oracle-ads 2.13.6__py3-none-any.whl → 2.13.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. ads/aqua/__init__.py +0 -5
  2. ads/aqua/app.py +133 -20
  3. ads/aqua/cli.py +2 -15
  4. ads/aqua/common/utils.py +12 -83
  5. ads/aqua/config/container_config.py +105 -69
  6. ads/aqua/config/evaluation/evaluation_service_config.py +40 -0
  7. ads/aqua/constants.py +22 -20
  8. ads/aqua/evaluation/evaluation.py +98 -32
  9. ads/aqua/extension/common_handler.py +3 -12
  10. ads/aqua/extension/common_ws_msg_handler.py +3 -24
  11. ads/aqua/extension/model_handler.py +59 -6
  12. ads/aqua/extension/models/ws_models.py +2 -0
  13. ads/aqua/extension/models_ws_msg_handler.py +1 -0
  14. ads/aqua/extension/utils.py +11 -24
  15. ads/aqua/finetuning/entities.py +23 -1
  16. ads/aqua/finetuning/finetuning.py +26 -10
  17. ads/aqua/model/constants.py +8 -0
  18. ads/aqua/model/entities.py +8 -1
  19. ads/aqua/model/model.py +278 -113
  20. ads/aqua/modeldeployment/deployment.py +51 -47
  21. ads/aqua/modeldeployment/utils.py +23 -5
  22. ads/aqua/ui.py +3 -4
  23. ads/config.py +2 -2
  24. ads/model/datascience_model.py +29 -0
  25. ads/model/service/oci_datascience_model.py +1 -1
  26. ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py +8 -6
  27. ads/opctl/operator/lowcode/anomaly/model/base_model.py +1 -1
  28. ads/opctl/operator/lowcode/anomaly/operator_config.py +5 -3
  29. ads/opctl/operator/lowcode/common/transformations.py +2 -0
  30. ads/opctl/operator/lowcode/forecast/model/automlx.py +29 -0
  31. ads/type_discovery/typed_feature.py +32 -34
  32. {oracle_ads-2.13.6.dist-info → oracle_ads-2.13.8.dist-info}/METADATA +1 -1
  33. {oracle_ads-2.13.6.dist-info → oracle_ads-2.13.8.dist-info}/RECORD +36 -37
  34. ads/aqua/config/config.py +0 -31
  35. {oracle_ads-2.13.6.dist-info → oracle_ads-2.13.8.dist-info}/WHEEL +0 -0
  36. {oracle_ads-2.13.6.dist-info → oracle_ads-2.13.8.dist-info}/entry_points.txt +0 -0
  37. {oracle_ads-2.13.6.dist-info → oracle_ads-2.13.8.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,30 +1,27 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8; -*-
3
2
 
4
- # Copyright (c) 2020, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2020, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
 
8
- from __future__ import print_function, absolute_import
9
-
7
+ import copy
10
8
  import json
11
9
  import re
12
- import copy
13
10
  from collections import defaultdict
14
11
  from time import time
15
12
 
16
13
  import numpy as np
17
14
  import pandas as pd
18
- from sklearn.utils import Bunch
19
15
  from sklearn.feature_extraction.text import CountVectorizer
16
+ from sklearn.utils import Bunch
20
17
 
21
- from ads.common import utils, logger
18
+ from ads.common import utils
22
19
  from ads.common.card_identifier import card_identify
23
- from ads.common.utils import JsonConverter
24
20
  from ads.common.decorator.runtime_dependency import (
25
- runtime_dependency,
26
21
  OptionalDependency,
22
+ runtime_dependency,
27
23
  )
24
+ from ads.common.utils import JsonConverter
28
25
 
29
26
 
30
27
  class TypedFeature(Bunch):
@@ -97,7 +94,7 @@ class OrdinalTypedFeature(DiscreteTypedFeature):
97
94
  x_min, x_max = np.nanmin(nulls_removed), np.nanmax(nulls_removed)
98
95
 
99
96
  stats = {
100
- "unique percentage": 100 * desc["unique"] / desc["count"],
97
+ "unique percentage": 100 * series.nunique() / series.size,
101
98
  "x_min": x_min,
102
99
  "x_max": x_max,
103
100
  "mode": series.mode().iloc[0],
@@ -113,13 +110,13 @@ class OrdinalTypedFeature(DiscreteTypedFeature):
113
110
  "stats": stats,
114
111
  "internal": {
115
112
  "sample": series.head(5),
116
- "unique": desc["unique"],
113
+ "unique": series.nunique(),
117
114
  "counts": utils.truncate_series_top_n(
118
115
  value_counts, n=min(16, len(value_counts))
119
116
  ),
120
- "high_cardinality": bool(desc["unique"] > 30),
117
+ "high_cardinality": bool(series.nunique() > 30),
121
118
  "very_high_cardinality": bool(
122
- desc["unique"] >= 0.95 * desc["count"]
119
+ series.nunique() >= 0.95 * series.size
123
120
  ),
124
121
  },
125
122
  },
@@ -134,13 +131,14 @@ class CategoricalTypedFeature(DiscreteTypedFeature):
134
131
  def build(name, series):
135
132
  desc = series.astype("category").loc[~series.isnull()].describe(include="all")
136
133
  value_counts = series.value_counts(ascending=False)
137
- if isinstance(desc["top"], str):
138
- mode = desc["top"] if len(desc["top"]) < 30 else desc["top"][:24] + "..."
134
+ top = desc["top"] if "top" in desc else None
135
+ if isinstance(top, str):
136
+ mode = top if len(top) < 30 else top[:24] + "..."
139
137
  else:
140
- mode = desc["top"]
138
+ mode = top
141
139
 
142
140
  stats = {
143
- "unique percentage": 100 * desc["unique"] / desc["count"],
141
+ "unique percentage": 100 * series.nunique() / series.size,
144
142
  "mode": mode,
145
143
  }
146
144
  stats.update({k: v for k, v in desc.items()})
@@ -154,13 +152,13 @@ class CategoricalTypedFeature(DiscreteTypedFeature):
154
152
  "stats": stats,
155
153
  "internal": {
156
154
  "sample": series.sample(n=min(100, series.size)),
157
- "unique": desc["unique"],
155
+ "unique": series.nunique(),
158
156
  "counts": utils.truncate_series_top_n(
159
157
  value_counts, n=min(16, len(value_counts))
160
158
  ),
161
- "high_cardinality": bool(desc["unique"] > 30),
159
+ "high_cardinality": bool(series.nunique() > 30),
162
160
  "very_high_cardinality": bool(
163
- desc["unique"] >= 0.95 * desc["count"]
161
+ series.nunique() >= 0.95 * series.size
164
162
  ),
165
163
  },
166
164
  },
@@ -185,7 +183,7 @@ class IPAddressTypedFeature(TypedFeature):
185
183
  "missing_percentage": 100 * series.isna().sum() / series.size,
186
184
  "low_level_type": series.dtype.name,
187
185
  "stats": {
188
- "unique percentage": 100 * desc["unique"] / desc["count"],
186
+ "unique percentage": 100 * series.nunique() / series.size,
189
187
  "mode": series.mode().iloc[0],
190
188
  },
191
189
  "internal": {
@@ -193,7 +191,7 @@ class IPAddressTypedFeature(TypedFeature):
193
191
  "counts": utils.truncate_series_top_n(
194
192
  value_counts, n=min(16, len(value_counts))
195
193
  ),
196
- "unique": desc["unique"],
194
+ "unique": series.nunique(),
197
195
  },
198
196
  },
199
197
  )
@@ -224,7 +222,7 @@ class PhoneNumberTypedFeature(TypedFeature):
224
222
  "missing_percentage": 100 * series.isna().sum() / series.size,
225
223
  "low_level_type": series.dtype.name,
226
224
  "stats": {
227
- "unique percentage": 100 * desc["unique"] / desc["count"],
225
+ "unique percentage": 100 * series.nunique() / series.size,
228
226
  "mode": series.mode().iloc[0],
229
227
  },
230
228
  "internal": {
@@ -232,7 +230,7 @@ class PhoneNumberTypedFeature(TypedFeature):
232
230
  "counts": utils.truncate_series_top_n(
233
231
  value_counts, n=min(16, len(value_counts))
234
232
  ),
235
- "unique": desc["unique"],
233
+ "unique": series.nunique(),
236
234
  },
237
235
  },
238
236
  )
@@ -254,10 +252,10 @@ class GISTypedFeature(TypedFeature):
254
252
  "low_level_type": series.dtype.name,
255
253
  "stats": {
256
254
  "observations": desc["count"],
257
- "unique percentage": 100 * desc["unique"] / desc["count"]
255
+ "unique percentage": 100 * series.nunique() / series.size,
258
256
  # TODO mid point
259
257
  },
260
- "internal": {"sample": samples, "unique": desc["unique"]},
258
+ "internal": {"sample": samples, "unique": series.nunique()},
261
259
  },
262
260
  )
263
261
 
@@ -556,13 +554,13 @@ class CreditCardTypedFeature(TypedFeature):
556
554
  "missing_percentage": 100 * series.isna().sum() / series.size,
557
555
  "low_level_type": series.dtype.name,
558
556
  "stats": {
559
- "unique percentage": 100 * desc["unique"] / desc["count"],
560
- "mode": desc["top"],
557
+ "unique percentage": 100 * series.nunique() / series.size,
558
+ "mode": desc["top"] if "top" in desc else None,
561
559
  },
562
560
  "internal": {
563
561
  "sample": series.sample(n=min(100, series.size)),
564
562
  "counts": dict(d_scheme),
565
- "unique": desc["unique"],
563
+ "unique": series.nunique(),
566
564
  },
567
565
  },
568
566
  )
@@ -583,14 +581,14 @@ class DateTimeTypedFeature(TypedFeature):
583
581
  "missing_percentage": 100 * series.isna().sum() / series.size,
584
582
  "low_level_type": series.dtype.name,
585
583
  "stats": {
586
- "unique percentage": 100 * desc["unique"] / desc["count"],
587
- "first": desc["first"],
588
- "last": desc["last"],
589
- "mode": desc["top"],
584
+ "unique percentage": 100 * series.nunique() / series.size,
585
+ "first": desc["first"] if "first" in desc else None,
586
+ "last": desc["last"] if "last" in desc else None,
587
+ "mode": desc["top"] if "top" in desc else None,
590
588
  },
591
589
  "internal": {
592
590
  "sample": series.sample(n=min(100, series.size)),
593
- "unique": desc["unique"],
591
+ "unique": series.nunique(),
594
592
  },
595
593
  },
596
594
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oracle_ads
3
- Version: 2.13.6
3
+ Version: 2.13.8
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -1,12 +1,12 @@
1
1
  ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
2
  ads/cli.py,sha256=WkOpZv8jWgFYN9BNkt2LJBs9KzJHgFqq3pIymsqc8Q4,4292
3
- ads/config.py,sha256=Xa6CGxNUQf3CKTS9HpXnAWR5kOFvAs0M66f8kEl6z54,8051
4
- ads/aqua/__init__.py,sha256=I3HL7LadTue3X41EPUZue4rILG8xeMTapJiBA6Lu8Mg,1149
5
- ads/aqua/app.py,sha256=hQq0s-JU_w0-rrahKjiI4J3VKaYGS3m2lWx4Q86SPdA,14655
6
- ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
- ads/aqua/constants.py,sha256=4UACDyKbJEJ8mojcmAf2bYaeE62SH2oIhW20vgFX-V4,5003
3
+ ads/config.py,sha256=yrCvWEEYcMwWkk9_6IJJZnxbvrOVzsQNMBrCJVafYU8,8106
4
+ ads/aqua/__init__.py,sha256=7DjwtmZaX-_atIkmZu6XQKHqJUEeemJGR2TlxzMHSXs,973
5
+ ads/aqua/app.py,sha256=KesfIyVm3T8mj3ugsdVSp05b9RwQAEVw7QN1UB4o4qU,18397
6
+ ads/aqua/cli.py,sha256=8S0JnhWY9IBZjMyB-5r4I-2nl-WK6yw1iirPsAXICF0,3358
7
+ ads/aqua/constants.py,sha256=E_7eaHTMkKjY1VMe8os8xW337giIjESUYvMAnbN9bKw,4981
8
8
  ads/aqua/data.py,sha256=HfxLfKiNiPJecMQy0JAztUsT3IdZilHHHOrCJnjZMc4,408
9
- ads/aqua/ui.py,sha256=HQrp0gGgXC2WsbUzdqSE2mC6jZjryvjIisj74N-PxA0,20230
9
+ ads/aqua/ui.py,sha256=AyX1vFW9f6hoyKN55M6s4iKBLHsOHC41hwRjDfD4NlI,20191
10
10
  ads/aqua/client/__init__.py,sha256=-46EcKQjnWEXxTt85bQzXjA5xsfoBXIGm_syKFlVL1c,178
11
11
  ads/aqua/client/client.py,sha256=zlscNhFZVgGnkJ-aj5iZ5v5FedOzpQc4RJDxGPl9VvQ,31388
12
12
  ads/aqua/client/openai_client.py,sha256=Gi8nSrtPAUOjxRNu-6UUAqtxWyQIQ5CAvatnm7XfnaM,12501
@@ -15,12 +15,11 @@ ads/aqua/common/decorator.py,sha256=JEN6Cy4DYgQbmIR3ShCjTuBMCnilDxq7jkYMJse1rcM,
15
15
  ads/aqua/common/entities.py,sha256=kLUJu77Sg97VrHb76PvFAAaSWEUum9nYTwzMtOnUo50,8922
16
16
  ads/aqua/common/enums.py,sha256=rTZDOQzTfcgwEl7gjVY3_JotHXkz7wB_edEIB0i6AeQ,3739
17
17
  ads/aqua/common/errors.py,sha256=QONm-2jKBg8AjgOKXm6x-arAV1KIW9pdhfNN1Ys21Wo,3044
18
- ads/aqua/common/utils.py,sha256=OtHtGCC0gZvqNif_sfQoYp4KnZhIulv5a_gbceomIew,44238
18
+ ads/aqua/common/utils.py,sha256=z93NqufjGzmEpsd7VmSvIpFUawcaoLjBFPSiBCjq2Wk,42001
19
19
  ads/aqua/config/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
20
- ads/aqua/config/config.py,sha256=MNY4ttccaQdhxUyS1o367YIDl-U_AiSLVlgvzSd7JE4,944
21
- ads/aqua/config/container_config.py,sha256=7n3ZZG7Y1J4IkwEAhkoQ-h638pthPcyjRQogR25pSB4,8292
20
+ ads/aqua/config/container_config.py,sha256=WkxaBZ-6TlKXbhrLD5q-BAmXXZp_crLoZGp8TNtbGHg,9844
22
21
  ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
23
- ads/aqua/config/evaluation/evaluation_service_config.py,sha256=pCsvcHXgLQwp5sU29xrt0l5VTsd8yMGFEnS0IOPGUb0,3200
22
+ ads/aqua/config/evaluation/evaluation_service_config.py,sha256=NuaQoLVYPHJiWjGfq1-F6-DK0DyOAGjVS87K1SXFVvw,4497
24
23
  ads/aqua/config/utils/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
25
24
  ads/aqua/config/utils/serializer.py,sha256=RTyeFw2fDxmcTsERRd8AJDuyOuRQckL9dDLk8HFdxxc,11347
26
25
  ads/aqua/dummy_data/icon.txt,sha256=wlB79r3A4mUBbrK5yVVXrNEEKpvfZiwBx2sKlj7wzA4,6326
@@ -31,40 +30,40 @@ ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89
31
30
  ads/aqua/evaluation/constants.py,sha256=dmvDs_t93EhGa0N7J0y8R18AFW0cokj2Q5Oy0LHelxU,1436
32
31
  ads/aqua/evaluation/entities.py,sha256=2a7ibQQK3WlKjU6ETaJz06nMl_aD3jgg6hQhD47jqY8,5934
33
32
  ads/aqua/evaluation/errors.py,sha256=IbqcQFgXfwzlF5EoaT5jPw8JE8OWqtgiXpH0ddFhRzY,4523
34
- ads/aqua/evaluation/evaluation.py,sha256=uvthC_G00lFCSIUipCbCJ1YGobua2-ny6lmX76nfiWk,68837
33
+ ads/aqua/evaluation/evaluation.py,sha256=J0F7d_oepXNGLtosXxWtuOYpCaAKd9dHgrCdT26uTAE,71692
35
34
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
36
35
  ads/aqua/extension/aqua_ws_msg_handler.py,sha256=VDa9vQOsYKX6flsUkDEx6nl-5MFCH5RgCFMZVGXPpvY,2561
37
36
  ads/aqua/extension/base_handler.py,sha256=W-eBXn9XYypCZuY84e9cSKRuY0CDyuou_znV6Yn9YzU,3047
38
- ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
39
- ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
37
+ ads/aqua/extension/common_handler.py,sha256=okjFJlJv0FLXsMM1td6upqqA6tJEJIj1IIfTiughC5Q,3809
38
+ ads/aqua/extension/common_ws_msg_handler.py,sha256=PAy98ZsM8VAXcy11ahsuam3QUDdmE-Hz4F5pISVkNHY,1242
40
39
  ads/aqua/extension/deployment_handler.py,sha256=Q5EHfAWcEqiE9rH0lQeFXPn0WQdwiRlrl4lZI1OXPqo,10394
41
40
  ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
42
41
  ads/aqua/extension/errors.py,sha256=4LbzZdCoDEtOcrVI-1dgiza4oAYGof6w5LbN6HqroYk,1396
43
42
  ads/aqua/extension/evaluation_handler.py,sha256=fJH73fa0xmkEiP8SxKL4A4dJgj-NoL3z_G-w_WW2zJs,4353
44
43
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
45
44
  ads/aqua/extension/finetune_handler.py,sha256=97obbhITswTrBvl88g7gk4GvF2SUHBGUAq4rOylFbtQ,3079
46
- ads/aqua/extension/model_handler.py,sha256=Z0DYPCFALme_sae1Bm-Kh97e5VQWqsOuUZ8YrMm7cHQ,12291
47
- ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
45
+ ads/aqua/extension/model_handler.py,sha256=LlfBqGI4YVXio0gUnqi7Tpe3yfkc7-ToZCcQ3cds6rY,14094
46
+ ads/aqua/extension/models_ws_msg_handler.py,sha256=VyPbtBZrbRMIYJqOy5DR7j4M4qJK1RBqkxX6RbIvPGE,1851
48
47
  ads/aqua/extension/ui_handler.py,sha256=Q0LkrV6VtVUI4GpNgqJQt8SGzxHzp4X5hdHF6KgPp9M,11217
49
48
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
50
- ads/aqua/extension/utils.py,sha256=RBHTN5rPcg4J6i6O7I1ageVT7Iw3GM5zbfVNTg3QhCc,5834
49
+ ads/aqua/extension/utils.py,sha256=-uppIKADKl8TFzZB2QWEIei_wtVwWN63qffhuh4Q_KA,5159
51
50
  ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
- ads/aqua/extension/models/ws_models.py,sha256=y_3LlzKGNRcWqfuW5TGHl0PchM5xE83WGmRL0t0GKwY,3306
51
+ ads/aqua/extension/models/ws_models.py,sha256=IgAwu324zlT0XII2nFWQUTeEzqvbFch_9Kjwgsz3irQ,3360
53
52
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
54
53
  ads/aqua/finetuning/constants.py,sha256=Fx-8LMyF9ZbV9zo5LUYgCv9VniV7djGnM2iW7js2ILE,844
55
- ads/aqua/finetuning/entities.py,sha256=1RRaRFuxoBtApeCIqG-0H8Iom2kz2dv7LOX6y2wWLnA,6116
56
- ads/aqua/finetuning/finetuning.py,sha256=HWTBPq_rVCul61inyEmbqLyCtWLItNPRAeOfX83Bxa4,29514
54
+ ads/aqua/finetuning/entities.py,sha256=ax6tpqrzuF54YNdwJNRSpzhAnkvOeXdnJ18EA-GfIlw,6885
55
+ ads/aqua/finetuning/finetuning.py,sha256=SizHmPN1kOlzriQ2GHUvyhL9LxEmntoBFusHhYAz6SI,30220
57
56
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
58
- ads/aqua/model/constants.py,sha256=3BT5Dpr7EmTrBL7xF128gHGGjwyBgwAr3OlLSWSnR9g,1628
59
- ads/aqua/model/entities.py,sha256=kBjsihInnbGw9MhWQEfJ4hcWEzv6BxF8VlDDFWUPYVg,9903
57
+ ads/aqua/model/constants.py,sha256=oOAb4ulsdWBtokCE5SPX7wg8X8SaisLPayua58zhWfY,1856
58
+ ads/aqua/model/entities.py,sha256=8P9BEXCroruJHA1RhL66NdmScL-Lql1_7SjnFYk273Y,10089
60
59
  ads/aqua/model/enums.py,sha256=iJi-AZRh7KR_HK5HUwTkgnTOGVna2Ai5WEzqCjk7Y3s,1079
61
- ads/aqua/model/model.py,sha256=9gl2bPyUURb3azHmtu-iZJy2-hpCQKI-NvVPAxjPuy8,79324
60
+ ads/aqua/model/model.py,sha256=i1cRCdGV1UWyLNwfkikHF0oPhF682ZB-uKqgvJJ7860,86864
62
61
  ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
63
62
  ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
64
- ads/aqua/modeldeployment/deployment.py,sha256=bKwq0-qrAni2mZ9LMslcME-qlWSOhp7bn1H1zCvi1e0,55636
63
+ ads/aqua/modeldeployment/deployment.py,sha256=8HWFkc50_DdTM4MEPVzUXYOxvAmXeEHplqsPzK-II8k,56071
65
64
  ads/aqua/modeldeployment/entities.py,sha256=qwNH-8eHv-C2QPMITGQkb6haaJRvZ5c0i1H0Aoxeiu4,27100
66
65
  ads/aqua/modeldeployment/inference.py,sha256=rjTF-AM_rHLzL5HCxdLRTrsaSMdB-SzFYUp9dIy5ejw,2109
67
- ads/aqua/modeldeployment/utils.py,sha256=YmQ1PNDTIJ_s1gjlwEdNlZL5VhAjx8Zd4pvyUKgCb58,21240
66
+ ads/aqua/modeldeployment/utils.py,sha256=Aky4WZ5E564JVZ96X9RYJz_KlB_cAHGzV6mihtd3HV8,22009
68
67
  ads/aqua/resources/gpu_shapes_index.json,sha256=-6rSkyQ04T1z_Yfr3cxGPI7NAtgTwG7beIEjLYuMMIc,1948
69
68
  ads/aqua/server/__init__.py,sha256=fswoO0kX0hrp2b1owF4f-bv_OodntvvUY3FvhL6FCMk,179
70
69
  ads/aqua/server/__main__.py,sha256=5dbL01nblJYTQ9Qi8A3dT7Dt7qDhxfPMlEIAYqiQ9iI,749
@@ -500,7 +499,7 @@ ads/model/artifact.py,sha256=CmHdeINF0K6p2MaWZOwU5tLPQ9PoIdnfQis2voMAhHE,21459
500
499
  ads/model/artifact_downloader.py,sha256=mGVvIl_pfNikvPIsPgLCrh36z-puQ-DCYGjYbqGrSJ0,9769
501
500
  ads/model/artifact_uploader.py,sha256=jdkpmncczceOc28LyMkv4u6f845HJ1vVCoI-hLBT-RM,11305
502
501
  ads/model/base_properties.py,sha256=YeVyjCync4fzqqruMc9UfZKR4PnscU31n0mf4CJv3R8,7885
503
- ads/model/datascience_model.py,sha256=T0T6czpp6hTFTAkyJv3b-9Iz8nw9F-DiW3-pEB6O-6E,97619
502
+ ads/model/datascience_model.py,sha256=dp0h7CvTd_PpaPSgDAvozIbCtAn5VetJXodJziXfOkU,98499
504
503
  ads/model/generic_model.py,sha256=JVL5WYpZW7LSECm8Yeq59IDLymMRgfF2SIkOkqdoU8c,147014
505
504
  ads/model/model_file_description_schema.json,sha256=NZw_U4CvKf9oOdxCKr1eUxq8FHwjR_g0GSDk0Hz3SnE,1402
506
505
  ads/model/model_introspect.py,sha256=z9pJul9dwT9w8flvRguhu0ZKoEkbm2Tvdutw_SHYTeg,9745
@@ -563,7 +562,7 @@ ads/model/serde/common.py,sha256=cDtblusT8fZ04mbBASg7EC62oaB9Sp7X_NPPhPiDnJk,112
563
562
  ads/model/serde/model_input.py,sha256=MB6Uf4H_UzlAUTRIRqHTW4ZiyQKw0yerGtUE-WFSw-g,18577
564
563
  ads/model/serde/model_serializer.py,sha256=2vi4MoUHZV-V-4r1OWD5YJzwARFqIBv7-oyGeXGhrK4,43197
565
564
  ads/model/service/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
566
- ads/model/service/oci_datascience_model.py,sha256=gyaFcFC9-yVjAd8pgV0bJ1X7-giZuHSutpxMjsYwz7o,38765
565
+ ads/model/service/oci_datascience_model.py,sha256=Dv4t_6ZnJTwnCBFpv44mv2pyVGJQVIBTaYaWdvvAGN8,38771
567
566
  ads/model/service/oci_datascience_model_deployment.py,sha256=ONiogPK_wN7omxdnTMAcJhcvDEZQwI_XqmT84Q1xoj0,18472
568
567
  ads/model/service/oci_datascience_model_version_set.py,sha256=lYw9BauH4BNZk2Jdf8mRjFO3MorQDSMPAxkP-inlwiM,5690
569
568
  ads/model/transformer/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
@@ -674,15 +673,15 @@ ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9nd
674
673
  ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
675
674
  ads/opctl/operator/lowcode/anomaly/const.py,sha256=t-Mf1BS3bGZgxWQslFhZ8D90DGueusemQQLgoKLDnF4,4706
676
675
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
677
- ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
676
+ ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=72A_6lmJSWrGkxfWWC_GN5qhUqHps8FhBX2l8D9uuqg,4407
678
677
  ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=CrqXpSgGPwv4NVL5gEZNHChdVCFilm4k9OGDbY9UnGw,9509
679
678
  ads/opctl/operator/lowcode/anomaly/utils.py,sha256=szOgGp6ssrE6yk8LA69w2Kk2pZ2ZGXemV5jrvJqNwQg,2844
680
679
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
681
- ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
680
+ ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=FN4JO5x1rLzeyC2_tsXhP6gPb4-TBHrMa4uJdybz-Us,5404
682
681
  ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=IT0g6wf2rZI-GFuuOgtESWYTE_D77P8y9YeRZ6ucguQ,5836
683
682
  ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=40rY-mVYoLBmDw5uagayRoyYSkjsIY4U4LfyeU11AoA,3469
684
683
  ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Ft6bLEXdpIMMDv4lLBzLhC2kRZki7zD9Jnu-LIPDDbw,4154
685
- ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=K8r6408xE6e5GeY1zN-WLdr38X2DY0S9qhAMpsnEHF8,15542
684
+ ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=5XOwbdJV7fjAr6DXP0LA0XLS0EmV77Xx75p_WEhh4ak,15523
686
685
  ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=EVYgEGvVTMNFt-tDP6SH3qDoVBAZD3D_Jlw6Xu9zdQU,4148
687
686
  ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=e_C_I6d6PVojPoHz_D5r8nC_JctTYooVVKFlcX5kkls,2657
688
687
  ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eejgAtxwjGzWJBVdgp0oZHM4NCLAQh-AksGE0YuM7D4,2557
@@ -692,7 +691,7 @@ ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi
692
691
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
693
692
  ads/opctl/operator/lowcode/common/data.py,sha256=_0UbW-A0kVQjNOO2aeZoRiebgmKqDqcprPPjZ6KDWdk,4188
694
693
  ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
695
- ads/opctl/operator/lowcode/common/transformations.py,sha256=tR-D_7dRG5bcckG0M0-trExEF5w75angTEjnkss4Vtk,10899
694
+ ads/opctl/operator/lowcode/common/transformations.py,sha256=n-Yac9WtI9GLEc5sDKSq75-2q0j59bR_pxlV5EAmkO0,11048
696
695
  ads/opctl/operator/lowcode/common/utils.py,sha256=z8NqmBk1ScU6R1cTBna9drJxkoD-UGiPqvN9HUw2VR8,9941
697
696
  ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
698
697
  ads/opctl/operator/lowcode/feature_store_marketplace/README.md,sha256=fN9ROzOPdEZdRgSP_uYvAmD5bD983NC7Irfe_D-mvrw,1356
@@ -722,7 +721,7 @@ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=RoNwjg5jxXMbljtregMkV_rJb
722
721
  ads/opctl/operator/lowcode/forecast/utils.py,sha256=0ssrXBAEL5hjQX4avLPkSwFp3sKE8QV5M3K5InqvzYg,14137
723
722
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
724
723
  ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=PvHoTdDr6RIC4I-YLzed91td6Pq6uxbgluEdu_h0e3c,11766
725
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=2M1Ipnq73x-bnKg9ju4Oyi9-0WxmdrCNWgAACob1HRI,21488
724
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=4XwS60f7Cs9-oexAn_v0hiWHmrw4jBY_o-_VLzuOd-4,22891
726
725
  ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=UThBBGsEiC3WLSn-BPAuNWT_ZFa3bYMu52keB0vvSt8,13137
727
726
  ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s9WwPpo61YY7teAcmL2MK7cl1GGYAKZu7IkxoReD1I0,35969
728
727
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=5a9A3ql-bU412BiTB20ob6OxQlkdk8z_tGONMwDXT1k,3900
@@ -847,13 +846,13 @@ ads/type_discovery/ip_detector.py,sha256=d_r_cc1uD9C2QHtVaqchn6vHB96XmaBeSI45ed5
847
846
  ads/type_discovery/latlon_detector.py,sha256=i1erHHOonvoCTSf738l0-w5U71ZVpEduAA7LyAUtIF0,2831
848
847
  ads/type_discovery/phone_number_detector.py,sha256=qajNmBjqL4pGrh2A69AbFjiCHXQqk8kWUVZtWgJM3l4,1952
849
848
  ads/type_discovery/type_discovery_driver.py,sha256=HsRleEI7Dw_LznFGLb82fO-KIgvWIfLOiIxj3rCgZgw,2710
850
- ads/type_discovery/typed_feature.py,sha256=B_DASHXyXH-tMtES6URept4u37Feke9zNP6vcxEkMOg,20112
849
+ ads/type_discovery/typed_feature.py,sha256=AwqKzb0Eu049-54_PwYuGL8SuHuseZjxThPaxj76nL0,20166
851
850
  ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1yg5fm8-AOg,1341
852
851
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
853
852
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
854
853
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
855
- oracle_ads-2.13.6.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
856
- oracle_ads-2.13.6.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
857
- oracle_ads-2.13.6.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
858
- oracle_ads-2.13.6.dist-info/METADATA,sha256=r07qyuquzLOV4t2OloGNRKDEgdbwifVB6v6viXCK7oI,16639
859
- oracle_ads-2.13.6.dist-info/RECORD,,
854
+ oracle_ads-2.13.8.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
855
+ oracle_ads-2.13.8.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
856
+ oracle_ads-2.13.8.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
857
+ oracle_ads-2.13.8.dist-info/METADATA,sha256=LfiYG2aQlavlrsikEbkE1C6CN9ytsyDU32oF0oHClg4,16639
858
+ oracle_ads-2.13.8.dist-info/RECORD,,
ads/aqua/config/config.py DELETED
@@ -1,31 +0,0 @@
1
- #!/usr/bin/env python
2
- # Copyright (c) 2024 Oracle and/or its affiliates.
3
- # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
4
-
5
-
6
- from typing import Optional
7
-
8
- from ads.aqua.common.entities import ContainerSpec
9
- from ads.aqua.common.utils import get_container_config
10
- from ads.aqua.config.evaluation.evaluation_service_config import EvaluationServiceConfig
11
-
12
- DEFAULT_EVALUATION_CONTAINER = "odsc-llm-evaluate"
13
-
14
-
15
- def get_evaluation_service_config(
16
- container: Optional[str] = DEFAULT_EVALUATION_CONTAINER,
17
- ) -> EvaluationServiceConfig:
18
- """
19
- Retrieves the common evaluation configuration.
20
-
21
- Returns
22
- -------
23
- EvaluationServiceConfig: The evaluation common config.
24
- """
25
-
26
- container = container or DEFAULT_EVALUATION_CONTAINER
27
- return EvaluationServiceConfig(
28
- **get_container_config()
29
- .get(ContainerSpec.CONTAINER_SPEC, {})
30
- .get(container, {})
31
- )