List[str]):
|
|
28
28
|
count (Union[Unset, int]): Default: 1.
|
|
29
|
+
prompt (Union[None, Unset, str]):
|
|
29
30
|
"""
|
|
30
31
|
|
|
31
32
|
query: List[str]
|
|
32
33
|
count: Union[Unset, int] = 1
|
|
34
|
+
prompt: Union[None, Unset, str] = UNSET
|
|
33
35
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
34
36
|
|
|
35
37
|
def to_dict(self) -> dict[str, Any]:
|
|
@@ -37,6 +39,12 @@ class LookupRequest:
|
|
|
37
39
|
|
|
38
40
|
count = self.count
|
|
39
41
|
|
|
42
|
+
prompt: Union[None, Unset, str]
|
|
43
|
+
if isinstance(self.prompt, Unset):
|
|
44
|
+
prompt = UNSET
|
|
45
|
+
else:
|
|
46
|
+
prompt = self.prompt
|
|
47
|
+
|
|
40
48
|
field_dict: dict[str, Any] = {}
|
|
41
49
|
field_dict.update(self.additional_properties)
|
|
42
50
|
field_dict.update(
|
|
@@ -46,6 +54,8 @@ class LookupRequest:
|
|
|
46
54
|
)
|
|
47
55
|
if count is not UNSET:
|
|
48
56
|
field_dict["count"] = count
|
|
57
|
+
if prompt is not UNSET:
|
|
58
|
+
field_dict["prompt"] = prompt
|
|
49
59
|
|
|
50
60
|
return field_dict
|
|
51
61
|
|
|
@@ -56,9 +66,19 @@ class LookupRequest:
|
|
|
56
66
|
|
|
57
67
|
count = d.pop("count", UNSET)
|
|
58
68
|
|
|
69
|
+
def _parse_prompt(data: object) -> Union[None, Unset, str]:
|
|
70
|
+
if data is None:
|
|
71
|
+
return data
|
|
72
|
+
if isinstance(data, Unset):
|
|
73
|
+
return data
|
|
74
|
+
return cast(Union[None, Unset, str], data)
|
|
75
|
+
|
|
76
|
+
prompt = _parse_prompt(d.pop("prompt", UNSET))
|
|
77
|
+
|
|
59
78
|
lookup_request = cls(
|
|
60
79
|
query=query,
|
|
61
80
|
count=count,
|
|
81
|
+
prompt=prompt,
|
|
62
82
|
)
|
|
63
83
|
|
|
64
84
|
lookup_request.additional_properties = d
|
|
@@ -31,6 +31,15 @@ class MemoryMetrics:
|
|
|
31
31
|
cluster (Union[Unset, int]):
|
|
32
32
|
embedding_2d (Union[Unset, List[float]]):
|
|
33
33
|
anomaly_score (Union[Unset, float]):
|
|
34
|
+
neighbor_label_logits (Union[Unset, List[float]]):
|
|
35
|
+
neighbor_predicted_label (Union[Unset, int]):
|
|
36
|
+
neighbor_predicted_label_ambiguity (Union[Unset, float]):
|
|
37
|
+
neighbor_predicted_label_confidence (Union[Unset, float]):
|
|
38
|
+
current_label_neighbor_confidence (Union[Unset, float]):
|
|
39
|
+
normalized_neighbor_label_entropy (Union[Unset, float]):
|
|
40
|
+
neighbor_predicted_label_matches_current_label (Union[None, Unset, bool]):
|
|
41
|
+
spread (Union[Unset, float]):
|
|
42
|
+
uniformity (Union[Unset, float]):
|
|
34
43
|
"""
|
|
35
44
|
|
|
36
45
|
is_duplicate: Union[Unset, bool] = UNSET
|
|
@@ -40,6 +49,15 @@ class MemoryMetrics:
|
|
|
40
49
|
cluster: Union[Unset, int] = UNSET
|
|
41
50
|
embedding_2d: Union[Unset, List[float]] = UNSET
|
|
42
51
|
anomaly_score: Union[Unset, float] = UNSET
|
|
52
|
+
neighbor_label_logits: Union[Unset, List[float]] = UNSET
|
|
53
|
+
neighbor_predicted_label: Union[Unset, int] = UNSET
|
|
54
|
+
neighbor_predicted_label_ambiguity: Union[Unset, float] = UNSET
|
|
55
|
+
neighbor_predicted_label_confidence: Union[Unset, float] = UNSET
|
|
56
|
+
current_label_neighbor_confidence: Union[Unset, float] = UNSET
|
|
57
|
+
normalized_neighbor_label_entropy: Union[Unset, float] = UNSET
|
|
58
|
+
neighbor_predicted_label_matches_current_label: Union[None, Unset, bool] = UNSET
|
|
59
|
+
spread: Union[Unset, float] = UNSET
|
|
60
|
+
uniformity: Union[Unset, float] = UNSET
|
|
43
61
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
44
62
|
|
|
45
63
|
def to_dict(self) -> dict[str, Any]:
|
|
@@ -72,6 +90,30 @@ class MemoryMetrics:
|
|
|
72
90
|
|
|
73
91
|
anomaly_score = self.anomaly_score
|
|
74
92
|
|
|
93
|
+
neighbor_label_logits: Union[Unset, List[float]] = UNSET
|
|
94
|
+
if not isinstance(self.neighbor_label_logits, Unset):
|
|
95
|
+
neighbor_label_logits = self.neighbor_label_logits
|
|
96
|
+
|
|
97
|
+
neighbor_predicted_label = self.neighbor_predicted_label
|
|
98
|
+
|
|
99
|
+
neighbor_predicted_label_ambiguity = self.neighbor_predicted_label_ambiguity
|
|
100
|
+
|
|
101
|
+
neighbor_predicted_label_confidence = self.neighbor_predicted_label_confidence
|
|
102
|
+
|
|
103
|
+
current_label_neighbor_confidence = self.current_label_neighbor_confidence
|
|
104
|
+
|
|
105
|
+
normalized_neighbor_label_entropy = self.normalized_neighbor_label_entropy
|
|
106
|
+
|
|
107
|
+
neighbor_predicted_label_matches_current_label: Union[None, Unset, bool]
|
|
108
|
+
if isinstance(self.neighbor_predicted_label_matches_current_label, Unset):
|
|
109
|
+
neighbor_predicted_label_matches_current_label = UNSET
|
|
110
|
+
else:
|
|
111
|
+
neighbor_predicted_label_matches_current_label = self.neighbor_predicted_label_matches_current_label
|
|
112
|
+
|
|
113
|
+
spread = self.spread
|
|
114
|
+
|
|
115
|
+
uniformity = self.uniformity
|
|
116
|
+
|
|
75
117
|
field_dict: dict[str, Any] = {}
|
|
76
118
|
field_dict.update(self.additional_properties)
|
|
77
119
|
field_dict.update({})
|
|
@@ -89,6 +131,26 @@ class MemoryMetrics:
|
|
|
89
131
|
field_dict["embedding_2d"] = embedding_2d
|
|
90
132
|
if anomaly_score is not UNSET:
|
|
91
133
|
field_dict["anomaly_score"] = anomaly_score
|
|
134
|
+
if neighbor_label_logits is not UNSET:
|
|
135
|
+
field_dict["neighbor_label_logits"] = neighbor_label_logits
|
|
136
|
+
if neighbor_predicted_label is not UNSET:
|
|
137
|
+
field_dict["neighbor_predicted_label"] = neighbor_predicted_label
|
|
138
|
+
if neighbor_predicted_label_ambiguity is not UNSET:
|
|
139
|
+
field_dict["neighbor_predicted_label_ambiguity"] = neighbor_predicted_label_ambiguity
|
|
140
|
+
if neighbor_predicted_label_confidence is not UNSET:
|
|
141
|
+
field_dict["neighbor_predicted_label_confidence"] = neighbor_predicted_label_confidence
|
|
142
|
+
if current_label_neighbor_confidence is not UNSET:
|
|
143
|
+
field_dict["current_label_neighbor_confidence"] = current_label_neighbor_confidence
|
|
144
|
+
if normalized_neighbor_label_entropy is not UNSET:
|
|
145
|
+
field_dict["normalized_neighbor_label_entropy"] = normalized_neighbor_label_entropy
|
|
146
|
+
if neighbor_predicted_label_matches_current_label is not UNSET:
|
|
147
|
+
field_dict["neighbor_predicted_label_matches_current_label"] = (
|
|
148
|
+
neighbor_predicted_label_matches_current_label
|
|
149
|
+
)
|
|
150
|
+
if spread is not UNSET:
|
|
151
|
+
field_dict["spread"] = spread
|
|
152
|
+
if uniformity is not UNSET:
|
|
153
|
+
field_dict["uniformity"] = uniformity
|
|
92
154
|
|
|
93
155
|
return field_dict
|
|
94
156
|
|
|
@@ -135,6 +197,33 @@ class MemoryMetrics:
|
|
|
135
197
|
|
|
136
198
|
anomaly_score = d.pop("anomaly_score", UNSET)
|
|
137
199
|
|
|
200
|
+
neighbor_label_logits = cast(List[float], d.pop("neighbor_label_logits", UNSET))
|
|
201
|
+
|
|
202
|
+
neighbor_predicted_label = d.pop("neighbor_predicted_label", UNSET)
|
|
203
|
+
|
|
204
|
+
neighbor_predicted_label_ambiguity = d.pop("neighbor_predicted_label_ambiguity", UNSET)
|
|
205
|
+
|
|
206
|
+
neighbor_predicted_label_confidence = d.pop("neighbor_predicted_label_confidence", UNSET)
|
|
207
|
+
|
|
208
|
+
current_label_neighbor_confidence = d.pop("current_label_neighbor_confidence", UNSET)
|
|
209
|
+
|
|
210
|
+
normalized_neighbor_label_entropy = d.pop("normalized_neighbor_label_entropy", UNSET)
|
|
211
|
+
|
|
212
|
+
def _parse_neighbor_predicted_label_matches_current_label(data: object) -> Union[None, Unset, bool]:
|
|
213
|
+
if data is None:
|
|
214
|
+
return data
|
|
215
|
+
if isinstance(data, Unset):
|
|
216
|
+
return data
|
|
217
|
+
return cast(Union[None, Unset, bool], data)
|
|
218
|
+
|
|
219
|
+
neighbor_predicted_label_matches_current_label = _parse_neighbor_predicted_label_matches_current_label(
|
|
220
|
+
d.pop("neighbor_predicted_label_matches_current_label", UNSET)
|
|
221
|
+
)
|
|
222
|
+
|
|
223
|
+
spread = d.pop("spread", UNSET)
|
|
224
|
+
|
|
225
|
+
uniformity = d.pop("uniformity", UNSET)
|
|
226
|
+
|
|
138
227
|
memory_metrics = cls(
|
|
139
228
|
is_duplicate=is_duplicate,
|
|
140
229
|
duplicate_memory_ids=duplicate_memory_ids,
|
|
@@ -143,6 +232,15 @@ class MemoryMetrics:
|
|
|
143
232
|
cluster=cluster,
|
|
144
233
|
embedding_2d=embedding_2d,
|
|
145
234
|
anomaly_score=anomaly_score,
|
|
235
|
+
neighbor_label_logits=neighbor_label_logits,
|
|
236
|
+
neighbor_predicted_label=neighbor_predicted_label,
|
|
237
|
+
neighbor_predicted_label_ambiguity=neighbor_predicted_label_ambiguity,
|
|
238
|
+
neighbor_predicted_label_confidence=neighbor_predicted_label_confidence,
|
|
239
|
+
current_label_neighbor_confidence=current_label_neighbor_confidence,
|
|
240
|
+
normalized_neighbor_label_entropy=normalized_neighbor_label_entropy,
|
|
241
|
+
neighbor_predicted_label_matches_current_label=neighbor_predicted_label_matches_current_label,
|
|
242
|
+
spread=spread,
|
|
243
|
+
uniformity=uniformity,
|
|
146
244
|
)
|
|
147
245
|
|
|
148
246
|
memory_metrics.additional_properties = d
|