oracle-ads 2.13.14__py3-none-any.whl → 2.13.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. ads/aqua/extension/model_handler.py +7 -3
  2. ads/aqua/version.json +1 -1
  3. ads/common/utils.py +1 -3
  4. ads/feature_engineering/feature_type/boolean.py +15 -14
  5. ads/feature_engineering/feature_type/category.py +12 -11
  6. ads/feature_engineering/feature_type/continuous.py +13 -12
  7. ads/feature_engineering/feature_type/datetime.py +10 -13
  8. ads/feature_engineering/feature_type/gis.py +15 -13
  9. ads/feature_engineering/feature_type/integer.py +11 -10
  10. ads/feature_engineering/feature_type/ip_address.py +9 -7
  11. ads/feature_engineering/feature_type/ip_address_v4.py +7 -6
  12. ads/feature_engineering/feature_type/ip_address_v6.py +7 -6
  13. ads/feature_engineering/feature_type/lat_long.py +15 -14
  14. ads/feature_engineering/feature_type/phone_number.py +8 -7
  15. ads/feature_engineering/feature_type/string.py +12 -12
  16. ads/feature_engineering/feature_type/text.py +6 -7
  17. ads/feature_engineering/feature_type/zip_code.py +11 -9
  18. ads/feature_engineering/utils.py +14 -12
  19. ads/model/transformer/onnx_transformer.py +7 -8
  20. ads/templates/score.jinja2 +3 -3
  21. ads/templates/score_onnx.jinja2 +3 -3
  22. ads/templates/score_onnx_new.jinja2 +3 -3
  23. {oracle_ads-2.13.14.dist-info → oracle_ads-2.13.16.dist-info}/METADATA +7 -4
  24. {oracle_ads-2.13.14.dist-info → oracle_ads-2.13.16.dist-info}/RECORD +27 -27
  25. {oracle_ads-2.13.14.dist-info → oracle_ads-2.13.16.dist-info}/WHEEL +0 -0
  26. {oracle_ads-2.13.14.dist-info → oracle_ads-2.13.16.dist-info}/entry_points.txt +0 -0
  27. {oracle_ads-2.13.14.dist-info → oracle_ads-2.13.16.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # Copyright (c) 2024, 2025 Oracle and/or its affiliates.
3
3
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
4
-
4
+ import json
5
5
  from typing import Optional
6
6
  from urllib.parse import urlparse
7
7
 
@@ -341,9 +341,13 @@ class AquaModelChatTemplateHandler(AquaAPIhandler):
341
341
  ):
342
342
  try:
343
343
  oci_data_science_model = OCIDataScienceModel.from_id(model_id)
344
+ chat_template = oci_data_science_model.get_custom_metadata_artifact("chat_template")
345
+ chat_template = chat_template.decode("utf-8")
346
+
347
+ return self.finish(json.dumps({"chat_template": chat_template}))
348
+
344
349
  except Exception as e:
345
- raise HTTPError(404, f"Model not found for id: {model_id}. Details: {str(e)}")
346
- return self.finish(oci_data_science_model.get_custom_metadata_artifact("chat_template"))
350
+ raise HTTPError(404, f"Failed to fetch chat template for model_id={model_id}. Details: {str(e)}")
347
351
 
348
352
  raise HTTPError(400, f"The request {self.request.path} is invalid.")
349
353
 
ads/aqua/version.json CHANGED
@@ -1,3 +1,3 @@
1
1
  {
2
- "aqua": "1.0.7"
2
+ "aqua": "1.0.7a"
3
3
  }
ads/common/utils.py CHANGED
@@ -782,9 +782,7 @@ class JsonConverter(json.JSONEncoder):
782
782
  ),
783
783
  ):
784
784
  return int(obj)
785
- elif isinstance(
786
- obj, (np.float_, np.float16, np.float32, np.float64, np.double)
787
- ):
785
+ elif isinstance(obj, (np.float16, np.float32, np.float64, np.double)):
788
786
  return float(obj)
789
787
  elif isinstance(obj, (np.ndarray,)):
790
788
  return obj.tolist()
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -15,19 +14,21 @@ Functions:
15
14
  default_handler(data: pd.Series) -> pd.Series
16
15
  Processes given data and indicates if the data matches requirements.
17
16
  """
17
+
18
18
  import matplotlib.pyplot as plt
19
19
  import pandas as pd
20
+
21
+ from ads.common.decorator.runtime_dependency import (
22
+ OptionalDependency,
23
+ runtime_dependency,
24
+ )
25
+ from ads.feature_engineering import schema
20
26
  from ads.feature_engineering.feature_type.base import FeatureType
21
27
  from ads.feature_engineering.utils import (
28
+ SchemeTeal,
22
29
  _count_unique_missing,
23
- is_boolean,
24
30
  _set_seaborn_theme,
25
- SchemeTeal,
26
- )
27
- from ads.feature_engineering import schema
28
- from ads.common.decorator.runtime_dependency import (
29
- runtime_dependency,
30
- OptionalDependency,
31
+ is_boolean,
31
32
  )
32
33
 
33
34
 
@@ -44,7 +45,7 @@ def default_handler(data: pd.Series, *args, **kwargs) -> pd.Series:
44
45
  :class:`pandas.Series`
45
46
  The logical list indicating if the data matches requirements.
46
47
  """
47
- return pd.Series((is_boolean(value) for value in data.values))
48
+ return pd.Series(is_boolean(value) for value in data.values)
48
49
 
49
50
 
50
51
  class Boolean(FeatureType):
@@ -74,7 +75,7 @@ class Boolean(FeatureType):
74
75
  >>> from ads.feature_engineering.feature_type.boolean import Boolean
75
76
  >>> import pandas as pd
76
77
  >>> import numpy as np
77
- >>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
78
+ >>> s = pd.Series([True, False, True, False, np.nan, None], name='bool')
78
79
  >>> s.ads.feature_type = ['boolean']
79
80
  >>> Boolean.validator.is_boolean(s)
80
81
  0 True
@@ -106,7 +107,7 @@ class Boolean(FeatureType):
106
107
 
107
108
  Examples
108
109
  --------
109
- >>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
110
+ >>> s = pd.Series([True, False, True, False, np.nan, None], name='bool')
110
111
  >>> s.ads.feature_type = ['boolean']
111
112
  >>> s.ads.feature_stat()
112
113
  Metric Value
@@ -134,7 +135,7 @@ class Boolean(FeatureType):
134
135
 
135
136
  Examples
136
137
  --------
137
- >>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
138
+ >>> s = pd.Series([True, False, True, False, np.nan, None], name='bool')
138
139
  >>> s.ads.feature_type = ['boolean']
139
140
  >>> s.ads.feature_plot()
140
141
  """
@@ -155,7 +156,7 @@ class Boolean(FeatureType):
155
156
 
156
157
  Examples
157
158
  --------
158
- >>> s = pd.Series([True, False, True, False, np.NaN, None], name='bool')
159
+ >>> s = pd.Series([True, False, True, False, np.nan, None], name='bool')
159
160
  >>> s.ads.feature_type = ['boolean']
160
161
  >>> s.ads.feature_domain()
161
162
  constraints:
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,18 +10,20 @@ Classes:
11
10
  Category
12
11
  The Category feature type.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import pandas as pd
16
+
17
+ from ads.common.decorator.runtime_dependency import (
18
+ OptionalDependency,
19
+ runtime_dependency,
20
+ )
21
+ from ads.feature_engineering import schema
16
22
  from ads.feature_engineering.feature_type.base import FeatureType
17
23
  from ads.feature_engineering.utils import (
24
+ SchemeTeal,
18
25
  _count_unique_missing,
19
26
  _set_seaborn_theme,
20
- SchemeTeal,
21
- )
22
- from ads.feature_engineering import schema
23
- from ads.common.decorator.runtime_dependency import (
24
- runtime_dependency,
25
- OptionalDependency,
26
27
  )
27
28
 
28
29
 
@@ -71,7 +72,7 @@ class Category(FeatureType):
71
72
  Examples
72
73
  --------
73
74
  >>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
74
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='сategory')
75
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='сategory')
75
76
  >>> cat.ads.feature_type = ['сategory']
76
77
  >>> cat.ads.feature_stat()
77
78
  Metric Value
@@ -100,7 +101,7 @@ class Category(FeatureType):
100
101
  Examples
101
102
  --------
102
103
  >>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
103
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='сategory')
104
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='сategory')
104
105
  >>> cat.ads.feature_type = ['сategory']
105
106
  >>> cat.ads.feature_plot()
106
107
  """
@@ -121,7 +122,7 @@ class Category(FeatureType):
121
122
  Examples
122
123
  --------
123
124
  >>> cat = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
124
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='category')
125
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='category')
125
126
  >>> cat.ads.feature_type = ['category']
126
127
  >>> cat.ads.feature_domain()
127
128
  constraints:
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,19 +10,21 @@ Classes:
11
10
  Continuous
12
11
  The Continuous feature type.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import pandas as pd
16
+
17
+ from ads.common.decorator.runtime_dependency import (
18
+ OptionalDependency,
19
+ runtime_dependency,
20
+ )
21
+ from ads.feature_engineering import schema
16
22
  from ads.feature_engineering.feature_type.base import FeatureType
17
23
  from ads.feature_engineering.utils import (
18
- _add_missing,
19
- _set_seaborn_theme,
20
24
  SchemeTeal,
25
+ _add_missing,
21
26
  _format_stat,
22
- )
23
- from ads.feature_engineering import schema
24
- from ads.common.decorator.runtime_dependency import (
25
- runtime_dependency,
26
- OptionalDependency,
27
+ _set_seaborn_theme,
27
28
  )
28
29
 
29
30
 
@@ -62,7 +63,7 @@ class Continuous(FeatureType):
62
63
  Examples
63
64
  --------
64
65
  >>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
65
- 4.43, 3.26, np.NaN, None], name='continuous')
66
+ 4.43, 3.26, np.nan, None], name='continuous')
66
67
  >>> cts.ads.feature_type = ['continuous']
67
68
  >>> cts.ads.feature_stat()
68
69
  Metric Value
@@ -99,7 +100,7 @@ class Continuous(FeatureType):
99
100
  Examples
100
101
  --------
101
102
  >>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
102
- 4.43, 3.26, np.NaN, None], name='continuous')
103
+ 4.43, 3.26, np.nan, None], name='continuous')
103
104
  >>> cts.ads.feature_type = ['continuous']
104
105
  >>> cts.ads.feture_plot()
105
106
 
@@ -125,7 +126,7 @@ class Continuous(FeatureType):
125
126
  Examples
126
127
  --------
127
128
  >>> cts = pd.Series([13.32, 3.32, 4.3, 2.45, 6.34, 2.25,
128
- 4.43, 3.26, np.NaN, None], name='continuous')
129
+ 4.43, 3.26, np.nan, None], name='continuous')
129
130
  >>> cts.ads.feature_type = ['continuous']
130
131
  >>> cts.ads.feature_domain()
131
132
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,21 +10,19 @@ Classes:
11
10
  DateTime
12
11
  The DateTime feature type.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import numpy as np
16
16
  import pandas as pd
17
17
  import pandas.api.types as pdtypes
18
- from ads.feature_engineering.feature_type.base import FeatureType
19
- from ads.feature_engineering.utils import (
20
- _add_missing,
21
- _set_seaborn_theme,
22
- SchemeTeal,
23
- )
24
- from ads.feature_engineering import schema
18
+
25
19
  from ads.common.decorator.runtime_dependency import (
26
- runtime_dependency,
27
20
  OptionalDependency,
21
+ runtime_dependency,
28
22
  )
23
+ from ads.feature_engineering import schema
24
+ from ads.feature_engineering.feature_type.base import FeatureType
25
+ from ads.feature_engineering.utils import SchemeTeal, _add_missing, _set_seaborn_theme
29
26
 
30
27
 
31
28
  def default_handler(data: pd.Series, *args, **kwargs) -> pd.Series:
@@ -123,12 +120,12 @@ class DateTime(FeatureType):
123
120
  df_stat = pd.Series(
124
121
  {
125
122
  "count": len(x),
126
- "sample maximum": x.replace(r"", np.NaN).dropna().max(),
127
- "sample minimum": x.replace(r"", np.NaN).dropna().min(),
123
+ "sample maximum": x.replace(r"", np.nan).dropna().max(),
124
+ "sample minimum": x.replace(r"", np.nan).dropna().min(),
128
125
  },
129
126
  name=x.name,
130
127
  ).to_frame()
131
- return _add_missing(x.replace(r"", np.NaN), df_stat)
128
+ return _add_missing(x.replace(r"", np.nan), df_stat)
132
129
 
133
130
  @staticmethod
134
131
  @runtime_dependency(module="seaborn", install_from=OptionalDependency.VIZ)
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,20 +10,23 @@ Classes:
11
10
  GIS
12
11
  The GIS feature type.
13
12
  """
13
+
14
+ import re
15
+
14
16
  import matplotlib.pyplot as plt
15
17
  import pandas as pd
16
- import re
18
+
19
+ from ads.common.decorator.runtime_dependency import (
20
+ OptionalDependency,
21
+ runtime_dependency,
22
+ )
23
+ from ads.feature_engineering import schema
17
24
  from ads.feature_engineering.feature_type.base import FeatureType
18
25
  from ads.feature_engineering.utils import (
19
- _count_unique_missing,
20
- _str_lat_long_to_point,
21
26
  SchemeNeutral,
22
27
  SchemeTeal,
23
- )
24
- from ads.feature_engineering import schema
25
- from ads.common.decorator.runtime_dependency import (
26
- runtime_dependency,
27
- OptionalDependency,
28
+ _count_unique_missing,
29
+ _str_lat_long_to_point,
28
30
  )
29
31
 
30
32
  PATTERN = re.compile(r"^[(]?(\-?\d+\.\d+?),\s*(\-?\d+\.\d+?)[)]?$", re.VERBOSE)
@@ -126,7 +128,7 @@ class GIS(FeatureType):
126
128
  "-44.510428,-169.269477",
127
129
  "-56.3344375,-166.407038",
128
130
  "",
129
- np.NaN,
131
+ np.nan,
130
132
  None
131
133
  ],
132
134
  name='gis'
@@ -165,7 +167,7 @@ class GIS(FeatureType):
165
167
  "-44.510428,-169.269477",
166
168
  "-56.3344375,-166.407038",
167
169
  "",
168
- np.NaN,
170
+ np.nan,
169
171
  None
170
172
  ],
171
173
  name='gis'
@@ -221,7 +223,7 @@ class GIS(FeatureType):
221
223
  "-44.510428,-169.269477",
222
224
  "-56.3344375,-166.407038",
223
225
  "",
224
- np.NaN,
226
+ np.nan,
225
227
  None
226
228
  ],
227
229
  name='gis'
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,19 +10,21 @@ Classes:
11
10
  Integer
12
11
  The Integer feature type.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import pandas as pd
16
+
17
+ from ads.common.decorator.runtime_dependency import (
18
+ OptionalDependency,
19
+ runtime_dependency,
20
+ )
21
+ from ads.feature_engineering import schema
16
22
  from ads.feature_engineering.feature_type.base import FeatureType
17
23
  from ads.feature_engineering.utils import (
18
- _add_missing,
19
- _set_seaborn_theme,
20
24
  SchemeTeal,
25
+ _add_missing,
21
26
  _format_stat,
22
- )
23
- from ads.feature_engineering import schema
24
- from ads.common.decorator.runtime_dependency import (
25
- runtime_dependency,
26
- OptionalDependency,
27
+ _set_seaborn_theme,
27
28
  )
28
29
 
29
30
 
@@ -120,7 +121,7 @@ class Integer(FeatureType):
120
121
 
121
122
  Examples
122
123
  --------
123
- >>> s = pd.Series([True, False, True, False, np.NaN, None], name='integer')
124
+ >>> s = pd.Series([True, False, True, False, np.nan, None], name='integer')
124
125
  >>> s.ads.feature_type = ['integer']
125
126
  >>> s.ads.feature_domain()
126
127
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,11 +10,14 @@ Classes:
11
10
  IpAddress
12
11
  The IpAddress feature type.
13
12
  """
14
- import pandas as pd
13
+
15
14
  import re
15
+
16
+ import pandas as pd
17
+
18
+ from ads.feature_engineering import schema
16
19
  from ads.feature_engineering.feature_type.base import FeatureType
17
20
  from ads.feature_engineering.utils import _count_unique_missing
18
- from ads.feature_engineering import schema
19
21
 
20
22
  PATTERNV4 = re.compile(
21
23
  r"(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)",
@@ -75,7 +77,7 @@ class IpAddress(FeatureType):
75
77
  >>> from ads.feature_engineering.feature_type.ip_address import IpAddress
76
78
  >>> import pandas as pd
77
79
  >>> import numpy as np
78
- >>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address')
80
+ >>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.nan, None], name='ip_address')
79
81
  >>> s.ads.feature_type = ['ip_address']
80
82
  >>> IpAddress.validator.is_ip_address(s)
81
83
  0 True
@@ -96,7 +98,7 @@ class IpAddress(FeatureType):
96
98
 
97
99
  Examples
98
100
  --------
99
- >>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address')
101
+ >>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.nan, None], name='ip_address')
100
102
  >>> s.ads.feature_type = ['ip_address']
101
103
  >>> s.ads.feature_stat()
102
104
  Metric Value
@@ -118,7 +120,7 @@ class IpAddress(FeatureType):
118
120
 
119
121
  Examples
120
122
  --------
121
- >>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address')
123
+ >>> s = pd.Series(['2002:db8::', '192.168.0.1', '2001:db8::', '2002:db8::', np.nan, None], name='ip_address')
122
124
  >>> s.ads.feature_type = ['ip_address']
123
125
  >>> s.ads.feature_domain()
124
126
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,12 +10,14 @@ Classes:
11
10
  IpAddressV4
12
11
  The IpAddressV4 feature type.
13
12
  """
13
+
14
14
  import re
15
15
 
16
16
  import pandas as pd
17
+
18
+ from ads.feature_engineering import schema
17
19
  from ads.feature_engineering.feature_type.base import FeatureType
18
20
  from ads.feature_engineering.utils import _count_unique_missing
19
- from ads.feature_engineering import schema
20
21
 
21
22
  PATTERN = re.compile(
22
23
  r"(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)",
@@ -69,7 +70,7 @@ class IpAddressV4(FeatureType):
69
70
  >>> from ads.feature_engineering.feature_type.ip_address_v4 import IpAddressV4
70
71
  >>> import pandas as pd
71
72
  >>> import numpy as np
72
- >>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address')
73
+ >>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.nan, None], name='ip_address')
73
74
  >>> s.ads.feature_type = ['ip_address_v4']
74
75
  >>> IpAddressV4.validator.is_ip_address_v4(s)
75
76
  0 True
@@ -90,7 +91,7 @@ class IpAddressV4(FeatureType):
90
91
 
91
92
  Examples
92
93
  --------
93
- >>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4', np.NaN, None], name='ip_address')
94
+ >>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4', np.nan, None], name='ip_address')
94
95
  >>> s.ads.feature_type = ['ip_address_v4']
95
96
  >>> s.ads.feature_stat()
96
97
  Metric Value
@@ -112,7 +113,7 @@ class IpAddressV4(FeatureType):
112
113
 
113
114
  Examples
114
115
  --------
115
- >>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4', np.NaN, None], name='ip_address_v4')
116
+ >>> s = pd.Series(['192.168.0.1', '192.168.0.2', '192.168.0.3', '192.168.0.4', np.nan, None], name='ip_address_v4')
116
117
  >>> s.ads.feature_type = ['ip_address_v4']
117
118
  >>> s.ads.feature_domain()
118
119
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,12 +10,14 @@ Classes:
11
10
  IpAddressV6
12
11
  The IpAddressV6 feature type.
13
12
  """
13
+
14
14
  import re
15
15
 
16
16
  import pandas as pd
17
+
18
+ from ads.feature_engineering import schema
17
19
  from ads.feature_engineering.feature_type.base import FeatureType
18
20
  from ads.feature_engineering.utils import _count_unique_missing
19
- from ads.feature_engineering import schema
20
21
 
21
22
  PATTERN = re.compile(
22
23
  r"\s*(?!.*::.*::)(?:(?!:)|:(?=:))(?:[0-9a-f]{0,4}(?:(?<=::)|(?<!::):)){6}(?:[0-9a-f]{0,4}(?:(?<=::)|(?<!::):)[0-9a-f]{0,4}(?:(?<=::)|(?<!:)|(?<=:)(?<!::):)|(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)(?:\.(?:25[0-4]|2[0-4]\d|1\d\d|[1-9]?\d)){3})\s*",
@@ -69,7 +70,7 @@ class IpAddressV6(FeatureType):
69
70
  >>> from ads.feature_engineering.feature_type.ip_address_v6 import IpAddressV6
70
71
  >>> import pandas as pd
71
72
  >>> import numpy as np
72
- >>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.NaN, None], name='ip_address')
73
+ >>> s = pd.Series(['192.168.0.1', '2001:db8::', '', np.nan, None], name='ip_address')
73
74
  >>> s.ads.feature_type = ['ip_address_v6']
74
75
  >>> IpAddressV6.validator.is_ip_address_v6(s)
75
76
  0 False
@@ -90,7 +91,7 @@ class IpAddressV6(FeatureType):
90
91
 
91
92
  Examples
92
93
  --------
93
- >>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address')
94
+ >>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.nan, None], name='ip_address')
94
95
  >>> s.ads.feature_type = ['ip_address_v6']
95
96
  >>> s.ads.feature_stat()
96
97
  Metric Value
@@ -112,7 +113,7 @@ class IpAddressV6(FeatureType):
112
113
 
113
114
  Examples
114
115
  --------
115
- >>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.NaN, None], name='ip_address_v6')
116
+ >>> s = pd.Series(['2002:db8::', '2001:db8::', '2001:db8::', '2002:db8::', np.nan, None], name='ip_address_v6')
116
117
  >>> s.ads.feature_type = ['ip_address_v6']
117
118
  >>> s.ads.feature_domain()
118
119
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -15,22 +14,24 @@ Functions:
15
14
  default_handler(data: pd.Series) -> pd.Series
16
15
  Processes given data and indicates if the data matches requirements.
17
16
  """
17
+
18
+ import re
19
+
18
20
  import matplotlib.pyplot as plt
19
21
  import pandas as pd
20
- import re
22
+
23
+ from ads.common.decorator.runtime_dependency import (
24
+ OptionalDependency,
25
+ runtime_dependency,
26
+ )
27
+ from ads.feature_engineering import schema
21
28
  from ads.feature_engineering.feature_type.string import String
22
29
  from ads.feature_engineering.utils import (
23
- _count_unique_missing,
24
- _str_lat_long_to_point,
25
30
  SchemeNeutral,
26
31
  SchemeTeal,
32
+ _count_unique_missing,
33
+ _str_lat_long_to_point,
27
34
  )
28
- from ads.feature_engineering import schema
29
- from ads.common.decorator.runtime_dependency import (
30
- runtime_dependency,
31
- OptionalDependency,
32
- )
33
-
34
35
 
35
36
  PATTERN = re.compile(r"^[(]?(\-?\d+\.\d+?),\s*(\-?\d+\.\d+?)[)]?$", re.VERBOSE)
36
37
 
@@ -131,7 +132,7 @@ class LatLong(String):
131
132
  "-44.510428,-169.269477",
132
133
  "-56.3344375,-166.407038",
133
134
  "",
134
- np.NaN,
135
+ np.nan,
135
136
  None
136
137
  ],
137
138
  name='latlong'
@@ -170,7 +171,7 @@ class LatLong(String):
170
171
  "-44.510428,-169.269477",
171
172
  "-56.3344375,-166.407038",
172
173
  "",
173
- np.NaN,
174
+ np.nan,
174
175
  None
175
176
  ],
176
177
  name='latlong'
@@ -226,7 +227,7 @@ class LatLong(String):
226
227
  "-44.510428,-169.269477",
227
228
  "-56.3344375,-166.407038",
228
229
  "",
229
- np.NaN,
230
+ np.nan,
230
231
  None
231
232
  ],
232
233
  name='latlong'
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -15,12 +14,14 @@ Functions:
15
14
  default_handler(data: pd.Series) -> pd.Series
16
15
  Processes given data and indicates if the data matches requirements.
17
16
  """
18
- import pandas as pd
17
+
19
18
  import re
19
+
20
+ import pandas as pd
21
+
22
+ from ads.feature_engineering import schema
20
23
  from ads.feature_engineering.feature_type.string import String
21
24
  from ads.feature_engineering.utils import _count_unique_missing
22
- from ads.feature_engineering import schema
23
-
24
25
 
25
26
  PATTERN = re.compile(
26
27
  r"^(\+?\d{1,2}[\s-])?\(?(\d{3})\)?[\s.-]?\d{3}[\s.-]?\d{4}$", re.VERBOSE
@@ -91,7 +92,7 @@ class PhoneNumber(String):
91
92
 
92
93
  Examples
93
94
  --------
94
- >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan, None], name='phone')
95
+ >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.nan, np.nan, None], name='phone')
95
96
  >>> s.ads.feature_type = ['phone_number']
96
97
  >>> s.ads.feature_stat()
97
98
  Metric Value
@@ -113,7 +114,7 @@ class PhoneNumber(String):
113
114
 
114
115
  Examples
115
116
  --------
116
- >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan, None], name='phone')
117
+ >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.nan, np.nan, None], name='phone')
117
118
  >>> s.ads.feature_type = ['phone_number']
118
119
  >>> s.ads.feature_domain()
119
120
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,19 +10,20 @@ Classes:
11
10
  String
12
11
  The feature type that represents string values.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import pandas as pd
16
+
17
+ from ads.common.decorator.runtime_dependency import (
18
+ OptionalDependency,
19
+ runtime_dependency,
20
+ )
21
+ from ads.feature_engineering import schema
16
22
  from ads.feature_engineering.feature_type.base import FeatureType
17
23
  from ads.feature_engineering.utils import (
24
+ SchemeNeutral,
18
25
  _count_unique_missing,
19
26
  random_color_func,
20
- SchemeNeutral,
21
- )
22
- from ads.feature_engineering import schema
23
- from ads.common import utils, logger
24
- from ads.common.decorator.runtime_dependency import (
25
- runtime_dependency,
26
- OptionalDependency,
27
27
  )
28
28
 
29
29
 
@@ -89,7 +89,7 @@ class String(FeatureType):
89
89
  Examples
90
90
  --------
91
91
  >>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
92
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
92
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='string')
93
93
  >>> string.ads.feature_type = ['string']
94
94
  >>> string.ads.feature_stat()
95
95
  Metric Value
@@ -113,7 +113,7 @@ class String(FeatureType):
113
113
  Examples
114
114
  --------
115
115
  >>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
116
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
116
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='string')
117
117
  >>> string.ads.feature_type = ['string']
118
118
  >>> string.ads.feature_plot()
119
119
 
@@ -149,7 +149,7 @@ class String(FeatureType):
149
149
  Examples
150
150
  --------
151
151
  >>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
152
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
152
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='string')
153
153
  >>> string.ads.feature_type = ['string']
154
154
  >>> string.ads.feature_domain()
155
155
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,16 +10,16 @@ Classes:
11
10
  Text
12
11
  The Text feature type.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import pandas as pd
16
- from ads.feature_engineering.feature_type.string import String
17
- from ads.feature_engineering.utils import random_color_func, SchemeNeutral
18
16
 
19
- from ads.common import utils, logger
20
17
  from ads.common.decorator.runtime_dependency import (
21
- runtime_dependency,
22
18
  OptionalDependency,
19
+ runtime_dependency,
23
20
  )
21
+ from ads.feature_engineering.feature_type.string import String
22
+ from ads.feature_engineering.utils import SchemeNeutral, random_color_func
24
23
 
25
24
 
26
25
  class Text(String):
@@ -53,7 +52,7 @@ class Text(String):
53
52
  Examples
54
53
  --------
55
54
  >>> text = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
56
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='text')
55
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='text')
57
56
  >>> text.ads.feature_type = ['text']
58
57
  >>> text.ads.feature_plot()
59
58
 
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -15,17 +14,20 @@ Functions:
15
14
  default_handler(data: pd.Series) -> pd.Series
16
15
  Processes given data and indicates if the data matches requirements.
17
16
  """
17
+
18
+ import re
19
+
18
20
  import matplotlib.pyplot as plt
19
21
  import pandas as pd
20
- import re
22
+
23
+ from ads.feature_engineering import schema
21
24
  from ads.feature_engineering.feature_type.string import String
22
25
  from ads.feature_engineering.utils import (
23
26
  _count_unique_missing,
24
- _to_lat_long,
25
27
  _plot_gis_scatter,
28
+ _to_lat_long,
26
29
  _zip_code,
27
30
  )
28
- from ads.feature_engineering import schema
29
31
 
30
32
  PATTERN = re.compile(r"^[0-9]{5}(?:-[0-9]{4})?$", re.VERBOSE)
31
33
 
@@ -78,7 +80,7 @@ class ZipCode(String):
78
80
  >>> from ads.feature_engineering.feature_type.zip_code import ZipCode
79
81
  >>> import pandas as pd
80
82
  >>> import numpy as np
81
- >>> s = pd.Series(["94065", "90210", np.NaN, None], name='zipcode')
83
+ >>> s = pd.Series(["94065", "90210", np.nan, None], name='zipcode')
82
84
  >>> ZipCode.validator.is_zip_code(s)
83
85
  0 True
84
86
  1 True
@@ -97,7 +99,7 @@ class ZipCode(String):
97
99
 
98
100
  Examples
99
101
  --------
100
- >>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
102
+ >>> zipcode = pd.Series([94065, 90210, np.nan, None], name='zipcode')
101
103
  >>> zipcode.ads.feature_type = ['zip_code']
102
104
  >>> zipcode.ads.feature_stat()
103
105
  Metric Value
@@ -119,7 +121,7 @@ class ZipCode(String):
119
121
 
120
122
  Examples
121
123
  --------
122
- >>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
124
+ >>> zipcode = pd.Series([94065, 90210, np.nan, None], name='zipcode')
123
125
  >>> zipcode.ads.feature_type = ['zip_code']
124
126
  >>> zipcode.ads.feature_plot()
125
127
  Returns
@@ -138,7 +140,7 @@ class ZipCode(String):
138
140
 
139
141
  Examples
140
142
  --------
141
- >>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
143
+ >>> zipcode = pd.Series([94065, 90210, np.nan, None], name='zipcode')
142
144
  >>> zipcode.ads.feature_type = ['zip_code']
143
145
  >>> zipcode.ads.feature_domain()
144
146
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,18 +10,21 @@ Functions:
11
10
  is_boolean(value: Any) -> bool
12
11
  Checks if value type is boolean.
13
12
  """
14
- import numpy as np
13
+
14
+ import re
15
+ from functools import lru_cache
16
+ from typing import Any
17
+
15
18
  import matplotlib.pyplot as plt
19
+ import numpy as np
16
20
  import pandas as pd
17
- import re
21
+
18
22
  from ads.common.card_identifier import card_identify
19
23
  from ads.common.decorator.runtime_dependency import (
20
- runtime_dependency,
21
24
  OptionalDependency,
25
+ runtime_dependency,
22
26
  )
23
27
  from ads.feature_engineering.dataset.zip_code_data import zip_code_dict
24
- from functools import lru_cache
25
- from typing import Any
26
28
 
27
29
 
28
30
  class SchemeNeutral(str):
@@ -67,7 +69,7 @@ def _add_missing(x, df):
67
69
  """
68
70
  Adds count of missing values.
69
71
  """
70
- n_missing = pd.isnull(x.replace(r"", np.NaN)).sum()
72
+ n_missing = pd.isnull(x.replace(r"", np.nan)).sum()
71
73
  if n_missing > 0:
72
74
  df.loc["missing"] = n_missing
73
75
  return df
@@ -78,7 +80,7 @@ def _count_unique_missing(x):
78
80
  Returns the total count, unique count and count of missing values of a series.
79
81
  """
80
82
  df_stat = pd.Series(
81
- {"count": len(x), "unique": len(x.replace(r"", np.NaN).dropna().unique())},
83
+ {"count": len(x), "unique": len(x.replace(r"", np.nan).dropna().unique())},
82
84
  name=x.name,
83
85
  ).to_frame()
84
86
  return _add_missing(x, df_stat)
@@ -122,7 +124,7 @@ def random_color_func(
122
124
  h = 179
123
125
  s = 23
124
126
  l = int(100.0 * float(random_state.randint(60, 120)) / 255.0)
125
- return "hsl({}, {}%, {}%)".format(h, s, l)
127
+ return f"hsl({h}, {s}%, {l}%)"
126
128
 
127
129
 
128
130
  def _is_float(s: str):
@@ -135,7 +137,7 @@ def _is_float(s: str):
135
137
  def _str_lat_long_to_point(s):
136
138
  """
137
139
  Converts input data into formated geometry point
138
- Return formated geometry point string or np.NaN if input string is not valid
140
+ Return formated geometry point string or np.nan if input string is not valid
139
141
  """
140
142
  if isinstance(s, str):
141
143
  coords = s.split(",")
@@ -147,7 +149,7 @@ def _str_lat_long_to_point(s):
147
149
  long = long[:-1]
148
150
  if _is_float(lat) and _is_float(long):
149
151
  return "POINT(" + long + " " + lat + ")"
150
- return np.NaN
152
+ return np.nan
151
153
 
152
154
 
153
155
  @runtime_dependency(module="geopandas", install_from=OptionalDependency.GEO)
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2022, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  import json
@@ -16,7 +15,7 @@ pd.options.mode.chained_assignment = None
16
15
 
17
16
  # Note to developers: If you make any changes to this class, copy and paste those changes over to
18
17
  # templates/score_onnx.jinja2 and templates/score_onnx_new.jinja2. We do not yet have an automatic way of doing this.
19
- class ONNXTransformer(object):
18
+ class ONNXTransformer:
20
19
  """
21
20
  This is a transformer to convert X [pandas.Dataframe, pd.Series] data into Onnx
22
21
  readable dtypes and formats. It is Serializable, so it can be reloaded at another time.
@@ -199,7 +198,7 @@ class ONNXTransformer(object):
199
198
  X, impute_values=impute_values
200
199
  )
201
200
  elif isinstance(X, pd.Series):
202
- X = X.replace(r"^\s*$", np.NaN, regex=True)
201
+ X = X.replace(r"^\s*$", np.nan, regex=True)
203
202
  if len(impute_values.keys()) == 1:
204
203
  for key, val in impute_values.items():
205
204
  X = X.fillna(val)
@@ -208,7 +207,7 @@ class ONNXTransformer(object):
208
207
  "Multiple imputed values are provided, but `X` has only one dim."
209
208
  )
210
209
  else:
211
- raise NotImplemented(
210
+ raise NotImplementedError(
212
211
  f"{type(X)} is not supported. Convert `X` to pandas dataframe or numpy array."
213
212
  )
214
213
  return X
@@ -218,11 +217,11 @@ class ONNXTransformer(object):
218
217
  for idx, val in impute_values.items():
219
218
  if isinstance(idx, int):
220
219
  X.iloc[:, idx] = (
221
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
220
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
222
221
  )
223
222
  else:
224
223
  X.loc[:, idx] = (
225
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
224
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
226
225
  )
227
226
  return X
228
227
 
@@ -294,7 +293,7 @@ class ONNXTransformer(object):
294
293
  The loaded model
295
294
  """
296
295
  # Make sure you have pandas, numpy, and sklearn imported
297
- with open(filename, "r") as f:
296
+ with open(filename) as f:
298
297
  export_dict = json.load(f)
299
298
 
300
299
  onnx_transformer = ONNXTransformer()
@@ -207,7 +207,7 @@ class ONNXTransformer(object):
207
207
  X, impute_values=impute_values
208
208
  )
209
209
  elif isinstance(X, pd.Series):
210
- X = X.replace(r"^\s*$", np.NaN, regex=True)
210
+ X = X.replace(r"^\s*$", np.nan, regex=True)
211
211
  if len(impute_values.keys()) == 1:
212
212
  for key, val in impute_values.items():
213
213
  X = X.fillna(val)
@@ -226,11 +226,11 @@ class ONNXTransformer(object):
226
226
  for idx, val in impute_values.items():
227
227
  if isinstance(idx, int):
228
228
  X.iloc[:, idx] = (
229
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
229
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
230
230
  )
231
231
  else:
232
232
  X.loc[:, idx] = (
233
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
233
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
234
234
  )
235
235
  return X
236
236
 
@@ -282,7 +282,7 @@ class ONNXTransformer(object):
282
282
  X, impute_values=impute_values
283
283
  )
284
284
  elif isinstance(X, pd.Series):
285
- X = X.replace(r"^\s*$", np.NaN, regex=True)
285
+ X = X.replace(r"^\s*$", np.nan, regex=True)
286
286
  if len(impute_values.keys()) == 1:
287
287
  for key, val in impute_values.items():
288
288
  X = X.fillna(val)
@@ -301,11 +301,11 @@ class ONNXTransformer(object):
301
301
  for idx, val in impute_values.items():
302
302
  if isinstance(idx, int):
303
303
  X.iloc[:, idx] = (
304
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
304
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
305
305
  )
306
306
  else:
307
307
  X.loc[:, idx] = (
308
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
308
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
309
309
  )
310
310
  return X
311
311
 
@@ -348,7 +348,7 @@ class ONNXTransformer(object):
348
348
  X, impute_values=impute_values
349
349
  )
350
350
  elif isinstance(X, pd.Series):
351
- X = X.replace(r"^\s*$", np.NaN, regex=True)
351
+ X = X.replace(r"^\s*$", np.nan, regex=True)
352
352
  if len(impute_values.keys()) == 1:
353
353
  for key, val in impute_values.items():
354
354
  X = X.fillna(val)
@@ -367,11 +367,11 @@ class ONNXTransformer(object):
367
367
  for idx, val in impute_values.items():
368
368
  if isinstance(idx, int):
369
369
  X.iloc[:, idx] = (
370
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
370
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
371
371
  )
372
372
  else:
373
373
  X.loc[:, idx] = (
374
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
374
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
375
375
  )
376
376
  return X
377
377
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oracle_ads
3
- Version: 2.13.14
3
+ Version: 2.13.16
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle,GenAI,Generative AI,Forecast,Anomaly,Document Understanding,Anomaly Detection
6
6
  Author: Oracle Data Science
@@ -22,15 +22,15 @@ Requires-Dist: cloudpickle>=1.6.0
22
22
  Requires-Dist: fsspec>=0.8.7
23
23
  Requires-Dist: gitpython>=3.1.2
24
24
  Requires-Dist: jinja2>=2.11.2
25
- Requires-Dist: matplotlib>=3.1.3,<=3.8.4
26
- Requires-Dist: numpy>=1.19.2,<2.0.0
25
+ Requires-Dist: matplotlib>=3.1.3
26
+ Requires-Dist: numpy>=1.19.2
27
27
  Requires-Dist: oci>=2.148.0
28
28
  Requires-Dist: ocifs>=1.1.3
29
29
  Requires-Dist: pandas>=2.2.0
30
30
  Requires-Dist: psutil>=5.7.2
31
31
  Requires-Dist: python_jsonschema_objects>=0.3.13
32
32
  Requires-Dist: requests
33
- Requires-Dist: scikit-learn>=1.0,<1.6.0
33
+ Requires-Dist: scikit-learn>=1.0
34
34
  Requires-Dist: tabulate>=0.8.9
35
35
  Requires-Dist: tqdm>=4.59.0
36
36
  Requires-Dist: pydantic>=2.6.3
@@ -56,6 +56,7 @@ Requires-Dist: ibis-framework[impala] ; extra == "bds"
56
56
  Requires-Dist: sqlalchemy ; extra == "bds"
57
57
  Requires-Dist: lightgbm ; extra == "boosted"
58
58
  Requires-Dist: xgboost ; extra == "boosted"
59
+ Requires-Dist: scikit-learn>=1.0,<1.6.0 ; extra == "boosted"
59
60
  Requires-Dist: datefinder>=0.7.1 ; extra == "data"
60
61
  Requires-Dist: fastavro>=0.24.2 ; extra == "data"
61
62
  Requires-Dist: htmllistparse>=0.6.0 ; extra == "data"
@@ -98,6 +99,7 @@ Requires-Dist: pydantic>=2,<3 ; extra == "llm"
98
99
  Requires-Dist: evaluate>=0.4.0 ; extra == "llm"
99
100
  Requires-Dist: ipython>=7.23.1, <8.0 ; extra == "notebook"
100
101
  Requires-Dist: ipywidgets~=7.6.3 ; extra == "notebook"
102
+ Requires-Dist: scikit-learn>=1.0,<1.6.0 ; extra == "notebook"
101
103
  Requires-Dist: lightgbm ; extra == "onnx"
102
104
  Requires-Dist: onnx>=1.12.0,<=1.15.0 ; extra == "onnx" and ( python_version < '3.12')
103
105
  Requires-Dist: onnx~=1.17.0 ; extra == "onnx" and ( python_version >= '3.12')
@@ -110,6 +112,7 @@ Requires-Dist: skl2onnx>=1.10.4 ; extra == "onnx" and ( python_version < '3.12')
110
112
  Requires-Dist: skl2onnx~=1.18.0 ; extra == "onnx" and ( python_version >= '3.12')
111
113
  Requires-Dist: tf2onnx ; extra == "onnx"
112
114
  Requires-Dist: xgboost<=1.7 ; extra == "onnx"
115
+ Requires-Dist: scikit-learn>=1.0,<1.6.0 ; extra == "onnx"
113
116
  Requires-Dist: conda-pack ; extra == "opctl"
114
117
  Requires-Dist: docker ; extra == "opctl"
115
118
  Requires-Dist: inflection ; extra == "opctl"
@@ -7,7 +7,7 @@ ads/aqua/cli.py,sha256=cmNtLVktrT350gsqY2k2zH6GszFdAVmJwNuU5QZljKE,3988
7
7
  ads/aqua/constants.py,sha256=gEVXaXmVdKzIkZ7Q-7Zn_wGpOK0QPFBKnHNIJB12qjs,5132
8
8
  ads/aqua/data.py,sha256=HfxLfKiNiPJecMQy0JAztUsT3IdZilHHHOrCJnjZMc4,408
9
9
  ads/aqua/ui.py,sha256=PYyr46ewx9Qygcsv6BryUF6rLHU0t5YjUgKSb1uZK2Y,20971
10
- ads/aqua/version.json,sha256=QV-m8hKJzRfMbqOivBoZssnG4rgVMCriqen5YBCaGhI,22
10
+ ads/aqua/version.json,sha256=f1syT59npva9jfyKmhgWI93kcoiyYabnkAG4Lqr-4cs,23
11
11
  ads/aqua/client/__init__.py,sha256=-46EcKQjnWEXxTt85bQzXjA5xsfoBXIGm_syKFlVL1c,178
12
12
  ads/aqua/client/client.py,sha256=_voMWUG6bnNDkgYjP6RHrBTtN7qJ9saBWJw7Vt3r7E8,32211
13
13
  ads/aqua/client/openai_client.py,sha256=JxSmjaeBb7jG8ARH6LdmsWGip467V0y6_mo2YwiiZz4,12921
@@ -43,7 +43,7 @@ ads/aqua/extension/errors.py,sha256=4LbzZdCoDEtOcrVI-1dgiza4oAYGof6w5LbN6HqroYk,
43
43
  ads/aqua/extension/evaluation_handler.py,sha256=fJH73fa0xmkEiP8SxKL4A4dJgj-NoL3z_G-w_WW2zJs,4353
44
44
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
45
45
  ads/aqua/extension/finetune_handler.py,sha256=97obbhITswTrBvl88g7gk4GvF2SUHBGUAq4rOylFbtQ,3079
46
- ads/aqua/extension/model_handler.py,sha256=WXucz932sURq5g37ES80GQ5pMrDXutQngLej05D8u60,15787
46
+ ads/aqua/extension/model_handler.py,sha256=VHd0cHtE97lzLugvlYBFhkhZmklklPMwDOIJD3wdAvE,15962
47
47
  ads/aqua/extension/models_ws_msg_handler.py,sha256=VyPbtBZrbRMIYJqOy5DR7j4M4qJK1RBqkxX6RbIvPGE,1851
48
48
  ads/aqua/extension/ui_handler.py,sha256=OAyRgEQ26rpNA5CwBGG6YXM9qCuPrZAUXW490a-fkxs,12136
49
49
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
@@ -113,7 +113,7 @@ ads/common/oci_logging.py,sha256=KAspoksxguNxEVvbD7oT4f7YQtwvo5l90bQ55Q3VfDo,418
113
113
  ads/common/oci_mixin.py,sha256=mhja5UomrhXH43uB0jT-u2KaT37op9tM-snxvtGfc40,34548
114
114
  ads/common/oci_resource.py,sha256=zRa4z5yh5GoOW_6ZE57nhMmK2d94WUqyFqvaNvje9Co,4484
115
115
  ads/common/serializer.py,sha256=JyUJWNybuCwFO_oem41F8477QR2Mj-1P-PKJ-3D3_qw,18813
116
- ads/common/utils.py,sha256=Clw1unEySV4XMEx3VKLOl60lU-g5wH9n4oMdYYxTKdM,53883
116
+ ads/common/utils.py,sha256=omlWfI-O6VHg_-CUbmUkzSdaB40-MBi8-R5qTyv9BRA,53850
117
117
  ads/common/word_lists.py,sha256=luyfSHWZtwAYKuRsSmUYd1VskKYR_8jG_Y26D3j2Vc8,22306
118
118
  ads/common/work_request.py,sha256=EisD2KPzrUbAeaKna-F9DjLtv3ZTZHUDoWa-_koSxZs,6755
119
119
  ads/common/artifact/.model-ignore,sha256=C8hKYunLSYF36BqZiTaCZN-XLpl3Iuhphsa8RZXfOy8,879
@@ -211,7 +211,7 @@ ads/feature_engineering/data_schema.json,sha256=jg4vzyb_pn5IZfQoryepQtDFWh8CpYnh
211
211
  ads/feature_engineering/exceptions.py,sha256=B7IXQvTYvAmkNZ26F3ETXVPyCnCHiG_0qNGV1iojiBk,1174
212
212
  ads/feature_engineering/feature_type_manager.py,sha256=tcRvSUG_utYDMcd62ddyWUaxHAMfmwdCqy7PtfEdj2k,15698
213
213
  ads/feature_engineering/schema.py,sha256=FkGwelB_-4BkCrUq6fL7jL3Hw5BeINryFGwLOQIKgSE,24398
214
- ads/feature_engineering/utils.py,sha256=pZDSCu6dmq5n83ldXTlpPVOf2NngccGZtkL-k8DgPOI,6605
214
+ ads/feature_engineering/utils.py,sha256=3iCJDh21L-4kmuzZOHvDDWKNhlssb8e7MtkWhdu-aI4,6571
215
215
  ads/feature_engineering/accessor/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
216
216
  ads/feature_engineering/accessor/dataframe_accessor.py,sha256=FW2nbJbiq9VMTBxoshyicbthz3szvlTFK_7JkXrreNA,18409
217
217
  ads/feature_engineering/accessor/series_accessor.py,sha256=BbDo8aJJj9Od4cFhoi63u3PAZCDCKxVJfgPDogUIZKw,15334
@@ -234,27 +234,27 @@ ads/feature_engineering/dataset/zip_code_data.py,sha256=PCZd7ZNlKkc9y3LOUFVGkSG8
234
234
  ads/feature_engineering/feature_type/__init__.py,sha256=WtbuB48ZOb6IxB8DhbHpZ8ReKbe-UEA-0am7DrgpnOk,5185
235
235
  ads/feature_engineering/feature_type/address.py,sha256=qi50odt6EZdHRTgaZSYdCfHfYhlQHN6V3uoaf9qGXV0,5558
236
236
  ads/feature_engineering/feature_type/base.py,sha256=nUKRpnNC6NgGh2rFT0nZSGdntZNz8XUxBRok5Ub2_Nc,1642
237
- ads/feature_engineering/feature_type/boolean.py,sha256=-YGXZYG8rHSF8AlSh-yHQNgboe7X2Vi5AHrzXEO0xmU,5214
238
- ads/feature_engineering/feature_type/category.py,sha256=lJsJL-E5ET8YAsh60vu1aAdlJ89TF7kB9v4H29zsnuc,4455
237
+ ads/feature_engineering/feature_type/boolean.py,sha256=N74dSM1lDjkcf1B23KZ5QFyB15w5OBHeHlGZyWAyUK0,5189
238
+ ads/feature_engineering/feature_type/category.py,sha256=NXSktjysOQ3yg5PdRwlFtletqfy7lUXQ8RI1yDEbRd0,4432
239
239
  ads/feature_engineering/feature_type/constant.py,sha256=Jn6kwB_1fs2p34TEhnGi8nxp-UDQfxQm2knFt-m6eGA,3779
240
- ads/feature_engineering/feature_type/continuous.py,sha256=_B4aQ_vZLYDEyXWTVGqsxU0-IdbNo9cKQoruaFxyzCw,4771
240
+ ads/feature_engineering/feature_type/continuous.py,sha256=hz_37At8Ysm7aW1mJyEuu8JUDgvDG5eCUNpDbcVyaAU,4748
241
241
  ads/feature_engineering/feature_type/creditcard.py,sha256=50cRpWmqK1EVxVDaLbqnFe75Q1g3PyRDid6g4B2967M,9355
242
- ads/feature_engineering/feature_type/datetime.py,sha256=nf0-IIZseH-SfZi5NNqqd3f1SSu30guodEYmQvn2j9A,5771
242
+ ads/feature_engineering/feature_type/datetime.py,sha256=rFVTyaDYZBVGmjdospTc3OImdxRJ7XkQTBh3K2IJa0c,5731
243
243
  ads/feature_engineering/feature_type/discrete.py,sha256=EgvG-kW9J3IWnDgtB8V8WIT4nvLQ-xey_gNZ_JmMGKo,3825
244
244
  ads/feature_engineering/feature_type/document.py,sha256=q38koLB6_A_QLsLBGhDZs1JOmQ3munCV6inQQhmvL4o,1005
245
- ads/feature_engineering/feature_type/gis.py,sha256=Bs3BxudT0C2VYSwCNXXb3t5sjiCGb9WsTBuMKjyv394,7233
246
- ads/feature_engineering/feature_type/integer.py,sha256=WSzXTd3XSgTwLzNouQ7LdFaiYQd8tmVqpHvmXwvRCx4,4240
247
- ads/feature_engineering/feature_type/ip_address.py,sha256=1kAEQ7z_2iZPqbxOUNP-_cUmqZASNUa84afRter6gew,4230
248
- ads/feature_engineering/feature_type/ip_address_v4.py,sha256=-pDgR4uda_sA4HXax7NXQhVj8jzfeqKMfR8UMw-sKUs,3866
249
- ads/feature_engineering/feature_type/ip_address_v6.py,sha256=7psw17h9K0ymEoOTAnCD5NuBlIZKKcckxPWzb-cFppE,3945
250
- ads/feature_engineering/feature_type/lat_long.py,sha256=s_hT9l4m6Bdw2dtEVH-4_BhUvfod2zE_CdJpLGMm2T8,7822
245
+ ads/feature_engineering/feature_type/gis.py,sha256=zYZkQPBvIuOyIQx-gQEtX5NQsToARotO7XzwiCHY4AU,7211
246
+ ads/feature_engineering/feature_type/integer.py,sha256=-fp7o7dduHuvQP7vz8MQ2QQRzefYcOfhSc55UfgpRvU,4217
247
+ ads/feature_engineering/feature_type/ip_address.py,sha256=YOBcPhwyQ_FPszWkC7QuAqGFVESuMmhZW0FZsB9_EIc,4214
248
+ ads/feature_engineering/feature_type/ip_address_v4.py,sha256=SlOWZrJYr6QxGxet7nBUIsFlARZ8SPdnMZ1A9NrVW10,3849
249
+ ads/feature_engineering/feature_type/ip_address_v6.py,sha256=VAVAno2amwUk54BlPs0_krAX1NU5NSFRulZO0ysqY6A,3928
250
+ ads/feature_engineering/feature_type/lat_long.py,sha256=yYQ91JKid23fioLhznZr5g5Gz6Hv1nkeF0QNKqxGxS8,7799
251
251
  ads/feature_engineering/feature_type/object.py,sha256=h-aodag_pxwWpf9-12NtxJg3IGw_c0h81-h_b11Zw58,980
252
252
  ads/feature_engineering/feature_type/ordinal.py,sha256=gO1yb18MpKgpmFklmWrZWKKqzpLnMLPpBndPmU8bPxY,3919
253
- ads/feature_engineering/feature_type/phone_number.py,sha256=uPox10AhN_OXAsmRlSKJmYwHcSDGK8gQ6OWN0jwQfY4,3780
254
- ads/feature_engineering/feature_type/string.py,sha256=OUzbXh--WIxd9ywLQd55Tib4zHpHHsvytP3ztdhiRSI,5048
255
- ads/feature_engineering/feature_type/text.py,sha256=YPYRh3kaEdIameKtU-vqtyH6iotthMip5I400-q2KAk,2611
253
+ ads/feature_engineering/feature_type/phone_number.py,sha256=BL8BeGR4TCWvQ5nmbqUz6fCaX_NMfuZf4jmqDKQ9SVM,3763
254
+ ads/feature_engineering/feature_type/string.py,sha256=IS_Ft1M3cbpHIoTeGbCN3YOo_hqSx3QW0tjrN2fHx5s,4988
255
+ ads/feature_engineering/feature_type/text.py,sha256=R8Orx52CK_GtVkeJt0donOY18gCOLtQ0UkFP-LIEOFA,2550
256
256
  ads/feature_engineering/feature_type/unknown.py,sha256=g9e87BHaHbgOJRIMYh6VRzhKySgBwDQWa4WUmBaMpNo,999
257
- ads/feature_engineering/feature_type/zip_code.py,sha256=A8pk5PKKXFIy71CRjfLz_0vT1TL91ruoPAUt2NekWBI,4545
257
+ ads/feature_engineering/feature_type/zip_code.py,sha256=cTltZsUOvwd11-yY1KVkZut0GSLR2cl3XI8G_XT3jkU,4529
258
258
  ads/feature_engineering/feature_type/adsstring/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
259
259
  ads/feature_engineering/feature_type/adsstring/common_regex_mixin.py,sha256=66oCsjUccze8y7UWW40hID9GP5E_SIXms3HLA3zRk7I,9676
260
260
  ads/feature_engineering/feature_type/adsstring/oci_language.py,sha256=KAnYaHI5tMXMnWuQXzL-0wR3vHq7d1f5Qx88bDBGELs,3513
@@ -575,7 +575,7 @@ ads/model/service/oci_datascience_model.py,sha256=Dv4t_6ZnJTwnCBFpv44mv2pyVGJQVI
575
575
  ads/model/service/oci_datascience_model_deployment.py,sha256=eMoyAGTRpJU89nCw_LMB52EazQ2XJbQMF738feFMOyo,18420
576
576
  ads/model/service/oci_datascience_model_version_set.py,sha256=lYw9BauH4BNZk2Jdf8mRjFO3MorQDSMPAxkP-inlwiM,5690
577
577
  ads/model/transformer/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
578
- ads/model/transformer/onnx_transformer.py,sha256=2aiG_-OaDaM0JJhM4w2vblZyI6q-1GB50WzpzjGkDrc,11252
578
+ ads/model/transformer/onnx_transformer.py,sha256=dr3WldE0bPDIBmKw63FOZ4Jg-1hyfu_9Bezy65adByw,11225
579
579
  ads/mysqldb/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
580
580
  ads/mysqldb/mysql_db.py,sha256=nG9vRO_BItFB2z6hTptodMCMB-2fiuNVCrgTdVoSrjY,7828
581
581
  ads/opctl/__init__.py,sha256=uPSJLEAIl2RMMz5zWhhTYYEeWejfcMQTOK2qQFVVaPM,435
@@ -822,13 +822,13 @@ ads/templates/dataflow_pyspark.jinja2,sha256=JiTuaGt5LC7z1mrDoDIbZ5UskBETLpm0lMp
822
822
  ads/templates/dataflow_sparksql.jinja2,sha256=8MvGzj7PWgUNo-9dg6zil8WTpBL3eNcR815fz64v1yM,466
823
823
  ads/templates/func.jinja2,sha256=pLV51Q2nvYrieEBAEdccdoCBl4bm0xq3LlLK_U6wwfU,441
824
824
  ads/templates/score-pkl.jinja2,sha256=ouAogLuud1bPgIhSdhfDTEfBng7gBH2KUAo_1KNpyiU,5304
825
- ads/templates/score.jinja2,sha256=3W_UYiOSLi3sHUYG1kAVX4q9X9YcyRjj5kosXQ8bLWU,10498
825
+ ads/templates/score.jinja2,sha256=_jsTbwtiMiWRHoXZgdi3n8dRXZ--9B4ZyvKjitA7Jr4,10498
826
826
  ads/templates/score_embedding_onnx.jinja2,sha256=4aTTXJRDwG4u_NCHMxVxZx247u770EMCb6arSmBk1NM,6412
827
827
  ads/templates/score_generic.jinja2,sha256=TM_Anz6gDi3L7NVfJJTWC6pJnd-H85HjhTzJNCKZXjI,4956
828
828
  ads/templates/score_huggingface_pipeline.jinja2,sha256=va6CIpzAKCQDeL3fiJzYvw5LtIwxRakl3EU8HgQa6u0,5455
829
829
  ads/templates/score_lightgbm.jinja2,sha256=kiPFPE6lS-HoEd7d5BX5JI7k4SSxMGCUwgqybeSzNts,5695
830
- ads/templates/score_onnx.jinja2,sha256=bF82XIB0JPzBzyfFGo3aqUJGC3js--b9SF8r8Kru7UM,13888
831
- ads/templates/score_onnx_new.jinja2,sha256=dCNzRaXStmQP0o41Sc1gosa5zftCv03E17TRm3qsrK0,15831
830
+ ads/templates/score_onnx.jinja2,sha256=3tREmVMXQqchUP6BIBaK2gImlxe4FLbLIz8uk5S6qoI,13888
831
+ ads/templates/score_onnx_new.jinja2,sha256=aju40s-N58oo5r39Fg3iqL2mrtv8YGzIQuV8zbDRqCI,15831
832
832
  ads/templates/score_oracle_automl.jinja2,sha256=emMaclFUKzVQgIW9YSVmcvbTKbMWKxrsf7Sw1-CuU1g,5621
833
833
  ads/templates/score_pyspark.jinja2,sha256=rhUKxkNENBxrkM-VKErRVU9rUWNq0pEP1aTUzfO_Osc,5037
834
834
  ads/templates/score_pytorch.jinja2,sha256=cpttsir8nS2JGMGmXKpMP--ge4EfDwLv5UIS4jK0nCI,6873
@@ -860,8 +860,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
860
860
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
861
861
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
862
862
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
863
- oracle_ads-2.13.14.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
864
- oracle_ads-2.13.14.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
865
- oracle_ads-2.13.14.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
866
- oracle_ads-2.13.14.dist-info/METADATA,sha256=zWuE0yMdeCIqlKbOutT1x1Ow96y2pC9uDBhCekTvja8,16835
867
- oracle_ads-2.13.14.dist-info/RECORD,,
863
+ oracle_ads-2.13.16.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
864
+ oracle_ads-2.13.16.dist-info/licenses/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
865
+ oracle_ads-2.13.16.dist-info/WHEEL,sha256=G2gURzTEtmeR8nrdXUJfNiB3VYVxigPQ-bEQujpNiNs,82
866
+ oracle_ads-2.13.16.dist-info/METADATA,sha256=nwS9g1qvfjjsh_Th88VL808Z1lc7YqziOaiw1-AkNWo,16994
867
+ oracle_ads-2.13.16.dist-info/RECORD,,