oracle-ads 2.13.5__py3-none-any.whl → 2.13.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. ads/aqua/__init__.py +0 -5
  2. ads/aqua/app.py +133 -20
  3. ads/aqua/cli.py +2 -15
  4. ads/aqua/common/enums.py +14 -0
  5. ads/aqua/common/utils.py +50 -83
  6. ads/aqua/config/container_config.py +105 -69
  7. ads/aqua/config/evaluation/evaluation_service_config.py +40 -0
  8. ads/aqua/constants.py +22 -20
  9. ads/aqua/evaluation/evaluation.py +98 -32
  10. ads/aqua/extension/common_handler.py +3 -12
  11. ads/aqua/extension/common_ws_msg_handler.py +3 -24
  12. ads/aqua/extension/model_handler.py +59 -6
  13. ads/aqua/extension/models/ws_models.py +2 -0
  14. ads/aqua/extension/models_ws_msg_handler.py +1 -0
  15. ads/aqua/extension/utils.py +11 -24
  16. ads/aqua/finetuning/entities.py +23 -1
  17. ads/aqua/finetuning/finetuning.py +26 -10
  18. ads/aqua/model/constants.py +8 -0
  19. ads/aqua/model/entities.py +8 -1
  20. ads/aqua/model/model.py +286 -111
  21. ads/aqua/modeldeployment/deployment.py +51 -47
  22. ads/aqua/modeldeployment/utils.py +23 -5
  23. ads/aqua/ui.py +3 -4
  24. ads/config.py +2 -2
  25. ads/dataset/recommendation.py +11 -20
  26. ads/model/datascience_model.py +29 -0
  27. ads/model/service/oci_datascience_model.py +1 -1
  28. ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py +8 -6
  29. ads/opctl/operator/lowcode/anomaly/model/base_model.py +1 -1
  30. ads/opctl/operator/lowcode/anomaly/operator_config.py +5 -3
  31. ads/opctl/operator/lowcode/common/transformations.py +2 -0
  32. ads/opctl/operator/lowcode/forecast/model/automlx.py +29 -0
  33. ads/opctl/operator/lowcode/pii/model/report.py +9 -16
  34. ads/opctl/utils.py +1 -1
  35. ads/type_discovery/typed_feature.py +32 -34
  36. {oracle_ads-2.13.5.dist-info → oracle_ads-2.13.7.dist-info}/METADATA +1 -1
  37. {oracle_ads-2.13.5.dist-info → oracle_ads-2.13.7.dist-info}/RECORD +40 -41
  38. ads/aqua/config/config.py +0 -31
  39. {oracle_ads-2.13.5.dist-info → oracle_ads-2.13.7.dist-info}/WHEEL +0 -0
  40. {oracle_ads-2.13.5.dist-info → oracle_ads-2.13.7.dist-info}/entry_points.txt +0 -0
  41. {oracle_ads-2.13.5.dist-info → oracle_ads-2.13.7.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  #!/usr/bin/env python
2
2
 
3
- # Copyright (c) 2023, 2024 Oracle and/or its affiliates.
3
+ # Copyright (c) 2023, 2025 Oracle and/or its affiliates.
4
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
5
5
 
6
6
 
@@ -123,7 +123,6 @@ def make_model_card(model_name="", readme_path=""):
123
123
  )
124
124
  return rc.Group(
125
125
  rc.Text("-"),
126
- columns=1,
127
126
  )
128
127
 
129
128
  try:
@@ -156,7 +155,6 @@ def make_model_card(model_name="", readme_path=""):
156
155
  return rc.Group(
157
156
  rc.Text(text),
158
157
  eval_res_tb,
159
- columns=2,
160
158
  )
161
159
 
162
160
 
@@ -216,7 +214,7 @@ def build_entity_df(entites, id) -> pd.DataFrame:
216
214
  "Type": "-",
217
215
  "Redacted To": "-",
218
216
  }
219
- df = df.append(df2, ignore_index=True)
217
+ df = pd.concat([df, pd.DataFrame([df2])], ignore_index=True)
220
218
  return df
221
219
 
222
220
 
@@ -232,7 +230,6 @@ class RowReportFields:
232
230
  self._make_stats_card(),
233
231
  self._make_text_card(),
234
232
  ],
235
- type=rc.SelectType.TABS,
236
233
  ),
237
234
  label="Row Id: " + str(self.spec.id),
238
235
  )
@@ -256,7 +253,7 @@ class RowReportFields:
256
253
  index=True,
257
254
  )
258
255
  )
259
- return rc.Group(stats, label="STATS")
256
+ return rc.Group(*stats, label="STATS")
260
257
 
261
258
  def _make_text_card(self):
262
259
  annotations = []
@@ -277,7 +274,7 @@ class RowReportFields:
277
274
  },
278
275
  return_html=True,
279
276
  )
280
- return rc.Group(rc.HTML(render_html), label="TEXT")
277
+ return rc.Group(rc.Html(render_html), label="TEXT")
281
278
 
282
279
 
283
280
  class PIIOperatorReport:
@@ -292,7 +289,7 @@ class PIIOperatorReport:
292
289
  RowReportFields(r, report_spec.run_summary.show_sensitive_info)
293
290
  for r in rows
294
291
  ]
295
-
292
+ self.report_sections = None
296
293
  self.report_uri = report_uri
297
294
 
298
295
  def make_view(self):
@@ -317,7 +314,6 @@ class PIIOperatorReport:
317
314
  label="Details",
318
315
  ),
319
316
  ],
320
- type=rc.SelectType.TABS,
321
317
  )
322
318
  )
323
319
  self.report_sections = [title_text, report_description, time_proceed, structure]
@@ -331,7 +327,8 @@ class PIIOperatorReport:
331
327
  disable_print()
332
328
  with rc.ReportCreator("My Report") as report:
333
329
  report.save(
334
- rc.Block(report_sections or self.report_sections), report_local_path
330
+ rc.Block(*(report_sections or self.report_sections)),
331
+ report_local_path,
335
332
  )
336
333
  enable_print()
337
334
 
@@ -354,7 +351,6 @@ class PIIOperatorReport:
354
351
  self._make_yaml_card(),
355
352
  self._make_model_card(),
356
353
  ],
357
- type=rc.SelectType.TABS,
358
354
  ),
359
355
  )
360
356
 
@@ -367,7 +363,6 @@ class PIIOperatorReport:
367
363
  blocks=[
368
364
  row.build_report() for row in self.rows_details
369
365
  ], # RowReportFields
370
- type=rc.SelectType.DROPDOWN,
371
366
  label="Details",
372
367
  ),
373
368
  )
@@ -414,7 +409,6 @@ class PIIOperatorReport:
414
409
  self.report_spec.run_summary.elapsed_time
415
410
  ),
416
411
  ),
417
- columns=2,
418
412
  ),
419
413
  rc.Heading("Entities Distribution", level=3),
420
414
  plot_pie(self.report_spec.run_summary.statics),
@@ -423,7 +417,7 @@ class PIIOperatorReport:
423
417
  entites_df = self._build_total_entity_df()
424
418
  summary_stats.append(rc.Heading("Resolved Entities", level=3))
425
419
  summary_stats.append(rc.DataTable(entites_df, index=True))
426
- return rc.Group(summary_stats, label="STATS")
420
+ return rc.Group(*summary_stats, label="STATS")
427
421
 
428
422
  def _make_yaml_card(self) -> rc.Group:
429
423
  """Shows the full pii config yaml."""
@@ -449,13 +443,12 @@ class PIIOperatorReport:
449
443
 
450
444
  if len(model_cards) <= 1:
451
445
  return rc.Group(
452
- model_cards,
446
+ *model_cards,
453
447
  label="MODEL CARD",
454
448
  )
455
449
  return rc.Group(
456
450
  rc.Select(
457
451
  model_cards,
458
- type=rc.SelectType.TABS,
459
452
  ),
460
453
  label="MODEL CARD",
461
454
  )
ads/opctl/utils.py CHANGED
@@ -154,7 +154,7 @@ def build_image(image_type: str, gpu: bool = False) -> None:
154
154
  # Just get the manufacturer of the processors
155
155
  manufacturer = cpuinfo.get_cpu_info().get("brand_raw")
156
156
  arch = (
157
- "arm" if re.search("apple m\d ", manufacturer, re.IGNORECASE) else "other"
157
+ "arm" if re.search("apple m\d", manufacturer, re.IGNORECASE) else "other"
158
158
  )
159
159
  print(f"The local machine's platform is {arch}.")
160
160
  image, dockerfile, target = _get_image_name_dockerfile_target(
@@ -1,30 +1,27 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8; -*-
3
2
 
4
- # Copyright (c) 2020, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2020, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
 
8
- from __future__ import print_function, absolute_import
9
-
7
+ import copy
10
8
  import json
11
9
  import re
12
- import copy
13
10
  from collections import defaultdict
14
11
  from time import time
15
12
 
16
13
  import numpy as np
17
14
  import pandas as pd
18
- from sklearn.utils import Bunch
19
15
  from sklearn.feature_extraction.text import CountVectorizer
16
+ from sklearn.utils import Bunch
20
17
 
21
- from ads.common import utils, logger
18
+ from ads.common import utils
22
19
  from ads.common.card_identifier import card_identify
23
- from ads.common.utils import JsonConverter
24
20
  from ads.common.decorator.runtime_dependency import (
25
- runtime_dependency,
26
21
  OptionalDependency,
22
+ runtime_dependency,
27
23
  )
24
+ from ads.common.utils import JsonConverter
28
25
 
29
26
 
30
27
  class TypedFeature(Bunch):
@@ -97,7 +94,7 @@ class OrdinalTypedFeature(DiscreteTypedFeature):
97
94
  x_min, x_max = np.nanmin(nulls_removed), np.nanmax(nulls_removed)
98
95
 
99
96
  stats = {
100
- "unique percentage": 100 * desc["unique"] / desc["count"],
97
+ "unique percentage": 100 * series.nunique() / series.size,
101
98
  "x_min": x_min,
102
99
  "x_max": x_max,
103
100
  "mode": series.mode().iloc[0],
@@ -113,13 +110,13 @@ class OrdinalTypedFeature(DiscreteTypedFeature):
113
110
  "stats": stats,
114
111
  "internal": {
115
112
  "sample": series.head(5),
116
- "unique": desc["unique"],
113
+ "unique": series.nunique(),
117
114
  "counts": utils.truncate_series_top_n(
118
115
  value_counts, n=min(16, len(value_counts))
119
116
  ),
120
- "high_cardinality": bool(desc["unique"] > 30),
117
+ "high_cardinality": bool(series.nunique() > 30),
121
118
  "very_high_cardinality": bool(
122
- desc["unique"] >= 0.95 * desc["count"]
119
+ series.nunique() >= 0.95 * series.size
123
120
  ),
124
121
  },
125
122
  },
@@ -134,13 +131,14 @@ class CategoricalTypedFeature(DiscreteTypedFeature):
134
131
  def build(name, series):
135
132
  desc = series.astype("category").loc[~series.isnull()].describe(include="all")
136
133
  value_counts = series.value_counts(ascending=False)
137
- if isinstance(desc["top"], str):
138
- mode = desc["top"] if len(desc["top"]) < 30 else desc["top"][:24] + "..."
134
+ top = desc["top"] if "top" in desc else None
135
+ if isinstance(top, str):
136
+ mode = top if len(top) < 30 else top[:24] + "..."
139
137
  else:
140
- mode = desc["top"]
138
+ mode = top
141
139
 
142
140
  stats = {
143
- "unique percentage": 100 * desc["unique"] / desc["count"],
141
+ "unique percentage": 100 * series.nunique() / series.size,
144
142
  "mode": mode,
145
143
  }
146
144
  stats.update({k: v for k, v in desc.items()})
@@ -154,13 +152,13 @@ class CategoricalTypedFeature(DiscreteTypedFeature):
154
152
  "stats": stats,
155
153
  "internal": {
156
154
  "sample": series.sample(n=min(100, series.size)),
157
- "unique": desc["unique"],
155
+ "unique": series.nunique(),
158
156
  "counts": utils.truncate_series_top_n(
159
157
  value_counts, n=min(16, len(value_counts))
160
158
  ),
161
- "high_cardinality": bool(desc["unique"] > 30),
159
+ "high_cardinality": bool(series.nunique() > 30),
162
160
  "very_high_cardinality": bool(
163
- desc["unique"] >= 0.95 * desc["count"]
161
+ series.nunique() >= 0.95 * series.size
164
162
  ),
165
163
  },
166
164
  },
@@ -185,7 +183,7 @@ class IPAddressTypedFeature(TypedFeature):
185
183
  "missing_percentage": 100 * series.isna().sum() / series.size,
186
184
  "low_level_type": series.dtype.name,
187
185
  "stats": {
188
- "unique percentage": 100 * desc["unique"] / desc["count"],
186
+ "unique percentage": 100 * series.nunique() / series.size,
189
187
  "mode": series.mode().iloc[0],
190
188
  },
191
189
  "internal": {
@@ -193,7 +191,7 @@ class IPAddressTypedFeature(TypedFeature):
193
191
  "counts": utils.truncate_series_top_n(
194
192
  value_counts, n=min(16, len(value_counts))
195
193
  ),
196
- "unique": desc["unique"],
194
+ "unique": series.nunique(),
197
195
  },
198
196
  },
199
197
  )
@@ -224,7 +222,7 @@ class PhoneNumberTypedFeature(TypedFeature):
224
222
  "missing_percentage": 100 * series.isna().sum() / series.size,
225
223
  "low_level_type": series.dtype.name,
226
224
  "stats": {
227
- "unique percentage": 100 * desc["unique"] / desc["count"],
225
+ "unique percentage": 100 * series.nunique() / series.size,
228
226
  "mode": series.mode().iloc[0],
229
227
  },
230
228
  "internal": {
@@ -232,7 +230,7 @@ class PhoneNumberTypedFeature(TypedFeature):
232
230
  "counts": utils.truncate_series_top_n(
233
231
  value_counts, n=min(16, len(value_counts))
234
232
  ),
235
- "unique": desc["unique"],
233
+ "unique": series.nunique(),
236
234
  },
237
235
  },
238
236
  )
@@ -254,10 +252,10 @@ class GISTypedFeature(TypedFeature):
254
252
  "low_level_type": series.dtype.name,
255
253
  "stats": {
256
254
  "observations": desc["count"],
257
- "unique percentage": 100 * desc["unique"] / desc["count"]
255
+ "unique percentage": 100 * series.nunique() / series.size,
258
256
  # TODO mid point
259
257
  },
260
- "internal": {"sample": samples, "unique": desc["unique"]},
258
+ "internal": {"sample": samples, "unique": series.nunique()},
261
259
  },
262
260
  )
263
261
 
@@ -556,13 +554,13 @@ class CreditCardTypedFeature(TypedFeature):
556
554
  "missing_percentage": 100 * series.isna().sum() / series.size,
557
555
  "low_level_type": series.dtype.name,
558
556
  "stats": {
559
- "unique percentage": 100 * desc["unique"] / desc["count"],
560
- "mode": desc["top"],
557
+ "unique percentage": 100 * series.nunique() / series.size,
558
+ "mode": desc["top"] if "top" in desc else None,
561
559
  },
562
560
  "internal": {
563
561
  "sample": series.sample(n=min(100, series.size)),
564
562
  "counts": dict(d_scheme),
565
- "unique": desc["unique"],
563
+ "unique": series.nunique(),
566
564
  },
567
565
  },
568
566
  )
@@ -583,14 +581,14 @@ class DateTimeTypedFeature(TypedFeature):
583
581
  "missing_percentage": 100 * series.isna().sum() / series.size,
584
582
  "low_level_type": series.dtype.name,
585
583
  "stats": {
586
- "unique percentage": 100 * desc["unique"] / desc["count"],
587
- "first": desc["first"],
588
- "last": desc["last"],
589
- "mode": desc["top"],
584
+ "unique percentage": 100 * series.nunique() / series.size,
585
+ "first": desc["first"] if "first" in desc else None,
586
+ "last": desc["last"] if "last" in desc else None,
587
+ "mode": desc["top"] if "top" in desc else None,
590
588
  },
591
589
  "internal": {
592
590
  "sample": series.sample(n=min(100, series.size)),
593
- "unique": desc["unique"],
591
+ "unique": series.nunique(),
594
592
  },
595
593
  },
596
594
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oracle_ads
3
- Version: 2.13.5
3
+ Version: 2.13.7
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -1,26 +1,25 @@
1
1
  ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
2
  ads/cli.py,sha256=WkOpZv8jWgFYN9BNkt2LJBs9KzJHgFqq3pIymsqc8Q4,4292
3
- ads/config.py,sha256=Xa6CGxNUQf3CKTS9HpXnAWR5kOFvAs0M66f8kEl6z54,8051
4
- ads/aqua/__init__.py,sha256=I3HL7LadTue3X41EPUZue4rILG8xeMTapJiBA6Lu8Mg,1149
5
- ads/aqua/app.py,sha256=hQq0s-JU_w0-rrahKjiI4J3VKaYGS3m2lWx4Q86SPdA,14655
6
- ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
- ads/aqua/constants.py,sha256=4UACDyKbJEJ8mojcmAf2bYaeE62SH2oIhW20vgFX-V4,5003
3
+ ads/config.py,sha256=yrCvWEEYcMwWkk9_6IJJZnxbvrOVzsQNMBrCJVafYU8,8106
4
+ ads/aqua/__init__.py,sha256=7DjwtmZaX-_atIkmZu6XQKHqJUEeemJGR2TlxzMHSXs,973
5
+ ads/aqua/app.py,sha256=KesfIyVm3T8mj3ugsdVSp05b9RwQAEVw7QN1UB4o4qU,18397
6
+ ads/aqua/cli.py,sha256=8S0JnhWY9IBZjMyB-5r4I-2nl-WK6yw1iirPsAXICF0,3358
7
+ ads/aqua/constants.py,sha256=E_7eaHTMkKjY1VMe8os8xW337giIjESUYvMAnbN9bKw,4981
8
8
  ads/aqua/data.py,sha256=HfxLfKiNiPJecMQy0JAztUsT3IdZilHHHOrCJnjZMc4,408
9
- ads/aqua/ui.py,sha256=HQrp0gGgXC2WsbUzdqSE2mC6jZjryvjIisj74N-PxA0,20230
9
+ ads/aqua/ui.py,sha256=AyX1vFW9f6hoyKN55M6s4iKBLHsOHC41hwRjDfD4NlI,20191
10
10
  ads/aqua/client/__init__.py,sha256=-46EcKQjnWEXxTt85bQzXjA5xsfoBXIGm_syKFlVL1c,178
11
11
  ads/aqua/client/client.py,sha256=zlscNhFZVgGnkJ-aj5iZ5v5FedOzpQc4RJDxGPl9VvQ,31388
12
12
  ads/aqua/client/openai_client.py,sha256=Gi8nSrtPAUOjxRNu-6UUAqtxWyQIQ5CAvatnm7XfnaM,12501
13
13
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
14
14
  ads/aqua/common/decorator.py,sha256=JEN6Cy4DYgQbmIR3ShCjTuBMCnilDxq7jkYMJse1rcM,4112
15
15
  ads/aqua/common/entities.py,sha256=kLUJu77Sg97VrHb76PvFAAaSWEUum9nYTwzMtOnUo50,8922
16
- ads/aqua/common/enums.py,sha256=ZuGidUsZvfWkTxkj4S6K9tRJAXPTrR7t2v4JgGSV7_8,3175
16
+ ads/aqua/common/enums.py,sha256=rTZDOQzTfcgwEl7gjVY3_JotHXkz7wB_edEIB0i6AeQ,3739
17
17
  ads/aqua/common/errors.py,sha256=QONm-2jKBg8AjgOKXm6x-arAV1KIW9pdhfNN1Ys21Wo,3044
18
- ads/aqua/common/utils.py,sha256=enU8TvoR4-kaNKRt7SCF-ARMFrDNs6vOsubFfyqV5S0,42843
18
+ ads/aqua/common/utils.py,sha256=z93NqufjGzmEpsd7VmSvIpFUawcaoLjBFPSiBCjq2Wk,42001
19
19
  ads/aqua/config/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
20
- ads/aqua/config/config.py,sha256=MNY4ttccaQdhxUyS1o367YIDl-U_AiSLVlgvzSd7JE4,944
21
- ads/aqua/config/container_config.py,sha256=7n3ZZG7Y1J4IkwEAhkoQ-h638pthPcyjRQogR25pSB4,8292
20
+ ads/aqua/config/container_config.py,sha256=WkxaBZ-6TlKXbhrLD5q-BAmXXZp_crLoZGp8TNtbGHg,9844
22
21
  ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
23
- ads/aqua/config/evaluation/evaluation_service_config.py,sha256=pCsvcHXgLQwp5sU29xrt0l5VTsd8yMGFEnS0IOPGUb0,3200
22
+ ads/aqua/config/evaluation/evaluation_service_config.py,sha256=NuaQoLVYPHJiWjGfq1-F6-DK0DyOAGjVS87K1SXFVvw,4497
24
23
  ads/aqua/config/utils/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
25
24
  ads/aqua/config/utils/serializer.py,sha256=RTyeFw2fDxmcTsERRd8AJDuyOuRQckL9dDLk8HFdxxc,11347
26
25
  ads/aqua/dummy_data/icon.txt,sha256=wlB79r3A4mUBbrK5yVVXrNEEKpvfZiwBx2sKlj7wzA4,6326
@@ -31,40 +30,40 @@ ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89
31
30
  ads/aqua/evaluation/constants.py,sha256=dmvDs_t93EhGa0N7J0y8R18AFW0cokj2Q5Oy0LHelxU,1436
32
31
  ads/aqua/evaluation/entities.py,sha256=2a7ibQQK3WlKjU6ETaJz06nMl_aD3jgg6hQhD47jqY8,5934
33
32
  ads/aqua/evaluation/errors.py,sha256=IbqcQFgXfwzlF5EoaT5jPw8JE8OWqtgiXpH0ddFhRzY,4523
34
- ads/aqua/evaluation/evaluation.py,sha256=uvthC_G00lFCSIUipCbCJ1YGobua2-ny6lmX76nfiWk,68837
33
+ ads/aqua/evaluation/evaluation.py,sha256=J0F7d_oepXNGLtosXxWtuOYpCaAKd9dHgrCdT26uTAE,71692
35
34
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
36
35
  ads/aqua/extension/aqua_ws_msg_handler.py,sha256=VDa9vQOsYKX6flsUkDEx6nl-5MFCH5RgCFMZVGXPpvY,2561
37
36
  ads/aqua/extension/base_handler.py,sha256=W-eBXn9XYypCZuY84e9cSKRuY0CDyuou_znV6Yn9YzU,3047
38
- ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
39
- ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
37
+ ads/aqua/extension/common_handler.py,sha256=okjFJlJv0FLXsMM1td6upqqA6tJEJIj1IIfTiughC5Q,3809
38
+ ads/aqua/extension/common_ws_msg_handler.py,sha256=PAy98ZsM8VAXcy11ahsuam3QUDdmE-Hz4F5pISVkNHY,1242
40
39
  ads/aqua/extension/deployment_handler.py,sha256=Q5EHfAWcEqiE9rH0lQeFXPn0WQdwiRlrl4lZI1OXPqo,10394
41
40
  ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
42
41
  ads/aqua/extension/errors.py,sha256=4LbzZdCoDEtOcrVI-1dgiza4oAYGof6w5LbN6HqroYk,1396
43
42
  ads/aqua/extension/evaluation_handler.py,sha256=fJH73fa0xmkEiP8SxKL4A4dJgj-NoL3z_G-w_WW2zJs,4353
44
43
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
45
44
  ads/aqua/extension/finetune_handler.py,sha256=97obbhITswTrBvl88g7gk4GvF2SUHBGUAq4rOylFbtQ,3079
46
- ads/aqua/extension/model_handler.py,sha256=Z0DYPCFALme_sae1Bm-Kh97e5VQWqsOuUZ8YrMm7cHQ,12291
47
- ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
45
+ ads/aqua/extension/model_handler.py,sha256=LlfBqGI4YVXio0gUnqi7Tpe3yfkc7-ToZCcQ3cds6rY,14094
46
+ ads/aqua/extension/models_ws_msg_handler.py,sha256=VyPbtBZrbRMIYJqOy5DR7j4M4qJK1RBqkxX6RbIvPGE,1851
48
47
  ads/aqua/extension/ui_handler.py,sha256=Q0LkrV6VtVUI4GpNgqJQt8SGzxHzp4X5hdHF6KgPp9M,11217
49
48
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
50
- ads/aqua/extension/utils.py,sha256=RBHTN5rPcg4J6i6O7I1ageVT7Iw3GM5zbfVNTg3QhCc,5834
49
+ ads/aqua/extension/utils.py,sha256=-uppIKADKl8TFzZB2QWEIei_wtVwWN63qffhuh4Q_KA,5159
51
50
  ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
52
- ads/aqua/extension/models/ws_models.py,sha256=y_3LlzKGNRcWqfuW5TGHl0PchM5xE83WGmRL0t0GKwY,3306
51
+ ads/aqua/extension/models/ws_models.py,sha256=IgAwu324zlT0XII2nFWQUTeEzqvbFch_9Kjwgsz3irQ,3360
53
52
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
54
53
  ads/aqua/finetuning/constants.py,sha256=Fx-8LMyF9ZbV9zo5LUYgCv9VniV7djGnM2iW7js2ILE,844
55
- ads/aqua/finetuning/entities.py,sha256=1RRaRFuxoBtApeCIqG-0H8Iom2kz2dv7LOX6y2wWLnA,6116
56
- ads/aqua/finetuning/finetuning.py,sha256=HWTBPq_rVCul61inyEmbqLyCtWLItNPRAeOfX83Bxa4,29514
54
+ ads/aqua/finetuning/entities.py,sha256=ax6tpqrzuF54YNdwJNRSpzhAnkvOeXdnJ18EA-GfIlw,6885
55
+ ads/aqua/finetuning/finetuning.py,sha256=SizHmPN1kOlzriQ2GHUvyhL9LxEmntoBFusHhYAz6SI,30220
57
56
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
58
- ads/aqua/model/constants.py,sha256=3BT5Dpr7EmTrBL7xF128gHGGjwyBgwAr3OlLSWSnR9g,1628
59
- ads/aqua/model/entities.py,sha256=kBjsihInnbGw9MhWQEfJ4hcWEzv6BxF8VlDDFWUPYVg,9903
57
+ ads/aqua/model/constants.py,sha256=oOAb4ulsdWBtokCE5SPX7wg8X8SaisLPayua58zhWfY,1856
58
+ ads/aqua/model/entities.py,sha256=8P9BEXCroruJHA1RhL66NdmScL-Lql1_7SjnFYk273Y,10089
60
59
  ads/aqua/model/enums.py,sha256=iJi-AZRh7KR_HK5HUwTkgnTOGVna2Ai5WEzqCjk7Y3s,1079
61
- ads/aqua/model/model.py,sha256=Um7CqAJlFm4UOFtfU70KUXOaTC2fVpixJi1MqOUBKSQ,78762
60
+ ads/aqua/model/model.py,sha256=A_s4a4B6jh-VHgfqzuxDzfPHEe9c2O4P_Dm8ZA56LjA,86719
62
61
  ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
63
62
  ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
64
- ads/aqua/modeldeployment/deployment.py,sha256=bKwq0-qrAni2mZ9LMslcME-qlWSOhp7bn1H1zCvi1e0,55636
63
+ ads/aqua/modeldeployment/deployment.py,sha256=8HWFkc50_DdTM4MEPVzUXYOxvAmXeEHplqsPzK-II8k,56071
65
64
  ads/aqua/modeldeployment/entities.py,sha256=qwNH-8eHv-C2QPMITGQkb6haaJRvZ5c0i1H0Aoxeiu4,27100
66
65
  ads/aqua/modeldeployment/inference.py,sha256=rjTF-AM_rHLzL5HCxdLRTrsaSMdB-SzFYUp9dIy5ejw,2109
67
- ads/aqua/modeldeployment/utils.py,sha256=YmQ1PNDTIJ_s1gjlwEdNlZL5VhAjx8Zd4pvyUKgCb58,21240
66
+ ads/aqua/modeldeployment/utils.py,sha256=Aky4WZ5E564JVZ96X9RYJz_KlB_cAHGzV6mihtd3HV8,22009
68
67
  ads/aqua/resources/gpu_shapes_index.json,sha256=-6rSkyQ04T1z_Yfr3cxGPI7NAtgTwG7beIEjLYuMMIc,1948
69
68
  ads/aqua/server/__init__.py,sha256=fswoO0kX0hrp2b1owF4f-bv_OodntvvUY3FvhL6FCMk,179
70
69
  ads/aqua/server/__main__.py,sha256=5dbL01nblJYTQ9Qi8A3dT7Dt7qDhxfPMlEIAYqiQ9iI,749
@@ -171,7 +170,7 @@ ads/dataset/label_encoder.py,sha256=JEvS7zdQRrj-hyDqLCY-tXLeROYCtdibapRWoUDXy_0,
171
170
  ads/dataset/pipeline.py,sha256=laXu4E-ipL7UKWEeTcvJEw2ub8YYUNFUo4Taqa4eB_o,1642
172
171
  ads/dataset/plot.py,sha256=8DB7brJqBJBsTFWogOxfYPYwTykFwAHFOIjA3Q8P2NE,26056
173
172
  ads/dataset/progress.py,sha256=ulcjMurT0P0FKJk0-6tmUQF5clpv2VGpnD2shM2EIHA,2298
174
- ads/dataset/recommendation.py,sha256=GZQiTxAC8ucSRV6W_ioEtbN8tKUV2By930iaBgGckjA,12909
173
+ ads/dataset/recommendation.py,sha256=lxVN9ThG2Mjs9aSLbVRxx_lWJ1U3kFZEN5QoqMiY-aw,12633
175
174
  ads/dataset/recommendation_transformer.py,sha256=ijt7EnG65vUuuMgfMH6gRE-kSVXtXoHvieFiagWg05U,22159
176
175
  ads/dataset/regression_dataset.py,sha256=KYoxzhn7kPXSUFX_QDDC4eSHP-3rAC3Y-2BHj-L28Zo,562
177
176
  ads/dataset/sampled_dataset.py,sha256=rvmQagFVDXZXtmUw_ugKO1cDL4sOZfqvsG033PnxXR4,39566
@@ -500,7 +499,7 @@ ads/model/artifact.py,sha256=CmHdeINF0K6p2MaWZOwU5tLPQ9PoIdnfQis2voMAhHE,21459
500
499
  ads/model/artifact_downloader.py,sha256=mGVvIl_pfNikvPIsPgLCrh36z-puQ-DCYGjYbqGrSJ0,9769
501
500
  ads/model/artifact_uploader.py,sha256=jdkpmncczceOc28LyMkv4u6f845HJ1vVCoI-hLBT-RM,11305
502
501
  ads/model/base_properties.py,sha256=YeVyjCync4fzqqruMc9UfZKR4PnscU31n0mf4CJv3R8,7885
503
- ads/model/datascience_model.py,sha256=T0T6czpp6hTFTAkyJv3b-9Iz8nw9F-DiW3-pEB6O-6E,97619
502
+ ads/model/datascience_model.py,sha256=dp0h7CvTd_PpaPSgDAvozIbCtAn5VetJXodJziXfOkU,98499
504
503
  ads/model/generic_model.py,sha256=JVL5WYpZW7LSECm8Yeq59IDLymMRgfF2SIkOkqdoU8c,147014
505
504
  ads/model/model_file_description_schema.json,sha256=NZw_U4CvKf9oOdxCKr1eUxq8FHwjR_g0GSDk0Hz3SnE,1402
506
505
  ads/model/model_introspect.py,sha256=z9pJul9dwT9w8flvRguhu0ZKoEkbm2Tvdutw_SHYTeg,9745
@@ -563,7 +562,7 @@ ads/model/serde/common.py,sha256=cDtblusT8fZ04mbBASg7EC62oaB9Sp7X_NPPhPiDnJk,112
563
562
  ads/model/serde/model_input.py,sha256=MB6Uf4H_UzlAUTRIRqHTW4ZiyQKw0yerGtUE-WFSw-g,18577
564
563
  ads/model/serde/model_serializer.py,sha256=2vi4MoUHZV-V-4r1OWD5YJzwARFqIBv7-oyGeXGhrK4,43197
565
564
  ads/model/service/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
566
- ads/model/service/oci_datascience_model.py,sha256=gyaFcFC9-yVjAd8pgV0bJ1X7-giZuHSutpxMjsYwz7o,38765
565
+ ads/model/service/oci_datascience_model.py,sha256=Dv4t_6ZnJTwnCBFpv44mv2pyVGJQVIBTaYaWdvvAGN8,38771
567
566
  ads/model/service/oci_datascience_model_deployment.py,sha256=ONiogPK_wN7omxdnTMAcJhcvDEZQwI_XqmT84Q1xoj0,18472
568
567
  ads/model/service/oci_datascience_model_version_set.py,sha256=lYw9BauH4BNZk2Jdf8mRjFO3MorQDSMPAxkP-inlwiM,5690
569
568
  ads/model/transformer/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
@@ -579,7 +578,7 @@ ads/opctl/forecast.py,sha256=ZInj8FyXHkdjiEmXDc-jH1xT7JAGHEKwP0Lnq39xWGQ,418
579
578
  ads/opctl/index.yaml,sha256=cf9j3VXcNY-DvFlAZQLZj8-hA9QArWlirPtN1sRKqyM,68
580
579
  ads/opctl/schema.yaml.yml,sha256=L4eoHVFLu5tHPDOD53-dVGbscKkXG86i4IbRX-bVL2g,546
581
580
  ads/opctl/script.py,sha256=3AgTOjDnvmheu4ROrn56d38h8wZVOZwne_ix2x3U6bY,1181
582
- ads/opctl/utils.py,sha256=DcEbj4xMB4H8brjwq6-F1SyWDK4o007xRTWC0IEmvoM,10672
581
+ ads/opctl/utils.py,sha256=QL0TmdVdP9Cywwqt8pF7mcpJpG0tLfc8A9M6X_sb20U,10671
583
582
  ads/opctl/backend/__init__.py,sha256=DwYupQz6SOfMLmmAjJ9danchK0shQRJKTGPU--naQgY,204
584
583
  ads/opctl/backend/ads_dataflow.py,sha256=XHk6OEcaWPU6vRvvRMqROiN8PriFKx_5Gvu6cz6pZas,13031
585
584
  ads/opctl/backend/ads_ml_job.py,sha256=Wwt2uiehi7ulkoPlhb4k5UeqYw1Y56Y_ANhGw5G5zP8,27834
@@ -674,15 +673,15 @@ ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9nd
674
673
  ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
675
674
  ads/opctl/operator/lowcode/anomaly/const.py,sha256=t-Mf1BS3bGZgxWQslFhZ8D90DGueusemQQLgoKLDnF4,4706
676
675
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
677
- ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
676
+ ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=72A_6lmJSWrGkxfWWC_GN5qhUqHps8FhBX2l8D9uuqg,4407
678
677
  ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=CrqXpSgGPwv4NVL5gEZNHChdVCFilm4k9OGDbY9UnGw,9509
679
678
  ads/opctl/operator/lowcode/anomaly/utils.py,sha256=szOgGp6ssrE6yk8LA69w2Kk2pZ2ZGXemV5jrvJqNwQg,2844
680
679
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
681
- ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
680
+ ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=FN4JO5x1rLzeyC2_tsXhP6gPb4-TBHrMa4uJdybz-Us,5404
682
681
  ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=IT0g6wf2rZI-GFuuOgtESWYTE_D77P8y9YeRZ6ucguQ,5836
683
682
  ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=40rY-mVYoLBmDw5uagayRoyYSkjsIY4U4LfyeU11AoA,3469
684
683
  ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Ft6bLEXdpIMMDv4lLBzLhC2kRZki7zD9Jnu-LIPDDbw,4154
685
- ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=K8r6408xE6e5GeY1zN-WLdr38X2DY0S9qhAMpsnEHF8,15542
684
+ ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=5XOwbdJV7fjAr6DXP0LA0XLS0EmV77Xx75p_WEhh4ak,15523
686
685
  ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=EVYgEGvVTMNFt-tDP6SH3qDoVBAZD3D_Jlw6Xu9zdQU,4148
687
686
  ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=e_C_I6d6PVojPoHz_D5r8nC_JctTYooVVKFlcX5kkls,2657
688
687
  ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eejgAtxwjGzWJBVdgp0oZHM4NCLAQh-AksGE0YuM7D4,2557
@@ -692,7 +691,7 @@ ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi
692
691
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
693
692
  ads/opctl/operator/lowcode/common/data.py,sha256=_0UbW-A0kVQjNOO2aeZoRiebgmKqDqcprPPjZ6KDWdk,4188
694
693
  ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
695
- ads/opctl/operator/lowcode/common/transformations.py,sha256=tR-D_7dRG5bcckG0M0-trExEF5w75angTEjnkss4Vtk,10899
694
+ ads/opctl/operator/lowcode/common/transformations.py,sha256=n-Yac9WtI9GLEc5sDKSq75-2q0j59bR_pxlV5EAmkO0,11048
696
695
  ads/opctl/operator/lowcode/common/utils.py,sha256=z8NqmBk1ScU6R1cTBna9drJxkoD-UGiPqvN9HUw2VR8,9941
697
696
  ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
698
697
  ads/opctl/operator/lowcode/feature_store_marketplace/README.md,sha256=fN9ROzOPdEZdRgSP_uYvAmD5bD983NC7Irfe_D-mvrw,1356
@@ -722,7 +721,7 @@ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=RoNwjg5jxXMbljtregMkV_rJb
722
721
  ads/opctl/operator/lowcode/forecast/utils.py,sha256=0ssrXBAEL5hjQX4avLPkSwFp3sKE8QV5M3K5InqvzYg,14137
723
722
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
724
723
  ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=PvHoTdDr6RIC4I-YLzed91td6Pq6uxbgluEdu_h0e3c,11766
725
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=2M1Ipnq73x-bnKg9ju4Oyi9-0WxmdrCNWgAACob1HRI,21488
724
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=4XwS60f7Cs9-oexAn_v0hiWHmrw4jBY_o-_VLzuOd-4,22891
726
725
  ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=UThBBGsEiC3WLSn-BPAuNWT_ZFa3bYMu52keB0vvSt8,13137
727
726
  ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s9WwPpo61YY7teAcmL2MK7cl1GGYAKZu7IkxoReD1I0,35969
728
727
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=5a9A3ql-bU412BiTB20ob6OxQlkdk8z_tGONMwDXT1k,3900
@@ -748,7 +747,7 @@ ads/opctl/operator/lowcode/pii/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmS
748
747
  ads/opctl/operator/lowcode/pii/model/factory.py,sha256=mM-xifHwVa1tGHcTcvgySUrGsPmIqmOavf8i_dVbkRQ,2502
749
748
  ads/opctl/operator/lowcode/pii/model/guardrails.py,sha256=--GUFt-zlVyJY5WQZNMHjQDlVfVy-tYeXubgvYN-H-U,6246
750
749
  ads/opctl/operator/lowcode/pii/model/pii.py,sha256=hbOomsCNgj7uZNOdUIja3rE-iTGhh9P2hKh8xrtpXR4,5110
751
- ads/opctl/operator/lowcode/pii/model/report.py,sha256=vDivP5dWWBoIzDpT1ww2WMBZKybX6DigaPSCW46F__Q,16361
750
+ ads/opctl/operator/lowcode/pii/model/report.py,sha256=8D24DlDHPy_FRNUzFkKN7iTFH-974xiJ48rzUWsUsd8,16167
752
751
  ads/opctl/operator/lowcode/pii/model/processor/__init__.py,sha256=febfGPoGJXTD-hCJoiVmsnBP3K3MYBqfuQoTNPm_4kY,910
753
752
  ads/opctl/operator/lowcode/pii/model/processor/email_replacer.py,sha256=sTjMbP8UfwszrzFI0QgzZ0BwWfVqYxhWJ1z8S5AcE2U,996
754
753
  ads/opctl/operator/lowcode/pii/model/processor/mbi_replacer.py,sha256=nm4dRZjFwxraktXTR1FConaAH4o1uagiXMVeGU0H0O0,1025
@@ -847,13 +846,13 @@ ads/type_discovery/ip_detector.py,sha256=d_r_cc1uD9C2QHtVaqchn6vHB96XmaBeSI45ed5
847
846
  ads/type_discovery/latlon_detector.py,sha256=i1erHHOonvoCTSf738l0-w5U71ZVpEduAA7LyAUtIF0,2831
848
847
  ads/type_discovery/phone_number_detector.py,sha256=qajNmBjqL4pGrh2A69AbFjiCHXQqk8kWUVZtWgJM3l4,1952
849
848
  ads/type_discovery/type_discovery_driver.py,sha256=HsRleEI7Dw_LznFGLb82fO-KIgvWIfLOiIxj3rCgZgw,2710
850
- ads/type_discovery/typed_feature.py,sha256=B_DASHXyXH-tMtES6URept4u37Feke9zNP6vcxEkMOg,20112
849
+ ads/type_discovery/typed_feature.py,sha256=AwqKzb0Eu049-54_PwYuGL8SuHuseZjxThPaxj76nL0,20166
851
850
  ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1yg5fm8-AOg,1341
852
851
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
853
852
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
854
853
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
855
- oracle_ads-2.13.5.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
856
- oracle_ads-2.13.5.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
857
- oracle_ads-2.13.5.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
858
- oracle_ads-2.13.5.dist-info/METADATA,sha256=X_fCTf7Z5NMzhSK-j-O9ikinJQ6WMydYIZyfJO7TfPE,16639
859
- oracle_ads-2.13.5.dist-info/RECORD,,
854
+ oracle_ads-2.13.7.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
855
+ oracle_ads-2.13.7.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
856
+ oracle_ads-2.13.7.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
857
+ oracle_ads-2.13.7.dist-info/METADATA,sha256=KdppdpPFasY7kL7tn_VDR0DK67piMATXa9XdW80TNqA,16639
858
+ oracle_ads-2.13.7.dist-info/RECORD,,
ads/aqua/config/config.py DELETED
@@ -1,31 +0,0 @@
1
- #!/usr/bin/env python
2
- # Copyright (c) 2024 Oracle and/or its affiliates.
3
- # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
4
-
5
-
6
- from typing import Optional
7
-
8
- from ads.aqua.common.entities import ContainerSpec
9
- from ads.aqua.common.utils import get_container_config
10
- from ads.aqua.config.evaluation.evaluation_service_config import EvaluationServiceConfig
11
-
12
- DEFAULT_EVALUATION_CONTAINER = "odsc-llm-evaluate"
13
-
14
-
15
- def get_evaluation_service_config(
16
- container: Optional[str] = DEFAULT_EVALUATION_CONTAINER,
17
- ) -> EvaluationServiceConfig:
18
- """
19
- Retrieves the common evaluation configuration.
20
-
21
- Returns
22
- -------
23
- EvaluationServiceConfig: The evaluation common config.
24
- """
25
-
26
- container = container or DEFAULT_EVALUATION_CONTAINER
27
- return EvaluationServiceConfig(
28
- **get_container_config()
29
- .get(ContainerSpec.CONTAINER_SPEC, {})
30
- .get(container, {})
31
- )