orca-sdk 0.0.95__py3-none-any.whl → 0.0.97__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- orca_sdk/__init__.py +1 -5
- orca_sdk/_generated_api_client/api/__init__.py +22 -2
- orca_sdk/_generated_api_client/api/{datasource/create_datasource_datasource_post.py → auth/create_org_plan_auth_org_plan_post.py} +32 -31
- orca_sdk/_generated_api_client/api/auth/get_org_plan_auth_org_plan_get.py +122 -0
- orca_sdk/_generated_api_client/api/auth/update_org_plan_auth_org_plan_put.py +168 -0
- orca_sdk/_generated_api_client/api/datasource/create_datasource_from_content_datasource_post.py +224 -0
- orca_sdk/_generated_api_client/api/datasource/create_datasource_from_files_datasource_upload_post.py +229 -0
- orca_sdk/_generated_api_client/api/task/list_tasks_task_get.py +21 -26
- orca_sdk/_generated_api_client/api/telemetry/generate_memory_suggestions_telemetry_prediction_prediction_id_memory_suggestions_post.py +239 -0
- orca_sdk/_generated_api_client/api/telemetry/get_action_recommendation_telemetry_prediction_prediction_id_action_get.py +192 -0
- orca_sdk/_generated_api_client/models/__init__.py +54 -4
- orca_sdk/_generated_api_client/models/action_recommendation.py +82 -0
- orca_sdk/_generated_api_client/models/action_recommendation_action.py +11 -0
- orca_sdk/_generated_api_client/models/add_memory_recommendations.py +85 -0
- orca_sdk/_generated_api_client/models/add_memory_suggestion.py +79 -0
- orca_sdk/_generated_api_client/models/body_create_datasource_from_files_datasource_upload_post.py +145 -0
- orca_sdk/_generated_api_client/models/class_representatives.py +92 -0
- orca_sdk/_generated_api_client/models/classification_model_metadata.py +14 -0
- orca_sdk/_generated_api_client/models/clone_memoryset_request.py +40 -0
- orca_sdk/_generated_api_client/models/constraint_violation_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/constraint_violation_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/create_classification_model_request.py +40 -0
- orca_sdk/_generated_api_client/models/create_datasource_from_content_request.py +101 -0
- orca_sdk/_generated_api_client/models/create_memoryset_request.py +40 -0
- orca_sdk/_generated_api_client/models/create_org_plan_request.py +73 -0
- orca_sdk/_generated_api_client/models/create_org_plan_request_tier.py +11 -0
- orca_sdk/_generated_api_client/models/create_regression_model_request.py +20 -0
- orca_sdk/_generated_api_client/models/embed_request.py +20 -0
- orca_sdk/_generated_api_client/models/embedding_evaluation_payload.py +28 -10
- orca_sdk/_generated_api_client/models/embedding_evaluation_request.py +28 -10
- orca_sdk/_generated_api_client/models/embedding_model_result.py +9 -0
- orca_sdk/_generated_api_client/models/filter_item.py +31 -23
- orca_sdk/_generated_api_client/models/filter_item_field_type_1_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/filter_item_field_type_2_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/filter_item_field_type_2_item_type_1.py +2 -0
- orca_sdk/_generated_api_client/models/internal_server_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/internal_server_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/labeled_memory.py +5 -5
- orca_sdk/_generated_api_client/models/labeled_memory_update.py +16 -16
- orca_sdk/_generated_api_client/models/labeled_memory_with_feedback_metrics.py +5 -5
- orca_sdk/_generated_api_client/models/lookup_request.py +20 -0
- orca_sdk/_generated_api_client/models/memory_metrics.py +98 -0
- orca_sdk/_generated_api_client/models/memoryset_analysis_configs.py +33 -0
- orca_sdk/_generated_api_client/models/memoryset_class_patterns_analysis_config.py +79 -0
- orca_sdk/_generated_api_client/models/memoryset_class_patterns_metrics.py +138 -0
- orca_sdk/_generated_api_client/models/memoryset_metadata.py +42 -0
- orca_sdk/_generated_api_client/models/memoryset_metrics.py +33 -0
- orca_sdk/_generated_api_client/models/memoryset_update.py +20 -0
- orca_sdk/_generated_api_client/models/not_found_error_response.py +6 -7
- orca_sdk/_generated_api_client/models/not_found_error_response_resource_type_0.py +1 -0
- orca_sdk/_generated_api_client/models/not_found_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/org_plan.py +99 -0
- orca_sdk/_generated_api_client/models/org_plan_tier.py +11 -0
- orca_sdk/_generated_api_client/models/paginated_task.py +108 -0
- orca_sdk/_generated_api_client/models/predictive_model_update.py +20 -0
- orca_sdk/_generated_api_client/models/pretrained_embedding_model_metadata.py +8 -0
- orca_sdk/_generated_api_client/models/regression_model_metadata.py +14 -0
- orca_sdk/_generated_api_client/models/scored_memory_update.py +9 -9
- orca_sdk/_generated_api_client/models/service_unavailable_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/service_unavailable_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_field_type_0_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_field_type_1_item_type_0.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_field_type_1_item_type_1.py +8 -0
- orca_sdk/_generated_api_client/models/telemetry_filter_item.py +42 -30
- orca_sdk/_generated_api_client/models/telemetry_sort_options.py +42 -30
- orca_sdk/_generated_api_client/models/unauthenticated_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/unauthenticated_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/unauthorized_error_response.py +8 -7
- orca_sdk/_generated_api_client/models/unauthorized_error_response_status_code.py +8 -0
- orca_sdk/_generated_api_client/models/update_org_plan_request.py +73 -0
- orca_sdk/_generated_api_client/models/update_org_plan_request_tier.py +11 -0
- orca_sdk/_shared/metrics.py +1 -1
- orca_sdk/classification_model.py +4 -1
- orca_sdk/classification_model_test.py +53 -0
- orca_sdk/credentials.py +15 -1
- orca_sdk/datasource.py +180 -41
- orca_sdk/datasource_test.py +194 -0
- orca_sdk/embedding_model.py +51 -13
- orca_sdk/embedding_model_test.py +27 -0
- orca_sdk/job.py +15 -14
- orca_sdk/job_test.py +34 -0
- orca_sdk/memoryset.py +47 -7
- orca_sdk/regression_model_test.py +0 -1
- orca_sdk/telemetry.py +94 -3
- {orca_sdk-0.0.95.dist-info → orca_sdk-0.0.97.dist-info}/METADATA +18 -1
- {orca_sdk-0.0.95.dist-info → orca_sdk-0.0.97.dist-info}/RECORD +87 -56
- orca_sdk/_generated_api_client/models/body_create_datasource_datasource_post.py +0 -207
- orca_sdk/_generated_api_client/models/labeled_memory_metrics.py +0 -246
- {orca_sdk-0.0.95.dist-info → orca_sdk-0.0.97.dist-info}/WHEEL +0 -0
|
@@ -28,6 +28,8 @@ class CreateClassificationModelRequest:
|
|
|
28
28
|
name (str):
|
|
29
29
|
memoryset_id (str):
|
|
30
30
|
description (Union[None, Unset, str]):
|
|
31
|
+
notes (Union[None, Unset, str]):
|
|
32
|
+
memoryset_name (Union[None, Unset, str]):
|
|
31
33
|
memory_lookup_count (Union[None, Unset, int]):
|
|
32
34
|
head_type (Union[Unset, RACHeadType]):
|
|
33
35
|
weigh_memories (Union[None, Unset, bool]):
|
|
@@ -38,6 +40,8 @@ class CreateClassificationModelRequest:
|
|
|
38
40
|
name: str
|
|
39
41
|
memoryset_id: str
|
|
40
42
|
description: Union[None, Unset, str] = UNSET
|
|
43
|
+
notes: Union[None, Unset, str] = UNSET
|
|
44
|
+
memoryset_name: Union[None, Unset, str] = UNSET
|
|
41
45
|
memory_lookup_count: Union[None, Unset, int] = UNSET
|
|
42
46
|
head_type: Union[Unset, RACHeadType] = UNSET
|
|
43
47
|
weigh_memories: Union[None, Unset, bool] = UNSET
|
|
@@ -56,6 +60,18 @@ class CreateClassificationModelRequest:
|
|
|
56
60
|
else:
|
|
57
61
|
description = self.description
|
|
58
62
|
|
|
63
|
+
notes: Union[None, Unset, str]
|
|
64
|
+
if isinstance(self.notes, Unset):
|
|
65
|
+
notes = UNSET
|
|
66
|
+
else:
|
|
67
|
+
notes = self.notes
|
|
68
|
+
|
|
69
|
+
memoryset_name: Union[None, Unset, str]
|
|
70
|
+
if isinstance(self.memoryset_name, Unset):
|
|
71
|
+
memoryset_name = UNSET
|
|
72
|
+
else:
|
|
73
|
+
memoryset_name = self.memoryset_name
|
|
74
|
+
|
|
59
75
|
memory_lookup_count: Union[None, Unset, int]
|
|
60
76
|
if isinstance(self.memory_lookup_count, Unset):
|
|
61
77
|
memory_lookup_count = UNSET
|
|
@@ -94,6 +110,10 @@ class CreateClassificationModelRequest:
|
|
|
94
110
|
)
|
|
95
111
|
if description is not UNSET:
|
|
96
112
|
field_dict["description"] = description
|
|
113
|
+
if notes is not UNSET:
|
|
114
|
+
field_dict["notes"] = notes
|
|
115
|
+
if memoryset_name is not UNSET:
|
|
116
|
+
field_dict["memoryset_name"] = memoryset_name
|
|
97
117
|
if memory_lookup_count is not UNSET:
|
|
98
118
|
field_dict["memory_lookup_count"] = memory_lookup_count
|
|
99
119
|
if head_type is not UNSET:
|
|
@@ -123,6 +143,24 @@ class CreateClassificationModelRequest:
|
|
|
123
143
|
|
|
124
144
|
description = _parse_description(d.pop("description", UNSET))
|
|
125
145
|
|
|
146
|
+
def _parse_notes(data: object) -> Union[None, Unset, str]:
|
|
147
|
+
if data is None:
|
|
148
|
+
return data
|
|
149
|
+
if isinstance(data, Unset):
|
|
150
|
+
return data
|
|
151
|
+
return cast(Union[None, Unset, str], data)
|
|
152
|
+
|
|
153
|
+
notes = _parse_notes(d.pop("notes", UNSET))
|
|
154
|
+
|
|
155
|
+
def _parse_memoryset_name(data: object) -> Union[None, Unset, str]:
|
|
156
|
+
if data is None:
|
|
157
|
+
return data
|
|
158
|
+
if isinstance(data, Unset):
|
|
159
|
+
return data
|
|
160
|
+
return cast(Union[None, Unset, str], data)
|
|
161
|
+
|
|
162
|
+
memoryset_name = _parse_memoryset_name(d.pop("memoryset_name", UNSET))
|
|
163
|
+
|
|
126
164
|
def _parse_memory_lookup_count(data: object) -> Union[None, Unset, int]:
|
|
127
165
|
if data is None:
|
|
128
166
|
return data
|
|
@@ -170,6 +208,8 @@ class CreateClassificationModelRequest:
|
|
|
170
208
|
name=name,
|
|
171
209
|
memoryset_id=memoryset_id,
|
|
172
210
|
description=description,
|
|
211
|
+
notes=notes,
|
|
212
|
+
memoryset_name=memoryset_name,
|
|
173
213
|
memory_lookup_count=memory_lookup_count,
|
|
174
214
|
head_type=head_type,
|
|
175
215
|
weigh_memories=weigh_memories,
|
|
@@ -0,0 +1,101 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This file is generated by the openapi-python-client tool via the generate_api_client.py script
|
|
3
|
+
|
|
4
|
+
It is a customized template from the openapi-python-client tool's default template:
|
|
5
|
+
https://github.com/openapi-generators/openapi-python-client/blob/861ef5622f10fc96d240dc9becb0edf94e61446c/openapi_python_client/templates/model.py.jinja
|
|
6
|
+
|
|
7
|
+
The main change is:
|
|
8
|
+
- Fix typing issues
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
# flake8: noqa: C901
|
|
12
|
+
|
|
13
|
+
from typing import Any, Type, TypeVar, Union, cast
|
|
14
|
+
|
|
15
|
+
from attrs import define as _attrs_define
|
|
16
|
+
from attrs import field as _attrs_field
|
|
17
|
+
|
|
18
|
+
from ..types import UNSET, Unset
|
|
19
|
+
|
|
20
|
+
T = TypeVar("T", bound="CreateDatasourceFromContentRequest")
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@_attrs_define
|
|
24
|
+
class CreateDatasourceFromContentRequest:
|
|
25
|
+
"""Request model for creating a datasource from JSON content.
|
|
26
|
+
|
|
27
|
+
Attributes:
|
|
28
|
+
name (str):
|
|
29
|
+
content (Any):
|
|
30
|
+
description (Union[None, Unset, str]):
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
name: str
|
|
34
|
+
content: Any
|
|
35
|
+
description: Union[None, Unset, str] = UNSET
|
|
36
|
+
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
37
|
+
|
|
38
|
+
def to_dict(self) -> dict[str, Any]:
|
|
39
|
+
name = self.name
|
|
40
|
+
|
|
41
|
+
content = self.content
|
|
42
|
+
|
|
43
|
+
description: Union[None, Unset, str]
|
|
44
|
+
if isinstance(self.description, Unset):
|
|
45
|
+
description = UNSET
|
|
46
|
+
else:
|
|
47
|
+
description = self.description
|
|
48
|
+
|
|
49
|
+
field_dict: dict[str, Any] = {}
|
|
50
|
+
field_dict.update(self.additional_properties)
|
|
51
|
+
field_dict.update(
|
|
52
|
+
{
|
|
53
|
+
"name": name,
|
|
54
|
+
"content": content,
|
|
55
|
+
}
|
|
56
|
+
)
|
|
57
|
+
if description is not UNSET:
|
|
58
|
+
field_dict["description"] = description
|
|
59
|
+
|
|
60
|
+
return field_dict
|
|
61
|
+
|
|
62
|
+
@classmethod
|
|
63
|
+
def from_dict(cls: Type[T], src_dict: dict[str, Any]) -> T:
|
|
64
|
+
d = src_dict.copy()
|
|
65
|
+
name = d.pop("name")
|
|
66
|
+
|
|
67
|
+
content = d.pop("content")
|
|
68
|
+
|
|
69
|
+
def _parse_description(data: object) -> Union[None, Unset, str]:
|
|
70
|
+
if data is None:
|
|
71
|
+
return data
|
|
72
|
+
if isinstance(data, Unset):
|
|
73
|
+
return data
|
|
74
|
+
return cast(Union[None, Unset, str], data)
|
|
75
|
+
|
|
76
|
+
description = _parse_description(d.pop("description", UNSET))
|
|
77
|
+
|
|
78
|
+
create_datasource_from_content_request = cls(
|
|
79
|
+
name=name,
|
|
80
|
+
content=content,
|
|
81
|
+
description=description,
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
create_datasource_from_content_request.additional_properties = d
|
|
85
|
+
return create_datasource_from_content_request
|
|
86
|
+
|
|
87
|
+
@property
|
|
88
|
+
def additional_keys(self) -> list[str]:
|
|
89
|
+
return list(self.additional_properties.keys())
|
|
90
|
+
|
|
91
|
+
def __getitem__(self, key: str) -> Any:
|
|
92
|
+
return self.additional_properties[key]
|
|
93
|
+
|
|
94
|
+
def __setitem__(self, key: str, value: Any) -> None:
|
|
95
|
+
self.additional_properties[key] = value
|
|
96
|
+
|
|
97
|
+
def __delitem__(self, key: str) -> None:
|
|
98
|
+
del self.additional_properties[key]
|
|
99
|
+
|
|
100
|
+
def __contains__(self, key: str) -> bool:
|
|
101
|
+
return key in self.additional_properties
|
|
@@ -35,6 +35,7 @@ class CreateMemorysetRequest:
|
|
|
35
35
|
datasource_id (str):
|
|
36
36
|
datasource_value_column (str):
|
|
37
37
|
description (Union[None, Unset, str]):
|
|
38
|
+
notes (Union[None, Unset, str]):
|
|
38
39
|
datasource_label_column (Union[None, Unset, str]):
|
|
39
40
|
datasource_score_column (Union[None, Unset, str]):
|
|
40
41
|
datasource_source_id_column (Union[None, Unset, str]):
|
|
@@ -45,12 +46,14 @@ class CreateMemorysetRequest:
|
|
|
45
46
|
label_names (Union[List[str], None, Unset]):
|
|
46
47
|
index_type (Union[Unset, CreateMemorysetRequestIndexType]): Default: CreateMemorysetRequestIndexType.FLAT.
|
|
47
48
|
index_params (Union[Unset, CreateMemorysetRequestIndexParams]):
|
|
49
|
+
prompt (Union[None, Unset, str]):
|
|
48
50
|
"""
|
|
49
51
|
|
|
50
52
|
name: str
|
|
51
53
|
datasource_id: str
|
|
52
54
|
datasource_value_column: str
|
|
53
55
|
description: Union[None, Unset, str] = UNSET
|
|
56
|
+
notes: Union[None, Unset, str] = UNSET
|
|
54
57
|
datasource_label_column: Union[None, Unset, str] = UNSET
|
|
55
58
|
datasource_score_column: Union[None, Unset, str] = UNSET
|
|
56
59
|
datasource_source_id_column: Union[None, Unset, str] = UNSET
|
|
@@ -61,6 +64,7 @@ class CreateMemorysetRequest:
|
|
|
61
64
|
label_names: Union[List[str], None, Unset] = UNSET
|
|
62
65
|
index_type: Union[Unset, CreateMemorysetRequestIndexType] = CreateMemorysetRequestIndexType.FLAT
|
|
63
66
|
index_params: Union[Unset, "CreateMemorysetRequestIndexParams"] = UNSET
|
|
67
|
+
prompt: Union[None, Unset, str] = UNSET
|
|
64
68
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
65
69
|
|
|
66
70
|
def to_dict(self) -> dict[str, Any]:
|
|
@@ -76,6 +80,12 @@ class CreateMemorysetRequest:
|
|
|
76
80
|
else:
|
|
77
81
|
description = self.description
|
|
78
82
|
|
|
83
|
+
notes: Union[None, Unset, str]
|
|
84
|
+
if isinstance(self.notes, Unset):
|
|
85
|
+
notes = UNSET
|
|
86
|
+
else:
|
|
87
|
+
notes = self.notes
|
|
88
|
+
|
|
79
89
|
datasource_label_column: Union[None, Unset, str]
|
|
80
90
|
if isinstance(self.datasource_label_column, Unset):
|
|
81
91
|
datasource_label_column = UNSET
|
|
@@ -137,6 +147,12 @@ class CreateMemorysetRequest:
|
|
|
137
147
|
if not isinstance(self.index_params, Unset):
|
|
138
148
|
index_params = self.index_params.to_dict()
|
|
139
149
|
|
|
150
|
+
prompt: Union[None, Unset, str]
|
|
151
|
+
if isinstance(self.prompt, Unset):
|
|
152
|
+
prompt = UNSET
|
|
153
|
+
else:
|
|
154
|
+
prompt = self.prompt
|
|
155
|
+
|
|
140
156
|
field_dict: dict[str, Any] = {}
|
|
141
157
|
field_dict.update(self.additional_properties)
|
|
142
158
|
field_dict.update(
|
|
@@ -148,6 +164,8 @@ class CreateMemorysetRequest:
|
|
|
148
164
|
)
|
|
149
165
|
if description is not UNSET:
|
|
150
166
|
field_dict["description"] = description
|
|
167
|
+
if notes is not UNSET:
|
|
168
|
+
field_dict["notes"] = notes
|
|
151
169
|
if datasource_label_column is not UNSET:
|
|
152
170
|
field_dict["datasource_label_column"] = datasource_label_column
|
|
153
171
|
if datasource_score_column is not UNSET:
|
|
@@ -168,6 +186,8 @@ class CreateMemorysetRequest:
|
|
|
168
186
|
field_dict["index_type"] = index_type
|
|
169
187
|
if index_params is not UNSET:
|
|
170
188
|
field_dict["index_params"] = index_params
|
|
189
|
+
if prompt is not UNSET:
|
|
190
|
+
field_dict["prompt"] = prompt
|
|
171
191
|
|
|
172
192
|
return field_dict
|
|
173
193
|
|
|
@@ -191,6 +211,15 @@ class CreateMemorysetRequest:
|
|
|
191
211
|
|
|
192
212
|
description = _parse_description(d.pop("description", UNSET))
|
|
193
213
|
|
|
214
|
+
def _parse_notes(data: object) -> Union[None, Unset, str]:
|
|
215
|
+
if data is None:
|
|
216
|
+
return data
|
|
217
|
+
if isinstance(data, Unset):
|
|
218
|
+
return data
|
|
219
|
+
return cast(Union[None, Unset, str], data)
|
|
220
|
+
|
|
221
|
+
notes = _parse_notes(d.pop("notes", UNSET))
|
|
222
|
+
|
|
194
223
|
def _parse_datasource_label_column(data: object) -> Union[None, Unset, str]:
|
|
195
224
|
if data is None:
|
|
196
225
|
return data
|
|
@@ -288,11 +317,21 @@ class CreateMemorysetRequest:
|
|
|
288
317
|
else:
|
|
289
318
|
index_params = CreateMemorysetRequestIndexParams.from_dict(_index_params)
|
|
290
319
|
|
|
320
|
+
def _parse_prompt(data: object) -> Union[None, Unset, str]:
|
|
321
|
+
if data is None:
|
|
322
|
+
return data
|
|
323
|
+
if isinstance(data, Unset):
|
|
324
|
+
return data
|
|
325
|
+
return cast(Union[None, Unset, str], data)
|
|
326
|
+
|
|
327
|
+
prompt = _parse_prompt(d.pop("prompt", UNSET))
|
|
328
|
+
|
|
291
329
|
create_memoryset_request = cls(
|
|
292
330
|
name=name,
|
|
293
331
|
datasource_id=datasource_id,
|
|
294
332
|
datasource_value_column=datasource_value_column,
|
|
295
333
|
description=description,
|
|
334
|
+
notes=notes,
|
|
296
335
|
datasource_label_column=datasource_label_column,
|
|
297
336
|
datasource_score_column=datasource_score_column,
|
|
298
337
|
datasource_source_id_column=datasource_source_id_column,
|
|
@@ -303,6 +342,7 @@ class CreateMemorysetRequest:
|
|
|
303
342
|
label_names=label_names,
|
|
304
343
|
index_type=index_type,
|
|
305
344
|
index_params=index_params,
|
|
345
|
+
prompt=prompt,
|
|
306
346
|
)
|
|
307
347
|
|
|
308
348
|
create_memoryset_request.additional_properties = d
|
|
@@ -0,0 +1,73 @@
|
|
|
1
|
+
"""
|
|
2
|
+
This file is generated by the openapi-python-client tool via the generate_api_client.py script
|
|
3
|
+
|
|
4
|
+
It is a customized template from the openapi-python-client tool's default template:
|
|
5
|
+
https://github.com/openapi-generators/openapi-python-client/blob/861ef5622f10fc96d240dc9becb0edf94e61446c/openapi_python_client/templates/model.py.jinja
|
|
6
|
+
|
|
7
|
+
The main change is:
|
|
8
|
+
- Fix typing issues
|
|
9
|
+
"""
|
|
10
|
+
|
|
11
|
+
# flake8: noqa: C901
|
|
12
|
+
|
|
13
|
+
from enum import Enum
|
|
14
|
+
from typing import Any, Type, TypeVar
|
|
15
|
+
|
|
16
|
+
from attrs import define as _attrs_define
|
|
17
|
+
from attrs import field as _attrs_field
|
|
18
|
+
|
|
19
|
+
from ..models.create_org_plan_request_tier import CreateOrgPlanRequestTier
|
|
20
|
+
|
|
21
|
+
T = TypeVar("T", bound="CreateOrgPlanRequest")
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
@_attrs_define
|
|
25
|
+
class CreateOrgPlanRequest:
|
|
26
|
+
"""
|
|
27
|
+
Attributes:
|
|
28
|
+
tier (CreateOrgPlanRequestTier):
|
|
29
|
+
"""
|
|
30
|
+
|
|
31
|
+
tier: CreateOrgPlanRequestTier
|
|
32
|
+
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
33
|
+
|
|
34
|
+
def to_dict(self) -> dict[str, Any]:
|
|
35
|
+
tier = self.tier.value if isinstance(self.tier, Enum) else self.tier
|
|
36
|
+
|
|
37
|
+
field_dict: dict[str, Any] = {}
|
|
38
|
+
field_dict.update(self.additional_properties)
|
|
39
|
+
field_dict.update(
|
|
40
|
+
{
|
|
41
|
+
"tier": tier,
|
|
42
|
+
}
|
|
43
|
+
)
|
|
44
|
+
|
|
45
|
+
return field_dict
|
|
46
|
+
|
|
47
|
+
@classmethod
|
|
48
|
+
def from_dict(cls: Type[T], src_dict: dict[str, Any]) -> T:
|
|
49
|
+
d = src_dict.copy()
|
|
50
|
+
tier = CreateOrgPlanRequestTier(d.pop("tier"))
|
|
51
|
+
|
|
52
|
+
create_org_plan_request = cls(
|
|
53
|
+
tier=tier,
|
|
54
|
+
)
|
|
55
|
+
|
|
56
|
+
create_org_plan_request.additional_properties = d
|
|
57
|
+
return create_org_plan_request
|
|
58
|
+
|
|
59
|
+
@property
|
|
60
|
+
def additional_keys(self) -> list[str]:
|
|
61
|
+
return list(self.additional_properties.keys())
|
|
62
|
+
|
|
63
|
+
def __getitem__(self, key: str) -> Any:
|
|
64
|
+
return self.additional_properties[key]
|
|
65
|
+
|
|
66
|
+
def __setitem__(self, key: str, value: Any) -> None:
|
|
67
|
+
self.additional_properties[key] = value
|
|
68
|
+
|
|
69
|
+
def __delitem__(self, key: str) -> None:
|
|
70
|
+
del self.additional_properties[key]
|
|
71
|
+
|
|
72
|
+
def __contains__(self, key: str) -> bool:
|
|
73
|
+
return key in self.additional_properties
|
|
@@ -28,6 +28,7 @@ class CreateRegressionModelRequest:
|
|
|
28
28
|
name (str):
|
|
29
29
|
memoryset_id (str):
|
|
30
30
|
description (Union[None, Unset, str]):
|
|
31
|
+
notes (Union[None, Unset, str]):
|
|
31
32
|
memory_lookup_count (Union[None, Unset, int]):
|
|
32
33
|
head_type (Union[Unset, RARHeadType]):
|
|
33
34
|
"""
|
|
@@ -35,6 +36,7 @@ class CreateRegressionModelRequest:
|
|
|
35
36
|
name: str
|
|
36
37
|
memoryset_id: str
|
|
37
38
|
description: Union[None, Unset, str] = UNSET
|
|
39
|
+
notes: Union[None, Unset, str] = UNSET
|
|
38
40
|
memory_lookup_count: Union[None, Unset, int] = UNSET
|
|
39
41
|
head_type: Union[Unset, RARHeadType] = UNSET
|
|
40
42
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
@@ -50,6 +52,12 @@ class CreateRegressionModelRequest:
|
|
|
50
52
|
else:
|
|
51
53
|
description = self.description
|
|
52
54
|
|
|
55
|
+
notes: Union[None, Unset, str]
|
|
56
|
+
if isinstance(self.notes, Unset):
|
|
57
|
+
notes = UNSET
|
|
58
|
+
else:
|
|
59
|
+
notes = self.notes
|
|
60
|
+
|
|
53
61
|
memory_lookup_count: Union[None, Unset, int]
|
|
54
62
|
if isinstance(self.memory_lookup_count, Unset):
|
|
55
63
|
memory_lookup_count = UNSET
|
|
@@ -70,6 +78,8 @@ class CreateRegressionModelRequest:
|
|
|
70
78
|
)
|
|
71
79
|
if description is not UNSET:
|
|
72
80
|
field_dict["description"] = description
|
|
81
|
+
if notes is not UNSET:
|
|
82
|
+
field_dict["notes"] = notes
|
|
73
83
|
if memory_lookup_count is not UNSET:
|
|
74
84
|
field_dict["memory_lookup_count"] = memory_lookup_count
|
|
75
85
|
if head_type is not UNSET:
|
|
@@ -93,6 +103,15 @@ class CreateRegressionModelRequest:
|
|
|
93
103
|
|
|
94
104
|
description = _parse_description(d.pop("description", UNSET))
|
|
95
105
|
|
|
106
|
+
def _parse_notes(data: object) -> Union[None, Unset, str]:
|
|
107
|
+
if data is None:
|
|
108
|
+
return data
|
|
109
|
+
if isinstance(data, Unset):
|
|
110
|
+
return data
|
|
111
|
+
return cast(Union[None, Unset, str], data)
|
|
112
|
+
|
|
113
|
+
notes = _parse_notes(d.pop("notes", UNSET))
|
|
114
|
+
|
|
96
115
|
def _parse_memory_lookup_count(data: object) -> Union[None, Unset, int]:
|
|
97
116
|
if data is None:
|
|
98
117
|
return data
|
|
@@ -113,6 +132,7 @@ class CreateRegressionModelRequest:
|
|
|
113
132
|
name=name,
|
|
114
133
|
memoryset_id=memoryset_id,
|
|
115
134
|
description=description,
|
|
135
|
+
notes=notes,
|
|
116
136
|
memory_lookup_count=memory_lookup_count,
|
|
117
137
|
head_type=head_type,
|
|
118
138
|
)
|
|
@@ -26,10 +26,12 @@ class EmbedRequest:
|
|
|
26
26
|
Attributes:
|
|
27
27
|
values (List[str]):
|
|
28
28
|
max_seq_length (Union[None, Unset, int]):
|
|
29
|
+
prompt (Union[None, Unset, str]):
|
|
29
30
|
"""
|
|
30
31
|
|
|
31
32
|
values: List[str]
|
|
32
33
|
max_seq_length: Union[None, Unset, int] = UNSET
|
|
34
|
+
prompt: Union[None, Unset, str] = UNSET
|
|
33
35
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
34
36
|
|
|
35
37
|
def to_dict(self) -> dict[str, Any]:
|
|
@@ -43,6 +45,12 @@ class EmbedRequest:
|
|
|
43
45
|
else:
|
|
44
46
|
max_seq_length = self.max_seq_length
|
|
45
47
|
|
|
48
|
+
prompt: Union[None, Unset, str]
|
|
49
|
+
if isinstance(self.prompt, Unset):
|
|
50
|
+
prompt = UNSET
|
|
51
|
+
else:
|
|
52
|
+
prompt = self.prompt
|
|
53
|
+
|
|
46
54
|
field_dict: dict[str, Any] = {}
|
|
47
55
|
field_dict.update(self.additional_properties)
|
|
48
56
|
field_dict.update(
|
|
@@ -52,6 +60,8 @@ class EmbedRequest:
|
|
|
52
60
|
)
|
|
53
61
|
if max_seq_length is not UNSET:
|
|
54
62
|
field_dict["max_seq_length"] = max_seq_length
|
|
63
|
+
if prompt is not UNSET:
|
|
64
|
+
field_dict["prompt"] = prompt
|
|
55
65
|
|
|
56
66
|
return field_dict
|
|
57
67
|
|
|
@@ -110,9 +120,19 @@ class EmbedRequest:
|
|
|
110
120
|
|
|
111
121
|
max_seq_length = _parse_max_seq_length(d.pop("max_seq_length", UNSET))
|
|
112
122
|
|
|
123
|
+
def _parse_prompt(data: object) -> Union[None, Unset, str]:
|
|
124
|
+
if data is None:
|
|
125
|
+
return data
|
|
126
|
+
if isinstance(data, Unset):
|
|
127
|
+
return data
|
|
128
|
+
return cast(Union[None, Unset, str], data)
|
|
129
|
+
|
|
130
|
+
prompt = _parse_prompt(d.pop("prompt", UNSET))
|
|
131
|
+
|
|
113
132
|
embed_request = cls(
|
|
114
133
|
values=values,
|
|
115
134
|
max_seq_length=max_seq_length,
|
|
135
|
+
prompt=prompt,
|
|
116
136
|
)
|
|
117
137
|
|
|
118
138
|
embed_request.additional_properties = d
|
|
@@ -32,7 +32,7 @@ class EmbeddingEvaluationPayload:
|
|
|
32
32
|
datasource_id (str):
|
|
33
33
|
neighbor_count (Union[Unset, int]): Default: 5.
|
|
34
34
|
label_names (Union[List[str], None, Unset]):
|
|
35
|
-
embedding_models (Union[List[PretrainedEmbeddingModelName], None, Unset]):
|
|
35
|
+
embedding_models (Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset]):
|
|
36
36
|
"""
|
|
37
37
|
|
|
38
38
|
value_column: str
|
|
@@ -41,7 +41,7 @@ class EmbeddingEvaluationPayload:
|
|
|
41
41
|
datasource_id: str
|
|
42
42
|
neighbor_count: Union[Unset, int] = 5
|
|
43
43
|
label_names: Union[List[str], None, Unset] = UNSET
|
|
44
|
-
embedding_models: Union[List[PretrainedEmbeddingModelName], None, Unset] = UNSET
|
|
44
|
+
embedding_models: Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset] = UNSET
|
|
45
45
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
46
46
|
|
|
47
47
|
def to_dict(self) -> dict[str, Any]:
|
|
@@ -71,11 +71,15 @@ class EmbeddingEvaluationPayload:
|
|
|
71
71
|
elif isinstance(self.embedding_models, list):
|
|
72
72
|
embedding_models = []
|
|
73
73
|
for embedding_models_type_0_item_data in self.embedding_models:
|
|
74
|
-
embedding_models_type_0_item
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
74
|
+
embedding_models_type_0_item: str
|
|
75
|
+
if isinstance(embedding_models_type_0_item_data, PretrainedEmbeddingModelName):
|
|
76
|
+
embedding_models_type_0_item = (
|
|
77
|
+
embedding_models_type_0_item_data.value
|
|
78
|
+
if isinstance(embedding_models_type_0_item_data, Enum)
|
|
79
|
+
else embedding_models_type_0_item_data
|
|
80
|
+
)
|
|
81
|
+
else:
|
|
82
|
+
embedding_models_type_0_item = embedding_models_type_0_item_data
|
|
79
83
|
embedding_models.append(embedding_models_type_0_item)
|
|
80
84
|
|
|
81
85
|
else:
|
|
@@ -135,7 +139,7 @@ class EmbeddingEvaluationPayload:
|
|
|
135
139
|
|
|
136
140
|
label_names = _parse_label_names(d.pop("label_names", UNSET))
|
|
137
141
|
|
|
138
|
-
def _parse_embedding_models(data: object) -> Union[List[PretrainedEmbeddingModelName], None, Unset]:
|
|
142
|
+
def _parse_embedding_models(data: object) -> Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset]:
|
|
139
143
|
if data is None:
|
|
140
144
|
return data
|
|
141
145
|
if isinstance(data, Unset):
|
|
@@ -146,14 +150,28 @@ class EmbeddingEvaluationPayload:
|
|
|
146
150
|
embedding_models_type_0 = []
|
|
147
151
|
_embedding_models_type_0 = data
|
|
148
152
|
for embedding_models_type_0_item_data in _embedding_models_type_0:
|
|
149
|
-
|
|
153
|
+
|
|
154
|
+
def _parse_embedding_models_type_0_item(data: object) -> Union[PretrainedEmbeddingModelName, str]:
|
|
155
|
+
try:
|
|
156
|
+
if not isinstance(data, str):
|
|
157
|
+
raise TypeError()
|
|
158
|
+
embedding_models_type_0_item_type_0 = PretrainedEmbeddingModelName(data)
|
|
159
|
+
|
|
160
|
+
return embedding_models_type_0_item_type_0
|
|
161
|
+
except: # noqa: E722
|
|
162
|
+
pass
|
|
163
|
+
return cast(Union[PretrainedEmbeddingModelName, str], data)
|
|
164
|
+
|
|
165
|
+
embedding_models_type_0_item = _parse_embedding_models_type_0_item(
|
|
166
|
+
embedding_models_type_0_item_data
|
|
167
|
+
)
|
|
150
168
|
|
|
151
169
|
embedding_models_type_0.append(embedding_models_type_0_item)
|
|
152
170
|
|
|
153
171
|
return embedding_models_type_0
|
|
154
172
|
except: # noqa: E722
|
|
155
173
|
pass
|
|
156
|
-
return cast(Union[List[PretrainedEmbeddingModelName], None, Unset], data)
|
|
174
|
+
return cast(Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset], data)
|
|
157
175
|
|
|
158
176
|
embedding_models = _parse_embedding_models(d.pop("embedding_models", UNSET))
|
|
159
177
|
|
|
@@ -31,7 +31,7 @@ class EmbeddingEvaluationRequest:
|
|
|
31
31
|
source_id_column (Union[None, str]):
|
|
32
32
|
neighbor_count (Union[Unset, int]): Default: 5.
|
|
33
33
|
label_names (Union[List[str], None, Unset]):
|
|
34
|
-
embedding_models (Union[List[PretrainedEmbeddingModelName], None, Unset]):
|
|
34
|
+
embedding_models (Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset]):
|
|
35
35
|
"""
|
|
36
36
|
|
|
37
37
|
value_column: str
|
|
@@ -39,7 +39,7 @@ class EmbeddingEvaluationRequest:
|
|
|
39
39
|
source_id_column: Union[None, str]
|
|
40
40
|
neighbor_count: Union[Unset, int] = 5
|
|
41
41
|
label_names: Union[List[str], None, Unset] = UNSET
|
|
42
|
-
embedding_models: Union[List[PretrainedEmbeddingModelName], None, Unset] = UNSET
|
|
42
|
+
embedding_models: Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset] = UNSET
|
|
43
43
|
additional_properties: dict[str, Any] = _attrs_field(init=False, factory=dict)
|
|
44
44
|
|
|
45
45
|
def to_dict(self) -> dict[str, Any]:
|
|
@@ -67,11 +67,15 @@ class EmbeddingEvaluationRequest:
|
|
|
67
67
|
elif isinstance(self.embedding_models, list):
|
|
68
68
|
embedding_models = []
|
|
69
69
|
for embedding_models_type_0_item_data in self.embedding_models:
|
|
70
|
-
embedding_models_type_0_item
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
70
|
+
embedding_models_type_0_item: str
|
|
71
|
+
if isinstance(embedding_models_type_0_item_data, PretrainedEmbeddingModelName):
|
|
72
|
+
embedding_models_type_0_item = (
|
|
73
|
+
embedding_models_type_0_item_data.value
|
|
74
|
+
if isinstance(embedding_models_type_0_item_data, Enum)
|
|
75
|
+
else embedding_models_type_0_item_data
|
|
76
|
+
)
|
|
77
|
+
else:
|
|
78
|
+
embedding_models_type_0_item = embedding_models_type_0_item_data
|
|
75
79
|
embedding_models.append(embedding_models_type_0_item)
|
|
76
80
|
|
|
77
81
|
else:
|
|
@@ -128,7 +132,7 @@ class EmbeddingEvaluationRequest:
|
|
|
128
132
|
|
|
129
133
|
label_names = _parse_label_names(d.pop("label_names", UNSET))
|
|
130
134
|
|
|
131
|
-
def _parse_embedding_models(data: object) -> Union[List[PretrainedEmbeddingModelName], None, Unset]:
|
|
135
|
+
def _parse_embedding_models(data: object) -> Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset]:
|
|
132
136
|
if data is None:
|
|
133
137
|
return data
|
|
134
138
|
if isinstance(data, Unset):
|
|
@@ -139,14 +143,28 @@ class EmbeddingEvaluationRequest:
|
|
|
139
143
|
embedding_models_type_0 = []
|
|
140
144
|
_embedding_models_type_0 = data
|
|
141
145
|
for embedding_models_type_0_item_data in _embedding_models_type_0:
|
|
142
|
-
|
|
146
|
+
|
|
147
|
+
def _parse_embedding_models_type_0_item(data: object) -> Union[PretrainedEmbeddingModelName, str]:
|
|
148
|
+
try:
|
|
149
|
+
if not isinstance(data, str):
|
|
150
|
+
raise TypeError()
|
|
151
|
+
embedding_models_type_0_item_type_0 = PretrainedEmbeddingModelName(data)
|
|
152
|
+
|
|
153
|
+
return embedding_models_type_0_item_type_0
|
|
154
|
+
except: # noqa: E722
|
|
155
|
+
pass
|
|
156
|
+
return cast(Union[PretrainedEmbeddingModelName, str], data)
|
|
157
|
+
|
|
158
|
+
embedding_models_type_0_item = _parse_embedding_models_type_0_item(
|
|
159
|
+
embedding_models_type_0_item_data
|
|
160
|
+
)
|
|
143
161
|
|
|
144
162
|
embedding_models_type_0.append(embedding_models_type_0_item)
|
|
145
163
|
|
|
146
164
|
return embedding_models_type_0
|
|
147
165
|
except: # noqa: E722
|
|
148
166
|
pass
|
|
149
|
-
return cast(Union[List[PretrainedEmbeddingModelName], None, Unset], data)
|
|
167
|
+
return cast(Union[List[Union[PretrainedEmbeddingModelName, str]], None, Unset], data)
|
|
150
168
|
|
|
151
169
|
embedding_models = _parse_embedding_models(d.pop("embedding_models", UNSET))
|
|
152
170
|
|