oracle-ads 2.13.15__py3-none-any.whl → 2.13.17__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ads/aqua/client/client.py CHANGED
@@ -582,6 +582,19 @@ class Client(BaseClient):
582
582
  payload = {**(payload or {}), "input": input}
583
583
  return self._request(payload=payload, headers=headers)
584
584
 
585
+ def fetch_data(self) -> Union[Dict[str, Any], Iterator[Mapping[str, Any]]]:
586
+ """Fetch Data in json format by sending a request to the endpoint.
587
+
588
+ Args:
589
+
590
+ Returns:
591
+ Union[Dict[str, Any], Iterator[Mapping[str, Any]]]: The server's response, typically including the data in JSON format.
592
+ """
593
+ # headers = {"Content-Type", "application/json"}
594
+ response = self._client.get(self.endpoint)
595
+ json_response = response.json()
596
+ return json_response
597
+
585
598
 
586
599
  class AsyncClient(BaseClient):
587
600
  """
ads/aqua/common/enums.py CHANGED
@@ -58,6 +58,7 @@ class InferenceContainerTypeFamily(ExtendedEnum):
58
58
  AQUA_VLLM_LLAMA4_CONTAINER_FAMILY = "odsc-vllm-serving-llama4"
59
59
  AQUA_TGI_CONTAINER_FAMILY = "odsc-tgi-serving"
60
60
  AQUA_LLAMA_CPP_CONTAINER_FAMILY = "odsc-llama-cpp-serving"
61
+ AQUA_VLLM_OPENAI_CONTAINER_FAMILY = "odsc-vllm-serving-openai"
61
62
 
62
63
 
63
64
  class CustomInferenceContainerTypeFamily(ExtendedEnum):
ads/aqua/common/utils.py CHANGED
@@ -997,6 +997,44 @@ def get_container_params_type(container_type_name: str) -> str:
997
997
  return UNKNOWN
998
998
 
999
999
 
1000
+ def get_container_env_type(container_type_name: Optional[str]) -> str:
1001
+ """
1002
+ Determine the container environment type based on the container type name.
1003
+
1004
+ This function matches the provided container type name against the known
1005
+ values of `InferenceContainerType`. The check is case-insensitive and
1006
+ allows for partial matches so that changes in container naming conventions
1007
+ (e.g., prefixes or suffixes) will still be matched correctly.
1008
+
1009
+ Examples:
1010
+ >>> get_container_env_type("odsc-vllm-serving")
1011
+ 'vllm'
1012
+ >>> get_container_env_type("ODSC-TGI-Serving")
1013
+ 'tgi'
1014
+ >>> get_container_env_type("custom-unknown-container")
1015
+ 'UNKNOWN'
1016
+
1017
+ Args:
1018
+ container_type_name (Optional[str]):
1019
+ The deployment container type name (e.g., "odsc-vllm-serving").
1020
+
1021
+ Returns:
1022
+ str:
1023
+ - A matching `InferenceContainerType` value string (e.g., "VLLM", "TGI", "LLAMA-CPP").
1024
+ - `"UNKNOWN"` if no match is found or the input is empty/None.
1025
+ """
1026
+ if not container_type_name:
1027
+ return UNKNOWN
1028
+
1029
+ needle = container_type_name.strip().casefold()
1030
+
1031
+ for container_type in InferenceContainerType.values():
1032
+ if container_type and container_type.casefold() in needle:
1033
+ return container_type.upper()
1034
+
1035
+ return UNKNOWN
1036
+
1037
+
1000
1038
  def get_restricted_params_by_container(container_type_name: str) -> set:
1001
1039
  """The utility function accepts the deployment container type name and returns a set of restricted params
1002
1040
  for that container.
@@ -191,21 +191,28 @@ class AquaContainerConfig(Serializable):
191
191
  additional_configurations.get("modelFormats")
192
192
  )
193
193
 
194
- # Parse environment variables from `additional_configurations`.
195
- # Only keys present in the configuration will be added to the result.
196
- config_keys = {
197
- "MODEL_DEPLOY_PREDICT_ENDPOINT": UNKNOWN,
198
- "MODEL_DEPLOY_HEALTH_ENDPOINT": UNKNOWN,
199
- "PORT": UNKNOWN,
200
- "HEALTH_CHECK_PORT": UNKNOWN,
201
- "VLLM_USE_V1": UNKNOWN,
202
- }
203
-
204
- env_vars = [
205
- {key: additional_configurations.get(key, default)}
206
- for key, default in config_keys.items()
207
- if key in additional_configurations
208
- ]
194
+ # TODO: Remove the else condition once SMC env variable config is updated everywhere
195
+ if additional_configurations.get("env_vars", None):
196
+ env_vars_dict = json.loads(
197
+ additional_configurations.get("env_vars") or "{}"
198
+ )
199
+ env_vars = [
200
+ {key: str(value)} for key, value in env_vars_dict.items()
201
+ ]
202
+ else:
203
+ config_keys = {
204
+ "MODEL_DEPLOY_PREDICT_ENDPOINT": UNKNOWN,
205
+ "MODEL_DEPLOY_HEALTH_ENDPOINT": UNKNOWN,
206
+ "PORT": UNKNOWN,
207
+ "HEALTH_CHECK_PORT": UNKNOWN,
208
+ "VLLM_USE_V1": UNKNOWN,
209
+ }
210
+
211
+ env_vars = [
212
+ {key: additional_configurations.get(key, default)}
213
+ for key, default in config_keys.items()
214
+ if key in additional_configurations
215
+ ]
209
216
 
210
217
  # Build container spec
211
218
  container_item.spec = AquaContainerConfigSpec(
@@ -373,6 +373,37 @@ class AquaDeploymentParamsHandler(AquaAPIhandler):
373
373
  )
374
374
 
375
375
 
376
+ class AquaModelListHandler(AquaAPIhandler):
377
+ """Handler for Aqua model list params REST APIs.
378
+
379
+ Methods
380
+ -------
381
+ get(self, *args, **kwargs)
382
+ Validates parameters for the given model id.
383
+ """
384
+
385
+ @handle_exceptions
386
+ def get(self, model_deployment_id):
387
+ """
388
+ Handles get model list for the Active Model Deployment
389
+ Raises
390
+ ------
391
+ HTTPError
392
+ Raises HTTPError if inputs are missing or are invalid
393
+ """
394
+
395
+ self.set_header("Content-Type", "application/json")
396
+ endpoint: str = ""
397
+ model_deployment = AquaDeploymentApp().get(model_deployment_id)
398
+ endpoint = model_deployment.endpoint.rstrip("/") + "/predict/v1/models"
399
+ aqua_client = Client(endpoint=endpoint)
400
+ try:
401
+ list_model_result = aqua_client.fetch_data()
402
+ return self.finish(list_model_result)
403
+ except Exception as ex:
404
+ raise HTTPError(500, str(ex))
405
+
406
+
376
407
  __handlers__ = [
377
408
  ("deployments/?([^/]*)/params", AquaDeploymentParamsHandler),
378
409
  ("deployments/config/?([^/]*)", AquaDeploymentHandler),
@@ -381,4 +412,5 @@ __handlers__ = [
381
412
  ("deployments/?([^/]*)/activate", AquaDeploymentHandler),
382
413
  ("deployments/?([^/]*)/deactivate", AquaDeploymentHandler),
383
414
  ("inference/stream/?([^/]*)", AquaDeploymentStreamingInferenceHandler),
415
+ ("deployments/models/list/?([^/]*)", AquaModelListHandler),
384
416
  ]
@@ -88,6 +88,7 @@ class MultiModelConfig(Serializable):
88
88
  gpu_count (int, optional): Number of GPUs count to this model of this shape.
89
89
  parameters (Dict[str, str], optional): A dictionary of parameters (e.g., VLLM_PARAMS) to
90
90
  configure the behavior of a particular GPU shape.
91
+ env (Dict[str, Dict[str, str]]): Environment variables grouped by namespace (e.g., "VLLM": {"VAR": "VAL"}).
91
92
  """
92
93
 
93
94
  gpu_count: Optional[int] = Field(
@@ -97,6 +98,10 @@ class MultiModelConfig(Serializable):
97
98
  default_factory=dict,
98
99
  description="Key-value pairs for GPU shape parameters (e.g., VLLM_PARAMS).",
99
100
  )
101
+ env: Optional[Dict[str, Dict[str, str]]] = Field(
102
+ default_factory=dict,
103
+ description="Environment variables grouped by namespace",
104
+ )
100
105
 
101
106
  class Config:
102
107
  extra = "allow"
@@ -130,6 +135,7 @@ class ConfigurationItem(Serializable):
130
135
  configure the behavior of a particular GPU shape.
131
136
  multi_model_deployment (List[MultiModelConfig], optional): A list of multi model configuration details.
132
137
  shape_info (DeploymentShapeInfo, optional): The shape information to this model for specific CPU shape.
138
+ env (Dict[str, Dict[str, str]]): Environment variables grouped by namespace (e.g., "VLLM": {"VAR": "VAL"}).
133
139
  """
134
140
 
135
141
  parameters: Optional[Dict[str, str]] = Field(
@@ -143,6 +149,10 @@ class ConfigurationItem(Serializable):
143
149
  default_factory=DeploymentShapeInfo,
144
150
  description="The shape information to this model for specific shape",
145
151
  )
152
+ env: Optional[Dict[str, Dict[str, str]]] = Field(
153
+ default_factory=dict,
154
+ description="Environment variables grouped by namespace",
155
+ )
146
156
 
147
157
  class Config:
148
158
  extra = "allow"
@@ -27,6 +27,7 @@ from ads.aqua.common.utils import (
27
27
  build_pydantic_error_message,
28
28
  find_restricted_params,
29
29
  get_combined_params,
30
+ get_container_env_type,
30
31
  get_container_params_type,
31
32
  get_ocid_substring,
32
33
  get_params_list,
@@ -199,7 +200,7 @@ class AquaDeploymentApp(AquaApp):
199
200
  if create_deployment_details.instance_shape.lower() not in available_shapes:
200
201
  raise AquaValueError(
201
202
  f"Invalid Instance Shape. The selected shape '{create_deployment_details.instance_shape}' "
202
- f"is not available in the {self.region} region. Please choose another shape to deploy the model."
203
+ f"is not supported in the {self.region} region. Please choose another shape to deploy the model."
203
204
  )
204
205
 
205
206
  # Get container config
@@ -381,6 +382,7 @@ class AquaDeploymentApp(AquaApp):
381
382
  Tags.AQUA_SERVICE_MODEL_TAG,
382
383
  Tags.AQUA_FINE_TUNED_MODEL_TAG,
383
384
  Tags.AQUA_TAG,
385
+ Tags.BASE_MODEL_CUSTOM,
384
386
  ]:
385
387
  if tag in aqua_model.freeform_tags:
386
388
  tags[tag] = aqua_model.freeform_tags[tag]
@@ -1042,6 +1044,7 @@ class AquaDeploymentApp(AquaApp):
1042
1044
  config = self.get_config_from_metadata(
1043
1045
  model_id, AquaModelMetadataKeys.DEPLOYMENT_CONFIGURATION
1044
1046
  ).config
1047
+
1045
1048
  if config:
1046
1049
  logger.info(
1047
1050
  f"Fetched {AquaModelMetadataKeys.DEPLOYMENT_CONFIGURATION} from defined metadata for model: {model_id}."
@@ -1126,7 +1129,7 @@ class AquaDeploymentApp(AquaApp):
1126
1129
  model_id: str,
1127
1130
  instance_shape: str,
1128
1131
  gpu_count: int = None,
1129
- ) -> List[str]:
1132
+ ) -> Dict:
1130
1133
  """Gets the default params set in the deployment configs for the given model and instance shape.
1131
1134
 
1132
1135
  Parameters
@@ -1148,6 +1151,7 @@ class AquaDeploymentApp(AquaApp):
1148
1151
 
1149
1152
  """
1150
1153
  default_params = []
1154
+ default_envs = {}
1151
1155
  config_params = {}
1152
1156
  model = DataScienceModel.from_id(model_id)
1153
1157
  try:
@@ -1157,19 +1161,15 @@ class AquaDeploymentApp(AquaApp):
1157
1161
  except ValueError:
1158
1162
  container_type_key = UNKNOWN
1159
1163
  logger.debug(
1160
- f"{AQUA_DEPLOYMENT_CONTAINER_METADATA_NAME} key is not available in the custom metadata field for model {model_id}."
1164
+ f"{AQUA_DEPLOYMENT_CONTAINER_METADATA_NAME} key is not available in the "
1165
+ f"custom metadata field for model {model_id}."
1161
1166
  )
1162
1167
 
1163
- if (
1164
- container_type_key
1165
- and container_type_key in InferenceContainerTypeFamily.values()
1166
- ):
1168
+ if container_type_key:
1167
1169
  deployment_config = self.get_deployment_config(model_id)
1168
-
1169
1170
  instance_shape_config = deployment_config.configuration.get(
1170
1171
  instance_shape, ConfigurationItem()
1171
1172
  )
1172
-
1173
1173
  if instance_shape_config.multi_model_deployment and gpu_count:
1174
1174
  gpu_params = instance_shape_config.multi_model_deployment
1175
1175
 
@@ -1178,12 +1178,18 @@ class AquaDeploymentApp(AquaApp):
1178
1178
  config_params = gpu_config.parameters.get(
1179
1179
  get_container_params_type(container_type_key), UNKNOWN
1180
1180
  )
1181
+ default_envs = instance_shape_config.env.get(
1182
+ get_container_env_type(container_type_key), {}
1183
+ )
1181
1184
  break
1182
1185
 
1183
1186
  else:
1184
1187
  config_params = instance_shape_config.parameters.get(
1185
1188
  get_container_params_type(container_type_key), UNKNOWN
1186
1189
  )
1190
+ default_envs = instance_shape_config.env.get(
1191
+ get_container_env_type(container_type_key), {}
1192
+ )
1187
1193
 
1188
1194
  if config_params:
1189
1195
  params_list = get_params_list(config_params)
@@ -1196,7 +1202,7 @@ class AquaDeploymentApp(AquaApp):
1196
1202
  if params.split()[0] not in restricted_params_set:
1197
1203
  default_params.append(params)
1198
1204
 
1199
- return default_params
1205
+ return {"data": default_params, "env": default_envs}
1200
1206
 
1201
1207
  def validate_deployment_params(
1202
1208
  self,
@@ -233,6 +233,7 @@ class CreateModelDeploymentDetails(BaseModel):
233
233
  None, description="The description of the deployment."
234
234
  )
235
235
  model_id: Optional[str] = Field(None, description="The model OCID to deploy.")
236
+
236
237
  models: Optional[List[AquaMultiModelRef]] = Field(
237
238
  None, description="List of models for multimodel deployment."
238
239
  )
ads/aqua/version.json CHANGED
@@ -1,3 +1,3 @@
1
1
  {
2
- "aqua": "1.0.7"
2
+ "aqua": "1.0.7a"
3
3
  }
@@ -24,8 +24,8 @@ class AutoMLXOperatorModel(AnomalyOperatorBaseModel):
24
24
  @runtime_dependency(
25
25
  module="automlx",
26
26
  err_msg=(
27
- "Please run `pip3 install oracle-automlx>=23.4.1` and "
28
- "`pip3 install oracle-automlx[classic]>=23.4.1` "
27
+ "Please run `pip3 install oracle-automlx>=25.3.0` and "
28
+ "`pip3 install oracle-automlx[classic]>=25.3.0` "
29
29
  "to install the required dependencies for automlx."
30
30
  ),
31
31
  )
@@ -76,7 +76,7 @@ class ForecastOutputColumns(ExtendedEnum):
76
76
 
77
77
  AUTOMLX_METRIC_MAP = {
78
78
  "smape": "neg_sym_mean_abs_percent_error",
79
- "mape": "neg_sym_mean_abs_percent_error",
79
+ "mape": "neg_mean_abs_percent_error",
80
80
  "mase": "neg_mean_abs_scaled_error",
81
81
  "mae": "neg_mean_absolute_error",
82
82
  "mse": "neg_mean_squared_error",
@@ -28,7 +28,9 @@ from .forecast_datasets import ForecastDatasets, ForecastOutput
28
28
 
29
29
  logging.getLogger("report_creator").setLevel(logging.WARNING)
30
30
  AUTOMLX_N_ALGOS_TUNED = 4
31
- AUTOMLX_DEFAULT_SCORE_METRIC = "neg_sym_mean_abs_percent_error"
31
+ AUTOMLX_DEFAULT_SCORE_METRIC = ['neg_sym_mean_abs_percent_error',
32
+ 'neg_mean_abs_percent_error',
33
+ 'neg_root_mean_squared_error']
32
34
 
33
35
 
34
36
  class AutoMLXOperatorModel(ForecastOperatorBaseModel):
@@ -45,10 +47,13 @@ class AutoMLXOperatorModel(ForecastOperatorBaseModel):
45
47
  model_kwargs_cleaned["n_algos_tuned"] = model_kwargs_cleaned.get(
46
48
  "n_algos_tuned", AUTOMLX_N_ALGOS_TUNED
47
49
  )
48
- model_kwargs_cleaned["score_metric"] = AUTOMLX_METRIC_MAP.get(
49
- self.spec.metric,
50
- model_kwargs_cleaned.get("score_metric", AUTOMLX_DEFAULT_SCORE_METRIC),
51
- )
50
+ metric_to_optimize = AUTOMLX_METRIC_MAP.get(self.spec.metric)
51
+ model_kwargs_cleaned["score_metric"] = AUTOMLX_DEFAULT_SCORE_METRIC
52
+ # The first score metric in the list will be the one for which the pipeline optimizes
53
+ if metric_to_optimize is not None:
54
+ model_kwargs_cleaned["score_metric"].remove(metric_to_optimize)
55
+ model_kwargs_cleaned["score_metric"].insert(0, metric_to_optimize)
56
+
52
57
  model_kwargs_cleaned.pop("task", None)
53
58
  time_budget = model_kwargs_cleaned.pop("time_budget", -1)
54
59
  model_kwargs_cleaned["preprocessing"] = (
@@ -70,7 +75,7 @@ class AutoMLXOperatorModel(ForecastOperatorBaseModel):
70
75
  @runtime_dependency(
71
76
  module="automlx",
72
77
  err_msg=(
73
- "Please run `pip3 install oracle-automlx[forecasting]>=25.1.1` "
78
+ "Please run `pip3 install oracle-automlx[forecasting]>=25.3.0` "
74
79
  "to install the required dependencies for automlx."
75
80
  ),
76
81
  )
@@ -163,7 +168,7 @@ class AutoMLXOperatorModel(ForecastOperatorBaseModel):
163
168
  self.models[s_id] = {}
164
169
  self.models[s_id]["model"] = model
165
170
  self.models[s_id]["le"] = self.le[s_id]
166
- self.models[s_id]["score"] = self.get_validation_score_and_metric(model)
171
+ self.models[s_id]["score"] = self.get_all_metrics(model)
167
172
 
168
173
  # In case of Naive model, model.forecast function call does not return confidence intervals.
169
174
  if f"{target}_ci_upper" not in summary_frame:
@@ -518,26 +523,27 @@ class AutoMLXOperatorModel(ForecastOperatorBaseModel):
518
523
  )
519
524
  logger.debug(f"Full Traceback: {traceback.format_exc()}")
520
525
 
521
- def get_validation_score_and_metric(self, model):
526
+ def get_all_metrics(self, model):
522
527
  trials = model.completed_trials_summary_
523
528
  model_params = model.selected_model_params_
524
529
  if len(trials) > 0:
525
- score_col = [col for col in trials.columns if "Score" in col][0]
526
- validation_score = trials[trials.Hyperparameters == model_params][
527
- score_col
530
+ all_metrics = trials[trials.Hyperparameters == model_params][
531
+ "All Metrics"
528
532
  ].iloc[0]
529
533
  else:
530
- validation_score = 0
531
- return -1 * validation_score
534
+ all_metrics = {}
535
+ reverse_map = {v: k for k, v in AUTOMLX_METRIC_MAP.items()}
536
+ all_metrics = {reverse_map[key]: -1 * value for key, value in all_metrics.items() if key in reverse_map}
537
+ return all_metrics
532
538
 
533
539
  def generate_train_metrics(self) -> pd.DataFrame:
534
540
  """
535
- Generate Training Metrics when fitted data is not available.
541
+ Generate Training Metrics for Automlx
536
542
  """
537
543
  total_metrics = pd.DataFrame()
538
544
  for s_id in self.forecast_output.list_series_ids():
539
545
  try:
540
- metrics = {self.spec.metric.upper(): self.models[s_id]["score"]}
546
+ metrics = self.models[s_id]["score"]
541
547
  metrics_df = pd.DataFrame.from_dict(
542
548
  metrics, orient="index", columns=[s_id]
543
549
  )
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oracle_ads
3
- Version: 2.13.15
3
+ Version: 2.13.17
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle,GenAI,Generative AI,Forecast,Anomaly,Document Understanding,Anomaly Detection
6
6
  Author: Oracle Data Science
@@ -7,18 +7,18 @@ ads/aqua/cli.py,sha256=cmNtLVktrT350gsqY2k2zH6GszFdAVmJwNuU5QZljKE,3988
7
7
  ads/aqua/constants.py,sha256=gEVXaXmVdKzIkZ7Q-7Zn_wGpOK0QPFBKnHNIJB12qjs,5132
8
8
  ads/aqua/data.py,sha256=HfxLfKiNiPJecMQy0JAztUsT3IdZilHHHOrCJnjZMc4,408
9
9
  ads/aqua/ui.py,sha256=PYyr46ewx9Qygcsv6BryUF6rLHU0t5YjUgKSb1uZK2Y,20971
10
- ads/aqua/version.json,sha256=QV-m8hKJzRfMbqOivBoZssnG4rgVMCriqen5YBCaGhI,22
10
+ ads/aqua/version.json,sha256=f1syT59npva9jfyKmhgWI93kcoiyYabnkAG4Lqr-4cs,23
11
11
  ads/aqua/client/__init__.py,sha256=-46EcKQjnWEXxTt85bQzXjA5xsfoBXIGm_syKFlVL1c,178
12
- ads/aqua/client/client.py,sha256=_voMWUG6bnNDkgYjP6RHrBTtN7qJ9saBWJw7Vt3r7E8,32211
12
+ ads/aqua/client/client.py,sha256=PzbIscVclkVwvfQWyKyRZjRCcT3cXE6bdSkMaMQMomI,32721
13
13
  ads/aqua/client/openai_client.py,sha256=JxSmjaeBb7jG8ARH6LdmsWGip467V0y6_mo2YwiiZz4,12921
14
14
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
15
15
  ads/aqua/common/decorator.py,sha256=JEN6Cy4DYgQbmIR3ShCjTuBMCnilDxq7jkYMJse1rcM,4112
16
16
  ads/aqua/common/entities.py,sha256=trzFbyrEbVWk7tN8TbxinTIiLh4V3D4PgR74TK8MaPU,11720
17
- ads/aqua/common/enums.py,sha256=fBJczGd4Trv9Lf0O4_TAEDWYkp5ou9oGeKhxdSW2-84,4274
17
+ ads/aqua/common/enums.py,sha256=XkcfB1wHkdT4YRFLZq_H2IhuYxeBjOGDP3Qaf-RK9Zo,4341
18
18
  ads/aqua/common/errors.py,sha256=QONm-2jKBg8AjgOKXm6x-arAV1KIW9pdhfNN1Ys21Wo,3044
19
- ads/aqua/common/utils.py,sha256=foFpWvtoqlTABlV5vLmWMCmMQzJiHOsczSc_DP9bY0E,43071
19
+ ads/aqua/common/utils.py,sha256=KoGOaVWgl-0s3eowucyvaf9Oa684fBA5eC2bhlGJ21I,44402
20
20
  ads/aqua/config/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
21
- ads/aqua/config/container_config.py,sha256=jBz9DRGsCaFXQWgyBoPUXQJbukyl1Fuac7m3tTI7ugo,9528
21
+ ads/aqua/config/container_config.py,sha256=2N65TZNpqlpKJ9I4U9_v9bB_MoP4xsmEo8V4W1iZj9M,9882
22
22
  ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
23
23
  ads/aqua/config/evaluation/evaluation_service_config.py,sha256=NuaQoLVYPHJiWjGfq1-F6-DK0DyOAGjVS87K1SXFVvw,4497
24
24
  ads/aqua/config/utils/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
@@ -37,7 +37,7 @@ ads/aqua/extension/aqua_ws_msg_handler.py,sha256=VDa9vQOsYKX6flsUkDEx6nl-5MFCH5R
37
37
  ads/aqua/extension/base_handler.py,sha256=W-eBXn9XYypCZuY84e9cSKRuY0CDyuou_znV6Yn9YzU,3047
38
38
  ads/aqua/extension/common_handler.py,sha256=LDcs2ELUkbUd9eS9napq06_NDMC0-1fMkX5KmlYynJc,5403
39
39
  ads/aqua/extension/common_ws_msg_handler.py,sha256=PAy98ZsM8VAXcy11ahsuam3QUDdmE-Hz4F5pISVkNHY,1242
40
- ads/aqua/extension/deployment_handler.py,sha256=_E1nRoL6g2KQC0Ktji_-SEcgTu6VH7eZ7Tx0p0F0NTM,14125
40
+ ads/aqua/extension/deployment_handler.py,sha256=u9ks3qaaJpeKWk_Na0NkBGg2I4ZGzVcnmNeyufKhm1w,15152
41
41
  ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
42
42
  ads/aqua/extension/errors.py,sha256=4LbzZdCoDEtOcrVI-1dgiza4oAYGof6w5LbN6HqroYk,1396
43
43
  ads/aqua/extension/evaluation_handler.py,sha256=fJH73fa0xmkEiP8SxKL4A4dJgj-NoL3z_G-w_WW2zJs,4353
@@ -61,10 +61,10 @@ ads/aqua/model/enums.py,sha256=oMwEoAejH6lZiUF3XqjHvaGUfe6yWv5mZ-fmKX5aNbw,1971
61
61
  ads/aqua/model/model.py,sha256=W6QBMWHTox2miiv-RhZzVf0wUw-5el-ZByE5n0L7vpU,92229
62
62
  ads/aqua/model/utils.py,sha256=gFJVWdQvF4GfyamL4m5u62gOidJC7UXXkQwqXCUIoUo,2016
63
63
  ads/aqua/modeldeployment/__init__.py,sha256=k5fGG2b6mae-uiQyuTAHqPjlzcUyJ4NFaF-uoMnK5Uc,277
64
- ads/aqua/modeldeployment/config_loader.py,sha256=nGitRwuSKab-WGZ4BUVORRhzkvNkaj50AWhtD9j9CzY,31657
64
+ ads/aqua/modeldeployment/config_loader.py,sha256=B-jIQ_rys1aRwprIDV8LEY3OOnBoacvUcOAvsZzNM5g,32201
65
65
  ads/aqua/modeldeployment/constants.py,sha256=Z9rlV98HNAexRWG5r7zzRr9Y8uM3Xcm3m-807S6tOXs,356
66
- ads/aqua/modeldeployment/deployment.py,sha256=oKjqrNkB9tcXZ8ps2BeWMPg5_sU_JmFZcazAod1bBbA,55759
67
- ads/aqua/modeldeployment/entities.py,sha256=j8nTsVmxlJDKSJ1pl99FP8Lo4zVnrFw-YTNapOQv_EI,27448
66
+ ads/aqua/modeldeployment/deployment.py,sha256=eV4ywQdLScx89ZGngOJpxyNt5RU8Oi340kKjyJmI3ac,56112
67
+ ads/aqua/modeldeployment/entities.py,sha256=fIhCeVealPsX_UghbU6SIyLWG8fIFJD-CEBnuzuUCWA,27449
68
68
  ads/aqua/modeldeployment/model_group_config.py,sha256=ZNCzHVG7_kKmP7pC7wUY0cDptnsAKqTaDYJcuVARflc,9259
69
69
  ads/aqua/modeldeployment/utils.py,sha256=yPUNGDlyHB7JYalqsczimlkPjf4l8f_NprRORp7nBVE,212
70
70
  ads/aqua/resources/gpu_shapes_index.json,sha256=-6rSkyQ04T1z_Yfr3cxGPI7NAtgTwG7beIEjLYuMMIc,1948
@@ -688,7 +688,7 @@ ads/opctl/operator/lowcode/anomaly/utils.py,sha256=szOgGp6ssrE6yk8LA69w2Kk2pZ2ZG
688
688
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
689
689
  ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=FN4JO5x1rLzeyC2_tsXhP6gPb4-TBHrMa4uJdybz-Us,5404
690
690
  ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=IT0g6wf2rZI-GFuuOgtESWYTE_D77P8y9YeRZ6ucguQ,5836
691
- ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=40rY-mVYoLBmDw5uagayRoyYSkjsIY4U4LfyeU11AoA,3469
691
+ ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=ZqXGXvIFAiajdTpvT55M1vwlwRy5PRGxVioEJeOHG4c,3469
692
692
  ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Ft6bLEXdpIMMDv4lLBzLhC2kRZki7zD9Jnu-LIPDDbw,4154
693
693
  ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=5XOwbdJV7fjAr6DXP0LA0XLS0EmV77Xx75p_WEhh4ak,15523
694
694
  ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=EVYgEGvVTMNFt-tDP6SH3qDoVBAZD3D_Jlw6Xu9zdQU,4148
@@ -721,7 +721,7 @@ ads/opctl/operator/lowcode/forecast/README.md,sha256=kbCCEdo-0pwKlZp9ctnWUK6Z31n
721
721
  ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
722
722
  ads/opctl/operator/lowcode/forecast/__main__.py,sha256=FTQhYCZEAbQO2sCOpepermKimSktFd9pERNu1rC-K3A,2926
723
723
  ads/opctl/operator/lowcode/forecast/cmd.py,sha256=uwU-QvnYwxoRFXZv7_JFkzAUnjTNoSsHEme2FF-9Rl0,1151
724
- ads/opctl/operator/lowcode/forecast/const.py,sha256=HJQFM35t-pG4g6z63YABx2ehuKfo9yBHklVbZrGpVzY,2615
724
+ ads/opctl/operator/lowcode/forecast/const.py,sha256=Vt03VuFCbm5y9y-NomJsLX6wd3GzWwcCx7di8cnQ9dY,2611
725
725
  ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
726
726
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
727
727
  ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=crtCQ4KIWCueOf2zU-AKD_i3h_cJA_-qAGakdgBazVI,10257
@@ -730,7 +730,7 @@ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=RoNwjg5jxXMbljtregMkV_rJb
730
730
  ads/opctl/operator/lowcode/forecast/utils.py,sha256=00prJFK1F3esHlPsPp1WSJ3YoT0NK95f3cH2qNH8AJQ,13578
731
731
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
732
732
  ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=PvHoTdDr6RIC4I-YLzed91td6Pq6uxbgluEdu_h0e3c,11766
733
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=XnF3zku8RWrqwBJet5yfx_f6G5nkJ_2e-TzdVJQt7yE,23292
733
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=f11WY1gsGrUIuzbgJd0c-t1nM3416nAxqj_ylvYtC7k,23669
734
734
  ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=UThBBGsEiC3WLSn-BPAuNWT_ZFa3bYMu52keB0vvSt8,13137
735
735
  ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=ENrizwJwhHbJa8DPMqCDEUKqwQaGfR5-fYdTxreQrHU,36613
736
736
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=5a9A3ql-bU412BiTB20ob6OxQlkdk8z_tGONMwDXT1k,3900
@@ -860,8 +860,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
860
860
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
861
861
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
862
862
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
863
- oracle_ads-2.13.15.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
864
- oracle_ads-2.13.15.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
865
- oracle_ads-2.13.15.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
866
- oracle_ads-2.13.15.dist-info/METADATA,sha256=VPcnpZDTS29a-Wr0-SJP2DiA7z9-tDplkWBXih6eJy0,16994
867
- oracle_ads-2.13.15.dist-info/RECORD,,
863
+ oracle_ads-2.13.17.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
864
+ oracle_ads-2.13.17.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
865
+ oracle_ads-2.13.17.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
866
+ oracle_ads-2.13.17.dist-info/METADATA,sha256=W2KPCH2yRAHZF4aAF65yaOIZS6a4150R7hWAmbXRH5c,16994
867
+ oracle_ads-2.13.17.dist-info/RECORD,,