oracle-ads 2.13.2__py3-none-any.whl → 2.13.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (24) hide show
  1. ads/aqua/app.py +2 -1
  2. ads/aqua/evaluation/evaluation.py +11 -10
  3. ads/aqua/finetuning/finetuning.py +2 -3
  4. ads/opctl/operator/lowcode/anomaly/model/base_model.py +3 -3
  5. ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py +1 -1
  6. ads/opctl/operator/lowcode/anomaly/utils.py +1 -1
  7. ads/opctl/operator/lowcode/common/transformations.py +5 -1
  8. ads/opctl/operator/lowcode/common/utils.py +7 -2
  9. ads/opctl/operator/lowcode/forecast/model/arima.py +15 -10
  10. ads/opctl/operator/lowcode/forecast/model/automlx.py +31 -9
  11. ads/opctl/operator/lowcode/forecast/model/autots.py +7 -5
  12. ads/opctl/operator/lowcode/forecast/model/base_model.py +127 -101
  13. ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py +14 -6
  14. ads/opctl/operator/lowcode/forecast/model/ml_forecast.py +2 -2
  15. ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +46 -32
  16. ads/opctl/operator/lowcode/forecast/model/prophet.py +82 -29
  17. ads/opctl/operator/lowcode/forecast/model_evaluator.py +136 -54
  18. ads/opctl/operator/lowcode/forecast/operator_config.py +29 -3
  19. ads/opctl/operator/lowcode/forecast/whatifserve/deployment_manager.py +103 -58
  20. {oracle_ads-2.13.2.dist-info → oracle_ads-2.13.3.dist-info}/METADATA +1 -1
  21. {oracle_ads-2.13.2.dist-info → oracle_ads-2.13.3.dist-info}/RECORD +24 -24
  22. {oracle_ads-2.13.2.dist-info → oracle_ads-2.13.3.dist-info}/WHEEL +0 -0
  23. {oracle_ads-2.13.2.dist-info → oracle_ads-2.13.3.dist-info}/entry_points.txt +0 -0
  24. {oracle_ads-2.13.2.dist-info → oracle_ads-2.13.3.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,5 +1,4 @@
1
1
  #!/usr/bin/env python
2
- import json
3
2
  # Copyright (c) 2023, 2024 Oracle and/or its affiliates.
4
3
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
5
4
 
@@ -8,39 +7,58 @@ import pickle
8
7
  import shutil
9
8
  import sys
10
9
  import tempfile
11
- import oci
12
10
 
13
- import pandas as pd
14
11
  import cloudpickle
12
+ import oci
13
+ import pandas as pd
14
+ from oci.data_science import DataScienceClient, DataScienceClientCompositeOperations
15
+ from oci.data_science.models import (
16
+ CategoryLogDetails,
17
+ CreateModelDeploymentDetails,
18
+ FixedSizeScalingPolicy,
19
+ InstanceConfiguration,
20
+ LogDetails,
21
+ ModelConfigurationDetails,
22
+ SingleModelDeploymentConfigurationDetails,
23
+ )
15
24
 
16
- from ads.opctl import logger
17
25
  from ads.common.model_export_util import prepare_generic_model
26
+ from ads.common.object_storage_details import ObjectStorageDetails
27
+ from ads.opctl import logger
18
28
  from ads.opctl.operator.common.utils import create_log_in_log_group
19
- from ads.opctl.operator.lowcode.common.utils import write_data, write_simple_json
20
- from ads.opctl.operator.lowcode.common.utils import default_signer
29
+ from ads.opctl.operator.lowcode.common.utils import (
30
+ default_signer,
31
+ write_data,
32
+ write_simple_json,
33
+ )
34
+
21
35
  from ..model.forecast_datasets import AdditionalData
22
36
  from ..operator_config import ForecastOperatorSpec
23
37
 
24
- from oci.data_science import DataScienceClient, DataScienceClientCompositeOperations
25
-
26
- from oci.data_science.models import ModelConfigurationDetails, InstanceConfiguration, \
27
- FixedSizeScalingPolicy, CategoryLogDetails, LogDetails, \
28
- SingleModelDeploymentConfigurationDetails, CreateModelDeploymentDetails
29
- from ads.common.object_storage_details import ObjectStorageDetails
30
-
31
38
 
32
39
  class ModelDeploymentManager:
33
- def __init__(self, spec: ForecastOperatorSpec, additional_data: AdditionalData, previous_model_version=None):
40
+ def __init__(
41
+ self,
42
+ spec: ForecastOperatorSpec,
43
+ additional_data: AdditionalData,
44
+ previous_model_version=None,
45
+ ):
34
46
  self.spec = spec
35
47
  self.model_name = spec.model
36
48
  self.horizon = spec.horizon
37
49
  self.additional_data = additional_data.get_dict_by_series()
38
50
  self.model_obj = {}
39
51
  self.display_name = spec.what_if_analysis.model_display_name
40
- self.project_id = spec.what_if_analysis.project_id if spec.what_if_analysis.project_id \
41
- else os.environ.get('PROJECT_OCID')
42
- self.compartment_id = spec.what_if_analysis.compartment_id if spec.what_if_analysis.compartment_id \
43
- else os.environ.get('NB_SESSION_COMPARTMENT_OCID')
52
+ self.project_id = (
53
+ spec.what_if_analysis.project_id
54
+ if spec.what_if_analysis.project_id
55
+ else os.environ.get("PROJECT_OCID")
56
+ )
57
+ self.compartment_id = (
58
+ spec.what_if_analysis.compartment_id
59
+ if spec.what_if_analysis.compartment_id
60
+ else os.environ.get("NB_SESSION_COMPARTMENT_OCID")
61
+ )
44
62
  if self.project_id is None or self.compartment_id is None:
45
63
  raise ValueError("Either project_id or compartment_id cannot be None.")
46
64
  self.path_to_artifact = f"{self.spec.output_directory.url}/artifacts/"
@@ -58,17 +76,23 @@ class ModelDeploymentManager:
58
76
  try:
59
77
  sys.path.insert(0, f"{self.path_to_artifact}")
60
78
  from score import load_model, predict
79
+
61
80
  _ = load_model()
62
81
 
63
82
  # Write additional data to tmp file and perform sanity check
64
- with tempfile.NamedTemporaryFile(suffix='.csv') as temp_file:
83
+ with tempfile.NamedTemporaryFile(suffix=".csv") as temp_file:
65
84
  one_series = next(iter(self.additional_data))
66
- sample_prediction_data = self.additional_data[one_series].tail(self.horizon)
67
- sample_prediction_data[self.spec.target_category_columns[0]] = one_series
85
+ sample_prediction_data = self.additional_data[one_series].tail(
86
+ self.horizon
87
+ )
88
+ sample_prediction_data[self.spec.target_category_columns[0]] = (
89
+ one_series
90
+ )
68
91
  date_col_name = self.spec.datetime_column.name
69
92
  date_col_format = self.spec.datetime_column.format
70
- sample_prediction_data[date_col_name] = sample_prediction_data[date_col_name].dt.strftime(
71
- date_col_format)
93
+ sample_prediction_data[date_col_name] = sample_prediction_data[
94
+ date_col_name
95
+ ].dt.strftime(date_col_format)
72
96
  sample_prediction_data.to_csv(temp_file.name, index=False)
73
97
  input_data = {"additional_data": {"url": temp_file.name}}
74
98
  prediction_test = predict(input_data, _)
@@ -86,16 +110,18 @@ class ModelDeploymentManager:
86
110
  try:
87
111
  current_dir = os.path.dirname(os.path.abspath(__file__))
88
112
  score_file = os.path.join(current_dir, "score.py")
89
- destination_file = os.path.join(self.path_to_artifact, os.path.basename(score_file))
113
+ destination_file = os.path.join(
114
+ self.path_to_artifact, os.path.basename(score_file)
115
+ )
90
116
  shutil.copy2(score_file, destination_file)
91
117
  logger.info(f"score.py copied successfully to {self.path_to_artifact}")
92
118
  except Exception as e:
93
- logger.warn(f"Error copying file: {e}")
119
+ logger.warning(f"Error copying file: {e}")
94
120
  raise e
95
121
 
96
122
  def save_to_catalog(self):
97
123
  """Save the model to a model catalog"""
98
- with open(self.pickle_file_path, 'rb') as file:
124
+ with open(self.pickle_file_path, "rb") as file:
99
125
  self.model_obj = pickle.load(file)
100
126
 
101
127
  if not os.path.exists(self.path_to_artifact):
@@ -108,7 +134,8 @@ class ModelDeploymentManager:
108
134
  self.path_to_artifact,
109
135
  function_artifacts=False,
110
136
  force_overwrite=True,
111
- data_science_env=True)
137
+ data_science_env=True,
138
+ )
112
139
 
113
140
  self._copy_score_file()
114
141
  self._sanity_test()
@@ -124,11 +151,14 @@ class ModelDeploymentManager:
124
151
  display_name=self.display_name,
125
152
  compartment_id=self.compartment_id,
126
153
  project_id=self.project_id,
127
- description=description)
154
+ description=description,
155
+ )
128
156
  self.catalog_id = catalog_entry.id
129
157
 
130
- logger.info(f"Saved {self.model_name} version-v{self.model_version} to model catalog"
131
- f" with model ocid : {self.catalog_id}")
158
+ logger.info(
159
+ f"Saved {self.model_name} version-v{self.model_version} to model catalog"
160
+ f" with model ocid : {self.catalog_id}"
161
+ )
132
162
 
133
163
  self.deployment_info = {"model_ocid": self.catalog_id, "series": list(series)}
134
164
 
@@ -154,19 +184,25 @@ class ModelDeploymentManager:
154
184
  metric_type=auto_scaling_config.scaling_metric,
155
185
  scale_in_configuration=oci.data_science.models.PredefinedExpressionThresholdScalingConfiguration(
156
186
  scaling_configuration_type="THRESHOLD",
157
- threshold=auto_scaling_config.scale_in_threshold
187
+ threshold=auto_scaling_config.scale_in_threshold,
158
188
  ),
159
189
  scale_out_configuration=oci.data_science.models.PredefinedExpressionThresholdScalingConfiguration(
160
190
  scaling_configuration_type="THRESHOLD",
161
- threshold=auto_scaling_config.scale_out_threshold
162
- )
163
- )],
191
+ threshold=auto_scaling_config.scale_out_threshold,
192
+ ),
193
+ )
194
+ ],
164
195
  maximum_instance_count=auto_scaling_config.maximum_instance,
165
196
  minimum_instance_count=auto_scaling_config.minimum_instance,
166
- initial_instance_count=auto_scaling_config.minimum_instance)],
197
+ initial_instance_count=auto_scaling_config.minimum_instance,
198
+ )
199
+ ],
167
200
  cool_down_in_seconds=auto_scaling_config.cool_down_in_seconds,
168
- is_enabled=True)
169
- logger.info(f"Using autoscaling {auto_scaling_config.scaling_metric} for creating MD")
201
+ is_enabled=True,
202
+ )
203
+ logger.info(
204
+ f"Using autoscaling {auto_scaling_config.scaling_metric} for creating MD"
205
+ )
170
206
  else:
171
207
  scaling_policy = FixedSizeScalingPolicy(instance_count=1)
172
208
  logger.info("Using fixed size policy for creating MD")
@@ -174,13 +210,15 @@ class ModelDeploymentManager:
174
210
  model_configuration_details_object = ModelConfigurationDetails(
175
211
  model_id=self.catalog_id,
176
212
  instance_configuration=InstanceConfiguration(
177
- instance_shape_name=initial_shape),
213
+ instance_shape_name=initial_shape
214
+ ),
178
215
  scaling_policy=scaling_policy,
179
- bandwidth_mbps=20)
216
+ bandwidth_mbps=20,
217
+ )
180
218
 
181
219
  single_model_config = SingleModelDeploymentConfigurationDetails(
182
- deployment_type='SINGLE_MODEL',
183
- model_configuration_details=model_configuration_details_object
220
+ deployment_type="SINGLE_MODEL",
221
+ model_configuration_details=model_configuration_details_object,
184
222
  )
185
223
 
186
224
  log_group = self.spec.what_if_analysis.model_deployment.log_group
@@ -191,10 +229,9 @@ class ModelDeploymentManager:
191
229
  log_id = create_log_in_log_group(self.compartment_id, log_group, auth)
192
230
 
193
231
  logs_configuration_details_object = CategoryLogDetails(
194
- access=LogDetails(log_group_id=log_group,
195
- log_id=log_id),
196
- predict=LogDetails(log_group_id=log_group,
197
- log_id=log_id))
232
+ access=LogDetails(log_group_id=log_group, log_id=log_id),
233
+ predict=LogDetails(log_group_id=log_group, log_id=log_id),
234
+ )
198
235
 
199
236
  model_deploy_configuration = CreateModelDeploymentDetails(
200
237
  display_name=name,
@@ -202,24 +239,30 @@ class ModelDeploymentManager:
202
239
  project_id=self.project_id,
203
240
  compartment_id=self.compartment_id,
204
241
  model_deployment_configuration_details=single_model_config,
205
- category_log_details=logs_configuration_details_object)
242
+ category_log_details=logs_configuration_details_object,
243
+ )
206
244
 
207
245
  if not self.test_mode:
208
246
  auth = oci.auth.signers.get_resource_principals_signer()
209
247
  data_science = DataScienceClient({}, signer=auth)
210
248
  data_science_composite = DataScienceClientCompositeOperations(data_science)
211
- model_deployment = data_science_composite.create_model_deployment_and_wait_for_state(
212
- model_deploy_configuration,
213
- wait_for_states=[
214
- "SUCCEEDED", "FAILED"])
215
- self.deployment_info['work_request'] = model_deployment.data.id
249
+ model_deployment = (
250
+ data_science_composite.create_model_deployment_and_wait_for_state(
251
+ model_deploy_configuration, wait_for_states=["SUCCEEDED", "FAILED"]
252
+ )
253
+ )
254
+ self.deployment_info["work_request"] = model_deployment.data.id
216
255
  logger.info(f"deployment metadata :{model_deployment.data}")
217
- md = data_science.get_model_deployment(model_deployment_id=model_deployment.data.resources[0].identifier)
218
- self.deployment_info['model_deployment_ocid'] = md.data.id
219
- self.deployment_info['status'] = md.data.lifecycle_state
256
+ md = data_science.get_model_deployment(
257
+ model_deployment_id=model_deployment.data.resources[0].identifier
258
+ )
259
+ self.deployment_info["model_deployment_ocid"] = md.data.id
260
+ self.deployment_info["status"] = md.data.lifecycle_state
220
261
  endpoint_url = md.data.model_deployment_url
221
- self.deployment_info['model_deployment_endpoint'] = f"{endpoint_url}/predict"
222
- self.deployment_info['log_id'] = log_id
262
+ self.deployment_info["model_deployment_endpoint"] = (
263
+ f"{endpoint_url}/predict"
264
+ )
265
+ self.deployment_info["log_id"] = log_id
223
266
 
224
267
  def save_deployment_info(self):
225
268
  output_dir = self.spec.output_directory.url
@@ -234,7 +277,9 @@ class ModelDeploymentManager:
234
277
  storage_options=storage_options,
235
278
  index=False,
236
279
  indent=4,
237
- orient="records"
280
+ orient="records",
281
+ )
282
+ write_simple_json(
283
+ self.deployment_info, os.path.join(output_dir, "deployment_info.json")
238
284
  )
239
- write_simple_json(self.deployment_info, os.path.join(output_dir, "deployment_info.json"))
240
285
  logger.info(f"Saved deployment info to {output_dir}")
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oracle_ads
3
- Version: 2.13.2
3
+ Version: 2.13.3
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -2,7 +2,7 @@ ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
2
  ads/cli.py,sha256=WkOpZv8jWgFYN9BNkt2LJBs9KzJHgFqq3pIymsqc8Q4,4292
3
3
  ads/config.py,sha256=Xa6CGxNUQf3CKTS9HpXnAWR5kOFvAs0M66f8kEl6z54,8051
4
4
  ads/aqua/__init__.py,sha256=I3HL7LadTue3X41EPUZue4rILG8xeMTapJiBA6Lu8Mg,1149
5
- ads/aqua/app.py,sha256=Ug-Jt5qvnO1CtxRqIf9dWbz6i_WrR4rf0Mf3s8dgGXA,14281
5
+ ads/aqua/app.py,sha256=_LrDKMR0SSxPEylIMPTsJvXnSnJFDud_MS3tMO25RMo,14360
6
6
  ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
7
  ads/aqua/constants.py,sha256=bdBBafATGl5rYHjZ2i9jZPDKFab8nWjzjJKA2DFgIDc,3019
8
8
  ads/aqua/data.py,sha256=HfxLfKiNiPJecMQy0JAztUsT3IdZilHHHOrCJnjZMc4,408
@@ -30,7 +30,7 @@ ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89
30
30
  ads/aqua/evaluation/constants.py,sha256=dmvDs_t93EhGa0N7J0y8R18AFW0cokj2Q5Oy0LHelxU,1436
31
31
  ads/aqua/evaluation/entities.py,sha256=pvZWrO-Hlsh0TIFnly84OijKHULRVM13D5a-4ZGxte8,5733
32
32
  ads/aqua/evaluation/errors.py,sha256=IbqcQFgXfwzlF5EoaT5jPw8JE8OWqtgiXpH0ddFhRzY,4523
33
- ads/aqua/evaluation/evaluation.py,sha256=p3oPgogtdE_viFCeS6jiJENGrWlYZMPloPW7c50r5ns,59595
33
+ ads/aqua/evaluation/evaluation.py,sha256=Q8822M1asVpBdw5e2LmN1B-vI3k8SdT-44nGQI0d4YI,59510
34
34
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
35
35
  ads/aqua/extension/aqua_ws_msg_handler.py,sha256=zR7Fb3LEXzPrEICooWvuo_ahoY6KhcABpKUmYQkEpS0,3626
36
36
  ads/aqua/extension/base_handler.py,sha256=gK3YBBrkbG__0eAq49zHRmJKJXp-lvEOYdYlDuxWPpM,5475
@@ -52,7 +52,7 @@ ads/aqua/extension/models/ws_models.py,sha256=y_3LlzKGNRcWqfuW5TGHl0PchM5xE83WGm
52
52
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
53
53
  ads/aqua/finetuning/constants.py,sha256=Fx-8LMyF9ZbV9zo5LUYgCv9VniV7djGnM2iW7js2ILE,844
54
54
  ads/aqua/finetuning/entities.py,sha256=1RRaRFuxoBtApeCIqG-0H8Iom2kz2dv7LOX6y2wWLnA,6116
55
- ads/aqua/finetuning/finetuning.py,sha256=XICYUsbj6U2XMRs2aHMpTBaTlb2b88Moq3InR9IRYK4,26332
55
+ ads/aqua/finetuning/finetuning.py,sha256=-re_K9wR46_EbENddUEefNrnYd5IlR0GotUa_kkgXU8,26302
56
56
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
57
57
  ads/aqua/model/constants.py,sha256=pI_oHKSLJvt3dOC4hdkj75Y3CJqK9yW3AT1kHyDfPTI,1500
58
58
  ads/aqua/model/entities.py,sha256=kBjsihInnbGw9MhWQEfJ4hcWEzv6BxF8VlDDFWUPYVg,9903
@@ -673,24 +673,24 @@ ads/opctl/operator/lowcode/anomaly/const.py,sha256=t-Mf1BS3bGZgxWQslFhZ8D90DGueu
673
673
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
674
674
  ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
675
675
  ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=CrqXpSgGPwv4NVL5gEZNHChdVCFilm4k9OGDbY9UnGw,9509
676
- ads/opctl/operator/lowcode/anomaly/utils.py,sha256=edOuq7lbZ4Iz_T9FXtFv21ePBElaCGutfWE1QOhvxsg,2841
676
+ ads/opctl/operator/lowcode/anomaly/utils.py,sha256=szOgGp6ssrE6yk8LA69w2Kk2pZ2ZGXemV5jrvJqNwQg,2844
677
677
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
678
678
  ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
679
679
  ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=IT0g6wf2rZI-GFuuOgtESWYTE_D77P8y9YeRZ6ucguQ,5836
680
680
  ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=40rY-mVYoLBmDw5uagayRoyYSkjsIY4U4LfyeU11AoA,3469
681
681
  ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Ft6bLEXdpIMMDv4lLBzLhC2kRZki7zD9Jnu-LIPDDbw,4154
682
- ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=RUNyoGPKi09h4zMQ__NNyremGVZKvllH4_5_8ftNVDA,15533
682
+ ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=K8r6408xE6e5GeY1zN-WLdr38X2DY0S9qhAMpsnEHF8,15542
683
683
  ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=EVYgEGvVTMNFt-tDP6SH3qDoVBAZD3D_Jlw6Xu9zdQU,4148
684
684
  ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=e_C_I6d6PVojPoHz_D5r8nC_JctTYooVVKFlcX5kkls,2657
685
685
  ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eejgAtxwjGzWJBVdgp0oZHM4NCLAQh-AksGE0YuM7D4,2557
686
- ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=K8fVcG952bSUkgoXm7uU1jUUyBd8jvHprkbM4a7i_Xs,4329
686
+ ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=eZVtLTRCcA6ErVMh1kf7nbIXqiK9YMYzJslfcTUAdoo,4332
687
687
  ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=_v0KkdTKD3nqzOu3P5tE7bSV63Jy91h6Hr88Eequ0RU,4175
688
688
  ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
689
689
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
690
690
  ads/opctl/operator/lowcode/common/data.py,sha256=_0UbW-A0kVQjNOO2aeZoRiebgmKqDqcprPPjZ6KDWdk,4188
691
691
  ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
692
- ads/opctl/operator/lowcode/common/transformations.py,sha256=6EuuHBgLGd5TDgv1MVEblxI7kJqM30sUpNuXBNItjRY,10829
693
- ads/opctl/operator/lowcode/common/utils.py,sha256=d0Ex6YxVJm1s2W8tfSjy46jw0iM4ukNIw9qQKGWcGdc,9772
692
+ ads/opctl/operator/lowcode/common/transformations.py,sha256=tR-D_7dRG5bcckG0M0-trExEF5w75angTEjnkss4Vtk,10899
693
+ ads/opctl/operator/lowcode/common/utils.py,sha256=z8NqmBk1ScU6R1cTBna9drJxkoD-UGiPqvN9HUw2VR8,9941
694
694
  ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
695
695
  ads/opctl/operator/lowcode/feature_store_marketplace/README.md,sha256=fN9ROzOPdEZdRgSP_uYvAmD5bD983NC7Irfe_D-mvrw,1356
696
696
  ads/opctl/operator/lowcode/feature_store_marketplace/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
@@ -713,22 +713,22 @@ ads/opctl/operator/lowcode/forecast/cmd.py,sha256=uwU-QvnYwxoRFXZv7_JFkzAUnjTNoS
713
713
  ads/opctl/operator/lowcode/forecast/const.py,sha256=HJQFM35t-pG4g6z63YABx2ehuKfo9yBHklVbZrGpVzY,2615
714
714
  ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
715
715
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
716
- ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=cdOnYUKzNISelOsT3PLcCIVkkxI316hEfP4rZt1f-PE,9332
717
- ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=fcq0WrqW4AYkcW6d_L1lPETj95zjboZRmVGvAXxDQu4,7618
716
+ ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=crtCQ4KIWCueOf2zU-AKD_i3h_cJA_-qAGakdgBazVI,10257
717
+ ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=3pJzgbSqgPzE7vkce6KkthPQJEgWRRdDOAf1l6aSZpg,8318
718
718
  ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=RoNwjg5jxXMbljtregMkV_rJbax8ir7zdJltC5YfYM8,12438
719
719
  ads/opctl/operator/lowcode/forecast/utils.py,sha256=0ssrXBAEL5hjQX4avLPkSwFp3sKE8QV5M3K5InqvzYg,14137
720
720
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
721
- ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=5e0LI-rwya1aovnOlll9ZHt2qYy8Jr--OA8w_cuCdD0,11617
722
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=IEQBNt1k7xGiZ2gtMbNA1Dc37yaq2gMCLXAufBeYGMI,20449
723
- ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=RyLeD3dwMfrb6St-QFoH2MM8vH3inepVamRRovI-bwM,13086
724
- ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=NX8YKlk25JQNVb6b8dfWSLXANSqncdOZJo3mtVe_C8M,34497
721
+ ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=PvHoTdDr6RIC4I-YLzed91td6Pq6uxbgluEdu_h0e3c,11766
722
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=2M1Ipnq73x-bnKg9ju4Oyi9-0WxmdrCNWgAACob1HRI,21488
723
+ ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=UThBBGsEiC3WLSn-BPAuNWT_ZFa3bYMu52keB0vvSt8,13137
724
+ ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s9WwPpo61YY7teAcmL2MK7cl1GGYAKZu7IkxoReD1I0,35969
725
725
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=hSRPPWdpIRSMYPUFMIUuxc2TPZt-SG18MiqhtdfL3mg,3488
726
- ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=as9gN5k9ifohtc2N9OjiC5YK0-6cgS0pdgzqBZpeTE8,18819
727
- ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=NSZ2L6gRw4S68BUF0Vyu-cUPSsq8LRxgoVajW9Ra63k,9640
728
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=Vu3z97CYAAEaumg-4W5PdgC21izd7aFxWBdWzBJSs4U,19394
729
- ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=slbpvD0Zz1zrRttxouL_cERjIP_SMxtnUMZ1_kVwu6g,15534
726
+ ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=2NsWE2WtD_O7uAXw42_3tmG3vb5lk3mdnzCZTph4hao,18903
727
+ ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=t5x6EBxOd7XwfT3FGdt-n9gscxaHMm3R2A4Evvxbj38,9646
728
+ ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=60nfNGxjRDsD09Sg7s1YG8G8Qxfcyw0_2rW2PcNy1-c,20021
729
+ ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=jb8bshJf5lDdGJkNH-2SrwN4tdHImP7iD9I8KS4EmZU,17321
730
730
  ads/opctl/operator/lowcode/forecast/whatifserve/__init__.py,sha256=JNDDjLrNorKXMHUuXMifqXea3eheST-lnrcwCl2bWrk,242
731
- ads/opctl/operator/lowcode/forecast/whatifserve/deployment_manager.py,sha256=rIonETv3d8-COs1pOmdIaZAG2G30VH9UgPX8jTVsfoE,11609
731
+ ads/opctl/operator/lowcode/forecast/whatifserve/deployment_manager.py,sha256=w42anuqAScEQ0vBG3vW4LVLNq1bPdpAWGQEmNhMwZ08,12052
732
732
  ads/opctl/operator/lowcode/forecast/whatifserve/score.py,sha256=JjEDtrqUfL4x9t-vvafXMLNwY9-vgc6QPX_Ee-wmI58,8709
733
733
  ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
734
734
  ads/opctl/operator/lowcode/pii/README.md,sha256=2P3tpKv6v__Eehj6iLfTXgyDhS4lmi1BTfEdmJhT0K4,9237
@@ -849,8 +849,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
849
849
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
850
850
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
851
851
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
852
- oracle_ads-2.13.2.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
853
- oracle_ads-2.13.2.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
854
- oracle_ads-2.13.2.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
855
- oracle_ads-2.13.2.dist-info/METADATA,sha256=d3_mDgD3mp-KnXjlgbV3gpoq60IWv43j9WaisO3X9yw,16258
856
- oracle_ads-2.13.2.dist-info/RECORD,,
852
+ oracle_ads-2.13.3.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
853
+ oracle_ads-2.13.3.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
854
+ oracle_ads-2.13.3.dist-info/WHEEL,sha256=_2ozNFCLWc93bK4WKHCO-eDUENDlo-dgc9cU3qokYO4,82
855
+ oracle_ads-2.13.3.dist-info/METADATA,sha256=sFqtvGBYnP_WSLQ_-qjVCHDTOJ-oAd8ekjPkGIwtHq4,16258
856
+ oracle_ads-2.13.3.dist-info/RECORD,,