oracle-ads 2.13.13__py3-none-any.whl → 2.13.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. ads/aqua/extension/model_handler.py +7 -3
  2. ads/aqua/modeldeployment/deployment.py +1 -23
  3. ads/common/utils.py +1 -3
  4. ads/feature_engineering/feature_type/boolean.py +15 -14
  5. ads/feature_engineering/feature_type/category.py +12 -11
  6. ads/feature_engineering/feature_type/continuous.py +13 -12
  7. ads/feature_engineering/feature_type/datetime.py +10 -13
  8. ads/feature_engineering/feature_type/gis.py +15 -13
  9. ads/feature_engineering/feature_type/integer.py +11 -10
  10. ads/feature_engineering/feature_type/ip_address.py +9 -7
  11. ads/feature_engineering/feature_type/ip_address_v4.py +7 -6
  12. ads/feature_engineering/feature_type/ip_address_v6.py +7 -6
  13. ads/feature_engineering/feature_type/lat_long.py +15 -14
  14. ads/feature_engineering/feature_type/phone_number.py +8 -7
  15. ads/feature_engineering/feature_type/string.py +12 -12
  16. ads/feature_engineering/feature_type/text.py +6 -7
  17. ads/feature_engineering/feature_type/zip_code.py +11 -9
  18. ads/feature_engineering/utils.py +14 -12
  19. ads/model/transformer/onnx_transformer.py +7 -8
  20. ads/templates/score.jinja2 +3 -3
  21. ads/templates/score_onnx.jinja2 +3 -3
  22. ads/templates/score_onnx_new.jinja2 +3 -3
  23. {oracle_ads-2.13.13.dist-info → oracle_ads-2.13.15.dist-info}/METADATA +7 -4
  24. {oracle_ads-2.13.13.dist-info → oracle_ads-2.13.15.dist-info}/RECORD +27 -27
  25. {oracle_ads-2.13.13.dist-info → oracle_ads-2.13.15.dist-info}/WHEEL +0 -0
  26. {oracle_ads-2.13.13.dist-info → oracle_ads-2.13.15.dist-info}/entry_points.txt +0 -0
  27. {oracle_ads-2.13.13.dist-info → oracle_ads-2.13.15.dist-info}/licenses/LICENSE.txt +0 -0
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -15,22 +14,24 @@ Functions:
15
14
  default_handler(data: pd.Series) -> pd.Series
16
15
  Processes given data and indicates if the data matches requirements.
17
16
  """
17
+
18
+ import re
19
+
18
20
  import matplotlib.pyplot as plt
19
21
  import pandas as pd
20
- import re
22
+
23
+ from ads.common.decorator.runtime_dependency import (
24
+ OptionalDependency,
25
+ runtime_dependency,
26
+ )
27
+ from ads.feature_engineering import schema
21
28
  from ads.feature_engineering.feature_type.string import String
22
29
  from ads.feature_engineering.utils import (
23
- _count_unique_missing,
24
- _str_lat_long_to_point,
25
30
  SchemeNeutral,
26
31
  SchemeTeal,
32
+ _count_unique_missing,
33
+ _str_lat_long_to_point,
27
34
  )
28
- from ads.feature_engineering import schema
29
- from ads.common.decorator.runtime_dependency import (
30
- runtime_dependency,
31
- OptionalDependency,
32
- )
33
-
34
35
 
35
36
  PATTERN = re.compile(r"^[(]?(\-?\d+\.\d+?),\s*(\-?\d+\.\d+?)[)]?$", re.VERBOSE)
36
37
 
@@ -131,7 +132,7 @@ class LatLong(String):
131
132
  "-44.510428,-169.269477",
132
133
  "-56.3344375,-166.407038",
133
134
  "",
134
- np.NaN,
135
+ np.nan,
135
136
  None
136
137
  ],
137
138
  name='latlong'
@@ -170,7 +171,7 @@ class LatLong(String):
170
171
  "-44.510428,-169.269477",
171
172
  "-56.3344375,-166.407038",
172
173
  "",
173
- np.NaN,
174
+ np.nan,
174
175
  None
175
176
  ],
176
177
  name='latlong'
@@ -226,7 +227,7 @@ class LatLong(String):
226
227
  "-44.510428,-169.269477",
227
228
  "-56.3344375,-166.407038",
228
229
  "",
229
- np.NaN,
230
+ np.nan,
230
231
  None
231
232
  ],
232
233
  name='latlong'
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -15,12 +14,14 @@ Functions:
15
14
  default_handler(data: pd.Series) -> pd.Series
16
15
  Processes given data and indicates if the data matches requirements.
17
16
  """
18
- import pandas as pd
17
+
19
18
  import re
19
+
20
+ import pandas as pd
21
+
22
+ from ads.feature_engineering import schema
20
23
  from ads.feature_engineering.feature_type.string import String
21
24
  from ads.feature_engineering.utils import _count_unique_missing
22
- from ads.feature_engineering import schema
23
-
24
25
 
25
26
  PATTERN = re.compile(
26
27
  r"^(\+?\d{1,2}[\s-])?\(?(\d{3})\)?[\s.-]?\d{3}[\s.-]?\d{4}$", re.VERBOSE
@@ -91,7 +92,7 @@ class PhoneNumber(String):
91
92
 
92
93
  Examples
93
94
  --------
94
- >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan, None], name='phone')
95
+ >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.nan, np.nan, None], name='phone')
95
96
  >>> s.ads.feature_type = ['phone_number']
96
97
  >>> s.ads.feature_stat()
97
98
  Metric Value
@@ -113,7 +114,7 @@ class PhoneNumber(String):
113
114
 
114
115
  Examples
115
116
  --------
116
- >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.NaN, np.nan, None], name='phone')
117
+ >>> s = pd.Series(['2068866666', '6508866666', '2068866666', '', np.nan, np.nan, None], name='phone')
117
118
  >>> s.ads.feature_type = ['phone_number']
118
119
  >>> s.ads.feature_domain()
119
120
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,19 +10,20 @@ Classes:
11
10
  String
12
11
  The feature type that represents string values.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import pandas as pd
16
+
17
+ from ads.common.decorator.runtime_dependency import (
18
+ OptionalDependency,
19
+ runtime_dependency,
20
+ )
21
+ from ads.feature_engineering import schema
16
22
  from ads.feature_engineering.feature_type.base import FeatureType
17
23
  from ads.feature_engineering.utils import (
24
+ SchemeNeutral,
18
25
  _count_unique_missing,
19
26
  random_color_func,
20
- SchemeNeutral,
21
- )
22
- from ads.feature_engineering import schema
23
- from ads.common import utils, logger
24
- from ads.common.decorator.runtime_dependency import (
25
- runtime_dependency,
26
- OptionalDependency,
27
27
  )
28
28
 
29
29
 
@@ -89,7 +89,7 @@ class String(FeatureType):
89
89
  Examples
90
90
  --------
91
91
  >>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
92
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
92
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='string')
93
93
  >>> string.ads.feature_type = ['string']
94
94
  >>> string.ads.feature_stat()
95
95
  Metric Value
@@ -113,7 +113,7 @@ class String(FeatureType):
113
113
  Examples
114
114
  --------
115
115
  >>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
116
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
116
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='string')
117
117
  >>> string.ads.feature_type = ['string']
118
118
  >>> string.ads.feature_plot()
119
119
 
@@ -149,7 +149,7 @@ class String(FeatureType):
149
149
  Examples
150
150
  --------
151
151
  >>> string = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
152
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='string')
152
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='string')
153
153
  >>> string.ads.feature_type = ['string']
154
154
  >>> string.ads.feature_domain()
155
155
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,16 +10,16 @@ Classes:
11
10
  Text
12
11
  The Text feature type.
13
12
  """
13
+
14
14
  import matplotlib.pyplot as plt
15
15
  import pandas as pd
16
- from ads.feature_engineering.feature_type.string import String
17
- from ads.feature_engineering.utils import random_color_func, SchemeNeutral
18
16
 
19
- from ads.common import utils, logger
20
17
  from ads.common.decorator.runtime_dependency import (
21
- runtime_dependency,
22
18
  OptionalDependency,
19
+ runtime_dependency,
23
20
  )
21
+ from ads.feature_engineering.feature_type.string import String
22
+ from ads.feature_engineering.utils import SchemeNeutral, random_color_func
24
23
 
25
24
 
26
25
  class Text(String):
@@ -53,7 +52,7 @@ class Text(String):
53
52
  Examples
54
53
  --------
55
54
  >>> text = pd.Series(['S', 'C', 'S', 'S', 'S', 'Q', 'S', 'S', 'S', 'C', 'S', 'S', 'S',
56
- 'S', 'S', 'S', 'Q', 'S', 'S', '', np.NaN, None], name='text')
55
+ 'S', 'S', 'S', 'Q', 'S', 'S', '', np.nan, None], name='text')
57
56
  >>> text.ads.feature_type = ['text']
58
57
  >>> text.ads.feature_plot()
59
58
 
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -15,17 +14,20 @@ Functions:
15
14
  default_handler(data: pd.Series) -> pd.Series
16
15
  Processes given data and indicates if the data matches requirements.
17
16
  """
17
+
18
+ import re
19
+
18
20
  import matplotlib.pyplot as plt
19
21
  import pandas as pd
20
- import re
22
+
23
+ from ads.feature_engineering import schema
21
24
  from ads.feature_engineering.feature_type.string import String
22
25
  from ads.feature_engineering.utils import (
23
26
  _count_unique_missing,
24
- _to_lat_long,
25
27
  _plot_gis_scatter,
28
+ _to_lat_long,
26
29
  _zip_code,
27
30
  )
28
- from ads.feature_engineering import schema
29
31
 
30
32
  PATTERN = re.compile(r"^[0-9]{5}(?:-[0-9]{4})?$", re.VERBOSE)
31
33
 
@@ -78,7 +80,7 @@ class ZipCode(String):
78
80
  >>> from ads.feature_engineering.feature_type.zip_code import ZipCode
79
81
  >>> import pandas as pd
80
82
  >>> import numpy as np
81
- >>> s = pd.Series(["94065", "90210", np.NaN, None], name='zipcode')
83
+ >>> s = pd.Series(["94065", "90210", np.nan, None], name='zipcode')
82
84
  >>> ZipCode.validator.is_zip_code(s)
83
85
  0 True
84
86
  1 True
@@ -97,7 +99,7 @@ class ZipCode(String):
97
99
 
98
100
  Examples
99
101
  --------
100
- >>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
102
+ >>> zipcode = pd.Series([94065, 90210, np.nan, None], name='zipcode')
101
103
  >>> zipcode.ads.feature_type = ['zip_code']
102
104
  >>> zipcode.ads.feature_stat()
103
105
  Metric Value
@@ -119,7 +121,7 @@ class ZipCode(String):
119
121
 
120
122
  Examples
121
123
  --------
122
- >>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
124
+ >>> zipcode = pd.Series([94065, 90210, np.nan, None], name='zipcode')
123
125
  >>> zipcode.ads.feature_type = ['zip_code']
124
126
  >>> zipcode.ads.feature_plot()
125
127
  Returns
@@ -138,7 +140,7 @@ class ZipCode(String):
138
140
 
139
141
  Examples
140
142
  --------
141
- >>> zipcode = pd.Series([94065, 90210, np.NaN, None], name='zipcode')
143
+ >>> zipcode = pd.Series([94065, 90210, np.nan, None], name='zipcode')
142
144
  >>> zipcode.ads.feature_type = ['zip_code']
143
145
  >>> zipcode.ads.feature_domain()
144
146
  constraints: []
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2021, 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2021, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  """
@@ -11,18 +10,21 @@ Functions:
11
10
  is_boolean(value: Any) -> bool
12
11
  Checks if value type is boolean.
13
12
  """
14
- import numpy as np
13
+
14
+ import re
15
+ from functools import lru_cache
16
+ from typing import Any
17
+
15
18
  import matplotlib.pyplot as plt
19
+ import numpy as np
16
20
  import pandas as pd
17
- import re
21
+
18
22
  from ads.common.card_identifier import card_identify
19
23
  from ads.common.decorator.runtime_dependency import (
20
- runtime_dependency,
21
24
  OptionalDependency,
25
+ runtime_dependency,
22
26
  )
23
27
  from ads.feature_engineering.dataset.zip_code_data import zip_code_dict
24
- from functools import lru_cache
25
- from typing import Any
26
28
 
27
29
 
28
30
  class SchemeNeutral(str):
@@ -67,7 +69,7 @@ def _add_missing(x, df):
67
69
  """
68
70
  Adds count of missing values.
69
71
  """
70
- n_missing = pd.isnull(x.replace(r"", np.NaN)).sum()
72
+ n_missing = pd.isnull(x.replace(r"", np.nan)).sum()
71
73
  if n_missing > 0:
72
74
  df.loc["missing"] = n_missing
73
75
  return df
@@ -78,7 +80,7 @@ def _count_unique_missing(x):
78
80
  Returns the total count, unique count and count of missing values of a series.
79
81
  """
80
82
  df_stat = pd.Series(
81
- {"count": len(x), "unique": len(x.replace(r"", np.NaN).dropna().unique())},
83
+ {"count": len(x), "unique": len(x.replace(r"", np.nan).dropna().unique())},
82
84
  name=x.name,
83
85
  ).to_frame()
84
86
  return _add_missing(x, df_stat)
@@ -122,7 +124,7 @@ def random_color_func(
122
124
  h = 179
123
125
  s = 23
124
126
  l = int(100.0 * float(random_state.randint(60, 120)) / 255.0)
125
- return "hsl({}, {}%, {}%)".format(h, s, l)
127
+ return f"hsl({h}, {s}%, {l}%)"
126
128
 
127
129
 
128
130
  def _is_float(s: str):
@@ -135,7 +137,7 @@ def _is_float(s: str):
135
137
  def _str_lat_long_to_point(s):
136
138
  """
137
139
  Converts input data into formated geometry point
138
- Return formated geometry point string or np.NaN if input string is not valid
140
+ Return formated geometry point string or np.nan if input string is not valid
139
141
  """
140
142
  if isinstance(s, str):
141
143
  coords = s.split(",")
@@ -147,7 +149,7 @@ def _str_lat_long_to_point(s):
147
149
  long = long[:-1]
148
150
  if _is_float(lat) and _is_float(long):
149
151
  return "POINT(" + long + " " + lat + ")"
150
- return np.NaN
152
+ return np.nan
151
153
 
152
154
 
153
155
  @runtime_dependency(module="geopandas", install_from=OptionalDependency.GEO)
@@ -1,7 +1,6 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
- # Copyright (c) 2022 Oracle and/or its affiliates.
3
+ # Copyright (c) 2022, 2025 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
7
6
  import json
@@ -16,7 +15,7 @@ pd.options.mode.chained_assignment = None
16
15
 
17
16
  # Note to developers: If you make any changes to this class, copy and paste those changes over to
18
17
  # templates/score_onnx.jinja2 and templates/score_onnx_new.jinja2. We do not yet have an automatic way of doing this.
19
- class ONNXTransformer(object):
18
+ class ONNXTransformer:
20
19
  """
21
20
  This is a transformer to convert X [pandas.Dataframe, pd.Series] data into Onnx
22
21
  readable dtypes and formats. It is Serializable, so it can be reloaded at another time.
@@ -199,7 +198,7 @@ class ONNXTransformer(object):
199
198
  X, impute_values=impute_values
200
199
  )
201
200
  elif isinstance(X, pd.Series):
202
- X = X.replace(r"^\s*$", np.NaN, regex=True)
201
+ X = X.replace(r"^\s*$", np.nan, regex=True)
203
202
  if len(impute_values.keys()) == 1:
204
203
  for key, val in impute_values.items():
205
204
  X = X.fillna(val)
@@ -208,7 +207,7 @@ class ONNXTransformer(object):
208
207
  "Multiple imputed values are provided, but `X` has only one dim."
209
208
  )
210
209
  else:
211
- raise NotImplemented(
210
+ raise NotImplementedError(
212
211
  f"{type(X)} is not supported. Convert `X` to pandas dataframe or numpy array."
213
212
  )
214
213
  return X
@@ -218,11 +217,11 @@ class ONNXTransformer(object):
218
217
  for idx, val in impute_values.items():
219
218
  if isinstance(idx, int):
220
219
  X.iloc[:, idx] = (
221
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
220
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
222
221
  )
223
222
  else:
224
223
  X.loc[:, idx] = (
225
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
224
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
226
225
  )
227
226
  return X
228
227
 
@@ -294,7 +293,7 @@ class ONNXTransformer(object):
294
293
  The loaded model
295
294
  """
296
295
  # Make sure you have pandas, numpy, and sklearn imported
297
- with open(filename, "r") as f:
296
+ with open(filename) as f:
298
297
  export_dict = json.load(f)
299
298
 
300
299
  onnx_transformer = ONNXTransformer()
@@ -207,7 +207,7 @@ class ONNXTransformer(object):
207
207
  X, impute_values=impute_values
208
208
  )
209
209
  elif isinstance(X, pd.Series):
210
- X = X.replace(r"^\s*$", np.NaN, regex=True)
210
+ X = X.replace(r"^\s*$", np.nan, regex=True)
211
211
  if len(impute_values.keys()) == 1:
212
212
  for key, val in impute_values.items():
213
213
  X = X.fillna(val)
@@ -226,11 +226,11 @@ class ONNXTransformer(object):
226
226
  for idx, val in impute_values.items():
227
227
  if isinstance(idx, int):
228
228
  X.iloc[:, idx] = (
229
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
229
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
230
230
  )
231
231
  else:
232
232
  X.loc[:, idx] = (
233
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
233
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
234
234
  )
235
235
  return X
236
236
 
@@ -282,7 +282,7 @@ class ONNXTransformer(object):
282
282
  X, impute_values=impute_values
283
283
  )
284
284
  elif isinstance(X, pd.Series):
285
- X = X.replace(r"^\s*$", np.NaN, regex=True)
285
+ X = X.replace(r"^\s*$", np.nan, regex=True)
286
286
  if len(impute_values.keys()) == 1:
287
287
  for key, val in impute_values.items():
288
288
  X = X.fillna(val)
@@ -301,11 +301,11 @@ class ONNXTransformer(object):
301
301
  for idx, val in impute_values.items():
302
302
  if isinstance(idx, int):
303
303
  X.iloc[:, idx] = (
304
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
304
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
305
305
  )
306
306
  else:
307
307
  X.loc[:, idx] = (
308
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
308
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
309
309
  )
310
310
  return X
311
311
 
@@ -348,7 +348,7 @@ class ONNXTransformer(object):
348
348
  X, impute_values=impute_values
349
349
  )
350
350
  elif isinstance(X, pd.Series):
351
- X = X.replace(r"^\s*$", np.NaN, regex=True)
351
+ X = X.replace(r"^\s*$", np.nan, regex=True)
352
352
  if len(impute_values.keys()) == 1:
353
353
  for key, val in impute_values.items():
354
354
  X = X.fillna(val)
@@ -367,11 +367,11 @@ class ONNXTransformer(object):
367
367
  for idx, val in impute_values.items():
368
368
  if isinstance(idx, int):
369
369
  X.iloc[:, idx] = (
370
- X.iloc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
370
+ X.iloc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
371
371
  )
372
372
  else:
373
373
  X.loc[:, idx] = (
374
- X.loc[:, idx].replace(r"^\s*$", np.NaN, regex=True).fillna(val)
374
+ X.loc[:, idx].replace(r"^\s*$", np.nan, regex=True).fillna(val)
375
375
  )
376
376
  return X
377
377
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: oracle_ads
3
- Version: 2.13.13
3
+ Version: 2.13.15
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle,GenAI,Generative AI,Forecast,Anomaly,Document Understanding,Anomaly Detection
6
6
  Author: Oracle Data Science
@@ -22,15 +22,15 @@ Requires-Dist: cloudpickle>=1.6.0
22
22
  Requires-Dist: fsspec>=0.8.7
23
23
  Requires-Dist: gitpython>=3.1.2
24
24
  Requires-Dist: jinja2>=2.11.2
25
- Requires-Dist: matplotlib>=3.1.3,<=3.8.4
26
- Requires-Dist: numpy>=1.19.2,<2.0.0
25
+ Requires-Dist: matplotlib>=3.1.3
26
+ Requires-Dist: numpy>=1.19.2
27
27
  Requires-Dist: oci>=2.148.0
28
28
  Requires-Dist: ocifs>=1.1.3
29
29
  Requires-Dist: pandas>=2.2.0
30
30
  Requires-Dist: psutil>=5.7.2
31
31
  Requires-Dist: python_jsonschema_objects>=0.3.13
32
32
  Requires-Dist: requests
33
- Requires-Dist: scikit-learn>=1.0,<1.6.0
33
+ Requires-Dist: scikit-learn>=1.0
34
34
  Requires-Dist: tabulate>=0.8.9
35
35
  Requires-Dist: tqdm>=4.59.0
36
36
  Requires-Dist: pydantic>=2.6.3
@@ -56,6 +56,7 @@ Requires-Dist: ibis-framework[impala] ; extra == "bds"
56
56
  Requires-Dist: sqlalchemy ; extra == "bds"
57
57
  Requires-Dist: lightgbm ; extra == "boosted"
58
58
  Requires-Dist: xgboost ; extra == "boosted"
59
+ Requires-Dist: scikit-learn>=1.0,<1.6.0 ; extra == "boosted"
59
60
  Requires-Dist: datefinder>=0.7.1 ; extra == "data"
60
61
  Requires-Dist: fastavro>=0.24.2 ; extra == "data"
61
62
  Requires-Dist: htmllistparse>=0.6.0 ; extra == "data"
@@ -98,6 +99,7 @@ Requires-Dist: pydantic>=2,<3 ; extra == "llm"
98
99
  Requires-Dist: evaluate>=0.4.0 ; extra == "llm"
99
100
  Requires-Dist: ipython>=7.23.1, <8.0 ; extra == "notebook"
100
101
  Requires-Dist: ipywidgets~=7.6.3 ; extra == "notebook"
102
+ Requires-Dist: scikit-learn>=1.0,<1.6.0 ; extra == "notebook"
101
103
  Requires-Dist: lightgbm ; extra == "onnx"
102
104
  Requires-Dist: onnx>=1.12.0,<=1.15.0 ; extra == "onnx" and ( python_version < '3.12')
103
105
  Requires-Dist: onnx~=1.17.0 ; extra == "onnx" and ( python_version >= '3.12')
@@ -110,6 +112,7 @@ Requires-Dist: skl2onnx>=1.10.4 ; extra == "onnx" and ( python_version < '3.12')
110
112
  Requires-Dist: skl2onnx~=1.18.0 ; extra == "onnx" and ( python_version >= '3.12')
111
113
  Requires-Dist: tf2onnx ; extra == "onnx"
112
114
  Requires-Dist: xgboost<=1.7 ; extra == "onnx"
115
+ Requires-Dist: scikit-learn>=1.0,<1.6.0 ; extra == "onnx"
113
116
  Requires-Dist: conda-pack ; extra == "opctl"
114
117
  Requires-Dist: docker ; extra == "opctl"
115
118
  Requires-Dist: inflection ; extra == "opctl"