oracle-ads 2.13.17rc0__py3-none-any.whl → 2.13.18__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ads/aqua/cli.py +7 -5
- ads/aqua/common/entities.py +88 -29
- ads/aqua/common/enums.py +7 -0
- ads/aqua/common/errors.py +5 -0
- ads/aqua/common/utils.py +87 -7
- ads/aqua/constants.py +3 -0
- ads/aqua/extension/deployment_handler.py +36 -0
- ads/aqua/modeldeployment/config_loader.py +10 -0
- ads/aqua/modeldeployment/constants.py +1 -0
- ads/aqua/modeldeployment/deployment.py +99 -22
- ads/aqua/modeldeployment/entities.py +4 -0
- ads/aqua/resources/gpu_shapes_index.json +315 -26
- ads/aqua/shaperecommend/__init__.py +6 -0
- ads/aqua/shaperecommend/constants.py +116 -0
- ads/aqua/shaperecommend/estimator.py +384 -0
- ads/aqua/shaperecommend/llm_config.py +283 -0
- ads/aqua/shaperecommend/recommend.py +493 -0
- ads/aqua/shaperecommend/shape_report.py +233 -0
- ads/aqua/version.json +1 -1
- ads/cli.py +9 -1
- ads/jobs/builders/infrastructure/dsc_job.py +1 -0
- ads/jobs/builders/infrastructure/dsc_job_runtime.py +9 -1
- ads/model/service/oci_datascience_model_deployment.py +46 -19
- ads/opctl/operator/lowcode/common/data.py +7 -2
- ads/opctl/operator/lowcode/common/transformations.py +207 -0
- ads/opctl/operator/lowcode/common/utils.py +8 -0
- ads/opctl/operator/lowcode/forecast/__init__.py +3 -0
- ads/opctl/operator/lowcode/forecast/__main__.py +53 -3
- ads/opctl/operator/lowcode/forecast/const.py +2 -0
- ads/opctl/operator/lowcode/forecast/errors.py +5 -0
- ads/opctl/operator/lowcode/forecast/meta_selector.py +310 -0
- ads/opctl/operator/lowcode/forecast/model/automlx.py +1 -1
- ads/opctl/operator/lowcode/forecast/model/base_model.py +119 -30
- ads/opctl/operator/lowcode/forecast/model/factory.py +33 -2
- ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py +54 -17
- ads/opctl/operator/lowcode/forecast/model_evaluator.py +6 -1
- ads/opctl/operator/lowcode/forecast/schema.yaml +1 -0
- ads/pipeline/ads_pipeline.py +13 -9
- {oracle_ads-2.13.17rc0.dist-info → oracle_ads-2.13.18.dist-info}/METADATA +1 -1
- {oracle_ads-2.13.17rc0.dist-info → oracle_ads-2.13.18.dist-info}/RECORD +43 -36
- {oracle_ads-2.13.17rc0.dist-info → oracle_ads-2.13.18.dist-info}/WHEEL +0 -0
- {oracle_ads-2.13.17rc0.dist-info → oracle_ads-2.13.18.dist-info}/entry_points.txt +0 -0
- {oracle_ads-2.13.17rc0.dist-info → oracle_ads-2.13.18.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,283 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
# Copyright (c) 2025 Oracle and/or its affiliates.
|
3
|
+
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
4
|
+
|
5
|
+
import re
|
6
|
+
from typing import Optional
|
7
|
+
|
8
|
+
from pydantic import BaseModel, Field
|
9
|
+
|
10
|
+
from ads.aqua.common.errors import AquaRecommendationError
|
11
|
+
from ads.aqua.shaperecommend.constants import (
|
12
|
+
BITS_AND_BYTES_4BIT,
|
13
|
+
BITS_AND_BYTES_8BIT,
|
14
|
+
DEFAULT_WEIGHT_SIZE,
|
15
|
+
NEXT_QUANT,
|
16
|
+
QUANT_MAPPING,
|
17
|
+
QUANT_METHODS,
|
18
|
+
)
|
19
|
+
|
20
|
+
|
21
|
+
class LLMConfig(BaseModel):
|
22
|
+
"""
|
23
|
+
Standardized configuration object for evaluating the size of Large Language Models (LLMs)
|
24
|
+
based on their architecture and quantization.
|
25
|
+
"""
|
26
|
+
|
27
|
+
num_hidden_layers: int = Field(
|
28
|
+
...,
|
29
|
+
description="Number of transformer blocks (layers) in the model’s neural network stack.",
|
30
|
+
)
|
31
|
+
hidden_size: int = Field(
|
32
|
+
..., description="Embedding dimension or hidden size of each layer."
|
33
|
+
)
|
34
|
+
vocab_size: int = Field(..., description="Vocabulary size for input/output tokens.")
|
35
|
+
num_attention_heads: int = Field(
|
36
|
+
...,
|
37
|
+
description="Number of attention heads (used for queries and to determine head_dim).",
|
38
|
+
)
|
39
|
+
|
40
|
+
head_dim: int = Field(
|
41
|
+
...,
|
42
|
+
description="Dimension of each attention head. Typically hidden_size // num_attention_heads.",
|
43
|
+
)
|
44
|
+
max_seq_len: Optional[int] = Field(
|
45
|
+
4096, description="Maximum input sequence length (context window)."
|
46
|
+
)
|
47
|
+
weight_dtype: Optional[str] = Field(
|
48
|
+
DEFAULT_WEIGHT_SIZE,
|
49
|
+
description="Parameter data type: 'float32', 'float16', etc.",
|
50
|
+
)
|
51
|
+
quantization: Optional[str] = Field(
|
52
|
+
None,
|
53
|
+
description="Quantization weight (e.g., '8bit', '4bit') or None if unquantized.",
|
54
|
+
)
|
55
|
+
quantization_type: Optional[str] = Field(
|
56
|
+
None,
|
57
|
+
description="Quantization method (e.g., '8bit', '4bit', 'gptq', 'awq') or None if unquantized.",
|
58
|
+
)
|
59
|
+
|
60
|
+
in_flight_quantization: Optional[str] = Field(
|
61
|
+
None,
|
62
|
+
description="By setting this, enables recalculation of model footprint using 4bit in-flight quantization",
|
63
|
+
)
|
64
|
+
|
65
|
+
num_key_value_heads: Optional[int] = Field(
|
66
|
+
None,
|
67
|
+
description="Number of key/value heads (for GQA architectures: Llama, Mistral, Falcon, Qwen, etc.). Used to determine KV cache size",
|
68
|
+
)
|
69
|
+
|
70
|
+
num_local_experts: Optional[int] = Field(
|
71
|
+
None, description="For MoE architectures, the number of experts per MoE layer"
|
72
|
+
)
|
73
|
+
intermediate_size: Optional[int] = Field(
|
74
|
+
None, description="For MoE architectures, size of the MLP activation layer."
|
75
|
+
)
|
76
|
+
|
77
|
+
tie_word_embeddings: Optional[bool] = Field(None)
|
78
|
+
|
79
|
+
@property
|
80
|
+
def bytes_per_parameter(self) -> float:
|
81
|
+
"""
|
82
|
+
Returns the number of bytes used to store a model parameter,
|
83
|
+
accounting for quantization or weight storage type.
|
84
|
+
"""
|
85
|
+
# Quantization takes precedence
|
86
|
+
q = (self.quantization or "").lower()
|
87
|
+
|
88
|
+
# Direct match in mapping
|
89
|
+
if q in QUANT_MAPPING:
|
90
|
+
return QUANT_MAPPING[q]
|
91
|
+
|
92
|
+
# Dynamic bit-width detection
|
93
|
+
m = re.match(r"(\d+)\s*bit", q)
|
94
|
+
if m:
|
95
|
+
bits = int(m[1])
|
96
|
+
return bits / 8 # bytes per parameter
|
97
|
+
|
98
|
+
# consider in-flight quantization
|
99
|
+
if self.in_flight_quantization in QUANT_MAPPING:
|
100
|
+
return QUANT_MAPPING[self.in_flight_quantization]
|
101
|
+
|
102
|
+
# Fallback to dtype mapping
|
103
|
+
dtype = (self.weight_dtype or DEFAULT_WEIGHT_SIZE).lower()
|
104
|
+
return QUANT_MAPPING.get(dtype, QUANT_MAPPING[DEFAULT_WEIGHT_SIZE])
|
105
|
+
|
106
|
+
@classmethod
|
107
|
+
def detect_quantization_type(cls, raw: dict) -> Optional[str]:
|
108
|
+
"""
|
109
|
+
Detects quantization type (e.g., 'gptq', 'bitsandbytes', 'awq', etc.) from Hugging Face config dict.
|
110
|
+
"""
|
111
|
+
qcfg = raw.get("quantization_config", {})
|
112
|
+
if raw.get("load_in_8bit") or raw.get("load_in_4bit"):
|
113
|
+
return "bitsandbytes"
|
114
|
+
for key in QUANT_METHODS:
|
115
|
+
if key in str(qcfg).lower() or key in str(raw).lower():
|
116
|
+
return key
|
117
|
+
return None
|
118
|
+
|
119
|
+
@classmethod
|
120
|
+
def detect_quantization_bits(cls, raw: dict) -> Optional[str]:
|
121
|
+
"""
|
122
|
+
Detects quantization bit-width as a string (e.g., '4bit', '8bit') from Hugging Face config dict.
|
123
|
+
"""
|
124
|
+
if raw.get("load_in_8bit"):
|
125
|
+
return BITS_AND_BYTES_8BIT
|
126
|
+
if raw.get("load_in_4bit"):
|
127
|
+
return BITS_AND_BYTES_4BIT
|
128
|
+
if "quantization_config" in raw:
|
129
|
+
qcfg = raw["quantization_config"]
|
130
|
+
bits = qcfg.get("bits") or qcfg.get("wbits")
|
131
|
+
if bits:
|
132
|
+
return f"{bits}bit"
|
133
|
+
return None
|
134
|
+
|
135
|
+
@property
|
136
|
+
def suggested_quantizations(self):
|
137
|
+
"""
|
138
|
+
Suggests the next lower quantization options based on the current quantization level/ weight size.
|
139
|
+
|
140
|
+
If model is un-quantized, uses the weight size.
|
141
|
+
If model is pre-quantized, uses the quantization level.
|
142
|
+
"""
|
143
|
+
key = (
|
144
|
+
self.quantization
|
145
|
+
or self.in_flight_quantization
|
146
|
+
or self.weight_dtype
|
147
|
+
or DEFAULT_WEIGHT_SIZE
|
148
|
+
).lower()
|
149
|
+
return NEXT_QUANT.get(key, [])
|
150
|
+
|
151
|
+
def calculate_possible_seq_len(self, min_len=2048):
|
152
|
+
"""
|
153
|
+
Calculates a list of possible sequence lengths (in tokens).
|
154
|
+
[2048, ... max-length] (max-length found in model's config.json file)
|
155
|
+
"""
|
156
|
+
vals = []
|
157
|
+
curr = min_len
|
158
|
+
while curr <= self.max_seq_len:
|
159
|
+
vals.append(curr)
|
160
|
+
curr *= 2
|
161
|
+
if vals and vals[-1] != self.max_seq_len:
|
162
|
+
vals.append(self.max_seq_len)
|
163
|
+
return vals
|
164
|
+
|
165
|
+
def optimal_config(self):
|
166
|
+
"""
|
167
|
+
Builds a list of optimal configuration parameters (sorted descending). Combination of:
|
168
|
+
- Quantization / weight sizes: bfloat16 weight size -> 8bit -> 4bit
|
169
|
+
- max-model-len: power-of-two model lengths from max length (config.json of model) to 2048 tokens.
|
170
|
+
|
171
|
+
Example:
|
172
|
+
[('bfloat16', max_model_len supported by model) ('bfloat16', 1/2 of max_model_len) ... ('4bit', 4096), ('4bit', 2048)]
|
173
|
+
|
174
|
+
"""
|
175
|
+
# use later-Create a copy of the suggested_quantizations list
|
176
|
+
# quantizations = self.suggested_quantizations[:]
|
177
|
+
quantizations = ["bfloat16", "4bit"]
|
178
|
+
|
179
|
+
lengths = self.calculate_possible_seq_len()
|
180
|
+
|
181
|
+
configs = []
|
182
|
+
for quantization in quantizations:
|
183
|
+
for length in lengths:
|
184
|
+
configs.append((quantization, length))
|
185
|
+
|
186
|
+
configs.sort(
|
187
|
+
key=lambda x: (-QUANT_MAPPING.get(x[0], 0), -x[1])
|
188
|
+
) # (-quant_priority, -max_seq_len)
|
189
|
+
return configs
|
190
|
+
|
191
|
+
@classmethod
|
192
|
+
def validate_model_support(cls, raw: dict) -> ValueError:
|
193
|
+
"""
|
194
|
+
Validates if model is decoder-only. Check for text-generation model occurs at DataScienceModel level.
|
195
|
+
"""
|
196
|
+
excluded_models = {"t5", "gemma", "bart", "bert", "roberta", "albert"}
|
197
|
+
if (
|
198
|
+
raw.get("is_encoder_decoder", False) # exclude encoder-decoder models
|
199
|
+
or (
|
200
|
+
raw.get("is_decoder") is False
|
201
|
+
) # exclude explicit encoder-only models (altho no text-generation task ones, just dbl check)
|
202
|
+
or raw.get("model_type", "").lower() # exclude by known model types
|
203
|
+
in excluded_models
|
204
|
+
):
|
205
|
+
raise AquaRecommendationError(
|
206
|
+
"Please provide a decoder-only text-generation model (ex. Llama, Falcon, etc). "
|
207
|
+
"Encoder-decoder models (ex. T5, Gemma) and encoder-only (BERT) are not supported at this time."
|
208
|
+
)
|
209
|
+
|
210
|
+
@classmethod
|
211
|
+
def from_raw_config(cls, raw: dict) -> "LLMConfig":
|
212
|
+
"""
|
213
|
+
Instantiates an LLMConfig from a raw Hugging Face config.json file,
|
214
|
+
using robust key detection and fallback for architecture.
|
215
|
+
"""
|
216
|
+
cls.validate_model_support(raw)
|
217
|
+
|
218
|
+
# Field mappings with fallback
|
219
|
+
num_hidden_layers = (
|
220
|
+
raw.get("num_hidden_layers") or raw.get("n_layer") or raw.get("num_layers")
|
221
|
+
)
|
222
|
+
hidden_size = raw.get("hidden_size") or raw.get("n_embd") or raw.get("d_model")
|
223
|
+
vocab_size = raw.get("vocab_size")
|
224
|
+
weight_dtype = str(raw.get("torch_dtype", DEFAULT_WEIGHT_SIZE))
|
225
|
+
quantization = cls.detect_quantization_bits(raw)
|
226
|
+
quantization_type = cls.detect_quantization_type(raw)
|
227
|
+
|
228
|
+
if not quantization and quantization_type in QUANT_MAPPING:
|
229
|
+
quantization = quantization_type
|
230
|
+
|
231
|
+
num_key_value_heads = (
|
232
|
+
raw.get("num_key_value_heads") # GQA models (ex. Llama-type)
|
233
|
+
)
|
234
|
+
|
235
|
+
num_attention_heads = (
|
236
|
+
raw.get("num_attention_heads") or raw.get("n_head") or raw.get("num_heads")
|
237
|
+
)
|
238
|
+
|
239
|
+
head_dim = raw.get("head_dim") or (
|
240
|
+
int(hidden_size) // int(num_attention_heads)
|
241
|
+
if hidden_size and num_attention_heads
|
242
|
+
else None
|
243
|
+
)
|
244
|
+
max_seq_len = (
|
245
|
+
raw.get("max_position_embeddings")
|
246
|
+
or raw.get("n_positions")
|
247
|
+
or raw.get("max_seq_len")
|
248
|
+
or 2048
|
249
|
+
)
|
250
|
+
|
251
|
+
num_local_experts = (
|
252
|
+
raw.get("num_local_experts")
|
253
|
+
or raw.get("n_routed_experts")
|
254
|
+
or raw.get("num_experts")
|
255
|
+
)
|
256
|
+
intermediate_size = raw.get("moe_intermediate_size") or raw.get(
|
257
|
+
"intermediate_size"
|
258
|
+
)
|
259
|
+
|
260
|
+
# Type safety: minimal assertion
|
261
|
+
if None in [
|
262
|
+
num_hidden_layers,
|
263
|
+
hidden_size,
|
264
|
+
vocab_size,
|
265
|
+
num_attention_heads,
|
266
|
+
head_dim,
|
267
|
+
]:
|
268
|
+
raise ValueError("Missing required value in model config.")
|
269
|
+
|
270
|
+
return cls(
|
271
|
+
num_hidden_layers=int(num_hidden_layers),
|
272
|
+
hidden_size=int(hidden_size),
|
273
|
+
num_attention_heads=int(num_attention_heads),
|
274
|
+
num_key_value_heads=num_key_value_heads,
|
275
|
+
head_dim=int(head_dim),
|
276
|
+
vocab_size=int(vocab_size),
|
277
|
+
weight_dtype=weight_dtype,
|
278
|
+
quantization=quantization,
|
279
|
+
quantization_type=quantization_type,
|
280
|
+
max_seq_len=int(max_seq_len),
|
281
|
+
num_local_experts=num_local_experts,
|
282
|
+
intermediate_size=intermediate_size,
|
283
|
+
)
|