oracle-ads 2.12.8__py3-none-any.whl → 2.12.10rc0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. ads/aqua/__init__.py +4 -4
  2. ads/aqua/app.py +12 -2
  3. ads/aqua/common/enums.py +3 -0
  4. ads/aqua/common/utils.py +62 -2
  5. ads/aqua/data.py +2 -19
  6. ads/aqua/evaluation/entities.py +6 -0
  7. ads/aqua/evaluation/evaluation.py +25 -3
  8. ads/aqua/extension/deployment_handler.py +8 -4
  9. ads/aqua/extension/finetune_handler.py +8 -14
  10. ads/aqua/extension/model_handler.py +25 -6
  11. ads/aqua/extension/ui_handler.py +13 -1
  12. ads/aqua/finetuning/constants.py +5 -2
  13. ads/aqua/finetuning/entities.py +70 -17
  14. ads/aqua/finetuning/finetuning.py +79 -82
  15. ads/aqua/model/entities.py +4 -1
  16. ads/aqua/model/model.py +95 -29
  17. ads/aqua/modeldeployment/deployment.py +13 -1
  18. ads/aqua/modeldeployment/entities.py +7 -4
  19. ads/aqua/ui.py +24 -2
  20. ads/common/auth.py +9 -9
  21. ads/llm/autogen/__init__.py +2 -0
  22. ads/llm/autogen/constants.py +15 -0
  23. ads/llm/autogen/reports/__init__.py +2 -0
  24. ads/llm/autogen/reports/base.py +67 -0
  25. ads/llm/autogen/reports/data.py +103 -0
  26. ads/llm/autogen/reports/session.py +526 -0
  27. ads/llm/autogen/reports/templates/chat_box.html +13 -0
  28. ads/llm/autogen/reports/templates/chat_box_lt.html +5 -0
  29. ads/llm/autogen/reports/templates/chat_box_rt.html +6 -0
  30. ads/llm/autogen/reports/utils.py +56 -0
  31. ads/llm/autogen/v02/__init__.py +4 -0
  32. ads/llm/autogen/{client_v02.py → v02/client.py} +23 -10
  33. ads/llm/autogen/v02/log_handlers/__init__.py +2 -0
  34. ads/llm/autogen/v02/log_handlers/oci_file_handler.py +83 -0
  35. ads/llm/autogen/v02/loggers/__init__.py +6 -0
  36. ads/llm/autogen/v02/loggers/metric_logger.py +320 -0
  37. ads/llm/autogen/v02/loggers/session_logger.py +580 -0
  38. ads/llm/autogen/v02/loggers/utils.py +86 -0
  39. ads/llm/autogen/v02/runtime_logging.py +163 -0
  40. ads/llm/guardrails/base.py +6 -5
  41. ads/llm/langchain/plugins/chat_models/oci_data_science.py +46 -20
  42. ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py +38 -11
  43. ads/model/__init__.py +11 -13
  44. ads/model/artifact.py +47 -8
  45. ads/model/extractor/embedding_onnx_extractor.py +80 -0
  46. ads/model/framework/embedding_onnx_model.py +438 -0
  47. ads/model/generic_model.py +26 -24
  48. ads/model/model_metadata.py +8 -7
  49. ads/opctl/config/merger.py +13 -14
  50. ads/opctl/operator/common/operator_config.py +4 -4
  51. ads/opctl/operator/lowcode/common/transformations.py +12 -5
  52. ads/opctl/operator/lowcode/common/utils.py +11 -5
  53. ads/opctl/operator/lowcode/forecast/const.py +3 -0
  54. ads/opctl/operator/lowcode/forecast/model/arima.py +19 -13
  55. ads/opctl/operator/lowcode/forecast/model/automlx.py +129 -36
  56. ads/opctl/operator/lowcode/forecast/model/autots.py +1 -0
  57. ads/opctl/operator/lowcode/forecast/model/base_model.py +58 -17
  58. ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +10 -3
  59. ads/opctl/operator/lowcode/forecast/model/prophet.py +25 -18
  60. ads/opctl/operator/lowcode/forecast/model_evaluator.py +3 -2
  61. ads/opctl/operator/lowcode/forecast/schema.yaml +13 -0
  62. ads/opctl/operator/lowcode/forecast/utils.py +8 -6
  63. ads/telemetry/base.py +18 -11
  64. ads/telemetry/client.py +33 -13
  65. ads/templates/schemas/openapi.json +1740 -0
  66. ads/templates/score_embedding_onnx.jinja2 +202 -0
  67. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10rc0.dist-info}/METADATA +9 -10
  68. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10rc0.dist-info}/RECORD +71 -50
  69. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10rc0.dist-info}/LICENSE.txt +0 -0
  70. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10rc0.dist-info}/WHEEL +0 -0
  71. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10rc0.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,202 @@
1
+ # score.py {{SCORE_VERSION}} generated by ADS {{ADS_VERSION}} on {{time_created}}
2
+ import os
3
+ import sys
4
+ import json
5
+ import subprocess
6
+ from functools import lru_cache
7
+ import onnxruntime as ort
8
+ import jsonschema
9
+ from jsonschema import validate, ValidationError
10
+ from transformers import AutoTokenizer
11
+ import logging
12
+
13
+ model_name = '{{model_file_name}}'
14
+ openapi_schema = 'openapi.json'
15
+
16
+
17
+ """
18
+ Inference script. This script is used for prediction by scoring server when schema is known.
19
+ """
20
+
21
+
22
+ @lru_cache(maxsize=10)
23
+ def load_model(model_file_name=model_name):
24
+ """
25
+ Loads model from the serialized format
26
+
27
+ Returns
28
+ -------
29
+ model: a model instance on which predict API can be invoked
30
+ """
31
+ model_dir = os.path.dirname(os.path.realpath(__file__))
32
+ if model_dir not in sys.path:
33
+ sys.path.insert(0, model_dir)
34
+ contents = os.listdir(model_dir)
35
+ if model_file_name in contents:
36
+ print(f'Start loading {model_file_name} from model directory {model_dir} ...')
37
+ providers= ['CPUExecutionProvider']
38
+ if is_gpu_available():
39
+ providers=['CUDAExecutionProvider','CPUExecutionProvider']
40
+ model = ort.InferenceSession(os.path.join(model_dir, model_file_name), providers=providers)
41
+ print("Model is successfully loaded.")
42
+ return model
43
+ else:
44
+ raise Exception(f'{model_file_name} is not found in model directory {model_dir}')
45
+
46
+
47
+ def is_gpu_available():
48
+ """Check if gpu is available on the infrastructure."""
49
+ try:
50
+ result = subprocess.run(["nvidia-smi"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
51
+ if result.returncode == 0:
52
+ return True
53
+ except FileNotFoundError:
54
+ return False
55
+
56
+
57
+ @lru_cache(maxsize=1)
58
+ def load_tokenizer(model_full_name):
59
+
60
+ model_dir = os.path.dirname(os.path.realpath(__file__))
61
+ # initialize tokenizer
62
+ return AutoTokenizer.from_pretrained(model_dir, clean_up_tokenization_spaces=True)
63
+
64
+ @lru_cache(maxsize=1)
65
+ def load_openapi_schema():
66
+ """
67
+ Loads the input schema for the incoming request
68
+
69
+ Returns
70
+ -------
71
+ schema: openapi schema as json
72
+ """
73
+ model_dir = os.path.dirname(os.path.realpath(__file__))
74
+ if model_dir not in sys.path:
75
+ sys.path.insert(0, model_dir)
76
+ contents = os.listdir(model_dir)
77
+
78
+ try:
79
+ with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), openapi_schema), 'r') as file:
80
+ return json.load(file)
81
+ except:
82
+ raise Exception(f'{openapi_schema} is not found in model directory {model_dir}')
83
+
84
+
85
+ def validate_inputs(data):
86
+
87
+ api_schema = load_openapi_schema()
88
+
89
+ # use a reference resolver for internal $refs
90
+ resolver = jsonschema.RefResolver.from_schema(api_schema)
91
+
92
+ # get the actual schema part to validate against
93
+ request_schema = api_schema["components"]["schemas"]["OpenAICompatRequest"]
94
+
95
+ try:
96
+ # validate the input JSON
97
+ validate(instance=data, schema=request_schema, resolver=resolver)
98
+ except ValidationError as e:
99
+ example_value = {
100
+ "input": ["What are activation functions?"],
101
+ "encoding_format": "float",
102
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
103
+ "user": "user"
104
+ }
105
+ message = f"JSON is invalid. Error: {e.message}\n An example of the expected format for 'OpenAICompatRequest' looks like: \n {json.dumps(example_value, indent=2)}"
106
+ raise ValueError(message) from e
107
+
108
+
109
+ def pre_inference(data):
110
+ """
111
+ Preprocess data
112
+
113
+ Parameters
114
+ ----------
115
+ data: Data format as expected by the predict API.
116
+
117
+ Returns
118
+ -------
119
+ onnx_inputs: Data format after any processing
120
+ total_tokens: total tokens that will be processed by the model
121
+
122
+ """
123
+ validate_inputs(data)
124
+
125
+ tokenizer = load_tokenizer(data['model'])
126
+ inputs = tokenizer(data['input'], return_tensors="np", padding=True)
127
+
128
+ padding_token_id = tokenizer.pad_token_id
129
+ total_tokens = (inputs["input_ids"] != padding_token_id).sum().item()
130
+ onnx_inputs = {key: [l.tolist()for l in inputs[key] ] for key in inputs}
131
+
132
+ return onnx_inputs, total_tokens
133
+
134
+ def convert_embeddings_to_openapi_format(embeddings, model_name, total_tokens):
135
+
136
+ formatted_data = []
137
+ openai_compat_response = {}
138
+ for idx, embedding in enumerate(embeddings):
139
+
140
+ formatted_embedding = {
141
+ "object": "embedding",
142
+ "embedding": embedding,
143
+ "index": idx
144
+ }
145
+ formatted_data.append(formatted_embedding)
146
+
147
+ # create the final OpenAICompatResponse format
148
+ openai_compat_response = {
149
+ "object": "list",
150
+ "data": formatted_data,
151
+ "model": model_name, # Use the provided model name
152
+ "usage": {
153
+ "prompt_tokens": total_tokens, # represents the token count for just the text input
154
+ "total_tokens": total_tokens # total number of tokens involved in the request, same in case of embeddings
155
+ }
156
+ }
157
+
158
+ return openai_compat_response
159
+
160
+
161
+ def post_inference(outputs, model_name, total_tokens):
162
+ """
163
+ Post-process the model results
164
+
165
+ Parameters
166
+ ----------
167
+ outputs: Data format after calling model.run
168
+ model_name: name of model
169
+ total_tokens: total tokens that will be processed by the model
170
+
171
+ Returns
172
+ -------
173
+ outputs: Data format after any processing.
174
+
175
+ """
176
+ results = [embed.tolist() for embed in outputs]
177
+ response = convert_embeddings_to_openapi_format(results, model_name, total_tokens)
178
+ return response
179
+
180
+ def predict(data, model=load_model()):
181
+ """
182
+ Returns prediction given the model and data to predict
183
+
184
+ Parameters
185
+ ----------
186
+ model: Model instance returned by load_model API.
187
+ data: Data format as expected by the predict API of the core estimator. For eg. in case of sckit models it could be numpy array/List of list/Pandas DataFrame.
188
+
189
+ Returns
190
+ -------
191
+ predictions: Output from scoring server
192
+ Format: {'prediction': output from model.predict method}
193
+
194
+ """
195
+ # inputs contains 'input_ids', 'token_type_ids', 'attention_mask' but 'token_type_ids' is optional
196
+ inputs, total_tokens = pre_inference(data)
197
+
198
+ onnx_inputs = [inp.name for inp in model.get_inputs()]
199
+ embeddings = model.run(None, {key: inputs[key] if key in inputs else None for key in onnx_inputs})[0]
200
+
201
+ response = post_inference(embeddings, data['model'], total_tokens)
202
+ return response
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: oracle_ads
3
- Version: 2.12.8
3
+ Version: 2.12.10rc0
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -30,16 +30,16 @@ Requires-Dist: pandas>=2.2.0; python_version>='3.9'
30
30
  Requires-Dist: psutil>=5.7.2
31
31
  Requires-Dist: python_jsonschema_objects>=0.3.13
32
32
  Requires-Dist: requests
33
- Requires-Dist: scikit-learn>=1.0
33
+ Requires-Dist: scikit-learn>=1.0,<1.6.0
34
34
  Requires-Dist: tabulate>=0.8.9
35
35
  Requires-Dist: tqdm>=4.59.0
36
36
  Requires-Dist: pydantic>=2.6.3
37
37
  Requires-Dist: oracle_ads[opctl] ; extra == "anomaly"
38
38
  Requires-Dist: autots ; extra == "anomaly"
39
39
  Requires-Dist: oracledb ; extra == "anomaly"
40
- Requires-Dist: report-creator==1.0.28 ; extra == "anomaly"
40
+ Requires-Dist: report-creator==1.0.32 ; extra == "anomaly"
41
41
  Requires-Dist: rrcf==0.4.4 ; extra == "anomaly"
42
- Requires-Dist: scikit-learn ; extra == "anomaly"
42
+ Requires-Dist: scikit-learn<1.6.0 ; extra == "anomaly"
43
43
  Requires-Dist: salesforce-merlion[all]==2.0.4 ; extra == "anomaly"
44
44
  Requires-Dist: jupyter_server ; extra == "aqua"
45
45
  Requires-Dist: hdfs[kerberos] ; extra == "bds"
@@ -63,13 +63,12 @@ Requires-Dist: nbformat ; extra == "forecast"
63
63
  Requires-Dist: oci-cli ; extra == "forecast"
64
64
  Requires-Dist: py-cpuinfo ; extra == "forecast"
65
65
  Requires-Dist: rich ; extra == "forecast"
66
- Requires-Dist: autots[additional] ; extra == "forecast"
66
+ Requires-Dist: autots ; extra == "forecast"
67
67
  Requires-Dist: mlforecast ; extra == "forecast"
68
68
  Requires-Dist: neuralprophet>=0.7.0 ; extra == "forecast"
69
69
  Requires-Dist: numpy<2.0.0 ; extra == "forecast"
70
70
  Requires-Dist: oci-cli ; extra == "forecast"
71
71
  Requires-Dist: optuna ; extra == "forecast"
72
- Requires-Dist: oracle-ads ; extra == "forecast"
73
72
  Requires-Dist: pmdarima ; extra == "forecast"
74
73
  Requires-Dist: prophet ; extra == "forecast"
75
74
  Requires-Dist: shap ; extra == "forecast"
@@ -77,7 +76,7 @@ Requires-Dist: sktime ; extra == "forecast"
77
76
  Requires-Dist: statsmodels ; extra == "forecast"
78
77
  Requires-Dist: plotly ; extra == "forecast"
79
78
  Requires-Dist: oracledb ; extra == "forecast"
80
- Requires-Dist: report-creator==1.0.28 ; extra == "forecast"
79
+ Requires-Dist: report-creator==1.0.32 ; extra == "forecast"
81
80
  Requires-Dist: geopandas<1.0.0 ; extra == "geo"
82
81
  Requires-Dist: fiona<=1.9.6 ; extra == "geo"
83
82
  Requires-Dist: oracle_ads[viz] ; extra == "geo"
@@ -121,16 +120,16 @@ Requires-Dist: scrubadub==2.0.1 ; extra == "pii"
121
120
  Requires-Dist: scrubadub_spacy ; extra == "pii"
122
121
  Requires-Dist: spacy-transformers==1.2.5 ; extra == "pii"
123
122
  Requires-Dist: spacy==3.6.1 ; extra == "pii"
124
- Requires-Dist: report-creator==1.0.28 ; extra == "pii"
123
+ Requires-Dist: report-creator==1.0.32 ; extra == "pii"
125
124
  Requires-Dist: oracle_ads[opctl] ; extra == "recommender"
126
125
  Requires-Dist: scikit-surprise ; extra == "recommender"
127
126
  Requires-Dist: plotly ; extra == "recommender"
128
- Requires-Dist: report-creator==1.0.28 ; extra == "recommender"
127
+ Requires-Dist: report-creator==1.0.32 ; extra == "recommender"
129
128
  Requires-Dist: pyspark>=3.0.0 ; extra == "spark"
130
129
  Requires-Dist: oracle_ads[viz] ; extra == "tensorflow"
131
130
  Requires-Dist: tensorflow<=2.15.1 ; extra == "tensorflow"
132
131
  Requires-Dist: arff ; extra == "testsuite"
133
- Requires-Dist: autogen-agentchat~=0.2 ; extra == "testsuite"
132
+ Requires-Dist: autogen-agentchat<0.4 ; extra == "testsuite"
134
133
  Requires-Dist: category_encoders==2.6.3 ; extra == "testsuite"
135
134
  Requires-Dist: cohere==4.53 ; extra == "testsuite"
136
135
  Requires-Dist: faiss-cpu ; extra == "testsuite"
@@ -1,18 +1,18 @@
1
1
  ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
2
  ads/cli.py,sha256=hjRcQfXFzkh37fbyUBg95I3R0brslZLf9IQU8nSCxio,3933
3
3
  ads/config.py,sha256=WGFgS5-dxqC9_iRJKakn-mh9545gHJpWB_Y0hT5O3ec,8016
4
- ads/aqua/__init__.py,sha256=IUKZAsxUGVicsyeSwsGwK6rAUJ1vIUW9ywduA3U22xc,1015
5
- ads/aqua/app.py,sha256=BQuQ9RERU0rKmn3N3xicKzYaXOd7xBwX1aVuVLNgw98,11993
4
+ ads/aqua/__init__.py,sha256=tmTJDKbYGjhDC5er6g5Cd3VV60NithclAyC-MVKLln4,1005
5
+ ads/aqua/app.py,sha256=i-03u5bf3gCCIIXf5bbWK22rW6ll0skQQlVt-zehOGU,12538
6
6
  ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
7
  ads/aqua/constants.py,sha256=fTPrRuWaZB1_THZ2I1nOrwW1pQGpvMC44--Ok5Myr5Y,2978
8
- ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
9
- ads/aqua/ui.py,sha256=hGl4btUsMImkpzZ-Ae_WVVaRqfpdG_gUeHKD9E1nKbE,26195
8
+ ads/aqua/data.py,sha256=HfxLfKiNiPJecMQy0JAztUsT3IdZilHHHOrCJnjZMc4,408
9
+ ads/aqua/ui.py,sha256=aRVtvJslhq8Zq8B_2AQdmlFbuLWpHakFTZg6T9uvHU0,27248
10
10
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
11
11
  ads/aqua/common/decorator.py,sha256=JEN6Cy4DYgQbmIR3ShCjTuBMCnilDxq7jkYMJse1rcM,4112
12
12
  ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
13
- ads/aqua/common/enums.py,sha256=HnaraHfkYmuqC5mEF7gyvQmqbOc6r_9EI2MF-cieb5o,2991
13
+ ads/aqua/common/enums.py,sha256=CObWpoNzNuVFT6Hh6tLbWrUMS6LkY5jDK0ifTGLJnSc,3068
14
14
  ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
15
- ads/aqua/common/utils.py,sha256=ipWRenYo3x_N9QN9pyverZXfxxd9fBIk4acmpZclwzY,37516
15
+ ads/aqua/common/utils.py,sha256=7vZM2T74LqspzKzuaSuG7H0NnswnA3r6CwNGAumc2xU,39568
16
16
  ads/aqua/config/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
17
17
  ads/aqua/config/config.py,sha256=MNY4ttccaQdhxUyS1o367YIDl-U_AiSLVlgvzSd7JE4,944
18
18
  ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
@@ -26,40 +26,40 @@ ads/aqua/dummy_data/oci_models.json,sha256=mxUU8o3plmAFfr06fQmIQuiGe2qFFBlUB7QNP
26
26
  ads/aqua/dummy_data/readme.md,sha256=AlBPt0HBSOFA5HbYVsFsdTm-BC3R5NRpcKrTxdjEnlI,1256
27
27
  ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89a0,298
28
28
  ads/aqua/evaluation/constants.py,sha256=GvcXvPIw-VDKw4a8WNKs36uWdT-f7VJrWSpnnRnthGg,1533
29
- ads/aqua/evaluation/entities.py,sha256=OqD2AfCO31ZO88hfORsjLdmJRqOjZrep2zVESEj6qJc,5488
29
+ ads/aqua/evaluation/entities.py,sha256=pvZWrO-Hlsh0TIFnly84OijKHULRVM13D5a-4ZGxte8,5733
30
30
  ads/aqua/evaluation/errors.py,sha256=qzR63YEIA8haCh4HcBHFFm7j4g6jWDfGszqrPkXx9zQ,4564
31
- ads/aqua/evaluation/evaluation.py,sha256=UGo6Ly148qw3br1tNo-fagvyipDi4P-2AEZ8T4m6GR4,57856
31
+ ads/aqua/evaluation/evaluation.py,sha256=0f6i3G1KWmbwCf_A33YKrnfDVmKu7XHD2nue0y8Ob9k,58915
32
32
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
33
33
  ads/aqua/extension/aqua_ws_msg_handler.py,sha256=soSRnIFx93JCFf6HsuF_BQEpJ2mre-IVQDUDKUKPijY,3392
34
34
  ads/aqua/extension/base_handler.py,sha256=Zbb-uSNLljRU5NPOndn3_lx8MN_1yxlF2GHVpBT-kWk,5233
35
35
  ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
36
36
  ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
37
- ads/aqua/extension/deployment_handler.py,sha256=i2UAZQ8_uVgg32OmM1vif3kplAVuRwxZsjgTfUSKnH8,11025
37
+ ads/aqua/extension/deployment_handler.py,sha256=abTwz9OFJB2_OPbRZaDvNMb3BjRmkSmNh28EtGNstg4,11287
38
38
  ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
39
39
  ads/aqua/extension/errors.py,sha256=ojDolyr3_0UCCwKqPtiZZyMQuX35jr8h8MQRP6HcBs4,519
40
40
  ads/aqua/extension/evaluation_handler.py,sha256=fJH73fa0xmkEiP8SxKL4A4dJgj-NoL3z_G-w_WW2zJs,4353
41
41
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
42
- ads/aqua/extension/finetune_handler.py,sha256=abiDXNhkhtoV9hrYhCzwhDjdQKlqQ_KSqxKWntkvh3E,3288
43
- ads/aqua/extension/model_handler.py,sha256=Ec7NiU3Xvp_sZEvCvN6aVqeoiFrOpJMhDI5xtP_pSuw,10612
42
+ ads/aqua/extension/finetune_handler.py,sha256=97obbhITswTrBvl88g7gk4GvF2SUHBGUAq4rOylFbtQ,3079
43
+ ads/aqua/extension/model_handler.py,sha256=c2e2Pm8ICGKmJFvHsTDwEtWOpL8ZKlK5IZUv40AtwaQ,11456
44
44
  ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
45
- ads/aqua/extension/ui_handler.py,sha256=3TibTMeqcsSWfPsorspFrhIV0PRh8_4FoWpudycT80g,10664
45
+ ads/aqua/extension/ui_handler.py,sha256=Q0LkrV6VtVUI4GpNgqJQt8SGzxHzp4X5hdHF6KgPp9M,11217
46
46
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
47
47
  ads/aqua/extension/utils.py,sha256=UKafTX6tN6ObOkWCLy6c3y_cNmUHfD64PtIaR5B7Sl0,1476
48
48
  ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
49
  ads/aqua/extension/models/ws_models.py,sha256=-m6IJRS-4I6AMLDwgu19XdrvHyOStuBx9t4B0LgS07g,3348
50
50
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
51
- ads/aqua/finetuning/constants.py,sha256=g0ze760c4LlD6ppN0Lww_ZAkr1IpNJMJDxq_USx4IEk,807
52
- ads/aqua/finetuning/entities.py,sha256=S7Ll_0WyWGh23my-6ow3vwHLDZqTel8CMCoE9oLowOY,4126
53
- ads/aqua/finetuning/finetuning.py,sha256=mwKl8KA2Artp0dXzjXxxKn_UBnkYpNXMYN7ykrZcyEM,25145
51
+ ads/aqua/finetuning/constants.py,sha256=va1TIAdMD5ATOdC39PSQpLycL1N5ubIOWTWrPKQSghY,886
52
+ ads/aqua/finetuning/entities.py,sha256=FcJ-0ilNIXDhA3ODX4c6IQwzvh20VQMrACtD7fq_i9o,5944
53
+ ads/aqua/finetuning/finetuning.py,sha256=YF4Rs3E-ze4vFMmdyRDDY6YWfJFu9CYO10mbUUBCq80,25059
54
54
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
55
55
  ads/aqua/model/constants.py,sha256=H239zDu3koa3UTdw-uQveXHX2NDwidclVcS4QIrCTJo,1593
56
- ads/aqua/model/entities.py,sha256=wv1j18OG8NrmKLwIevyJ1ZVw965n3_3titOfwqyzlI8,9765
56
+ ads/aqua/model/entities.py,sha256=TXcU78LTVk9POIAFYuzH1NBSXriPHpvoL3KASQ97OYo,9899
57
57
  ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
58
- ads/aqua/model/model.py,sha256=pFG4lkaqtovSpiu3BOCGT7scMtXt4rwup9Rof6Hl_CU,63908
58
+ ads/aqua/model/model.py,sha256=Zwhb7ZXK1di7k_5wzDTToxMyOn4WUcjhEV_wjTM4two,66742
59
59
  ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
60
60
  ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
61
- ads/aqua/modeldeployment/deployment.py,sha256=bk58MfjnrUiDUFwjBRJwBR_8b-6z8IuzTts2T0-pK3E,30729
62
- ads/aqua/modeldeployment/entities.py,sha256=7aoE2HemsFEvkQynAI4PCfZBcfPJrvbyZeEYvc7OIAA,5111
61
+ ads/aqua/modeldeployment/deployment.py,sha256=hlaLWjND6DDnwj-DA_7vwA-1UQRmZkNFbauB0SImqfs,31185
62
+ ads/aqua/modeldeployment/entities.py,sha256=EV7hxfKRZNY9kJDy_1IC7PoSIsRQ0yy02pll0gCsCkY,5171
63
63
  ads/aqua/modeldeployment/inference.py,sha256=JPqzbHJoM-PpIU_Ft9lHudO9_1vFr7OPQ2GHjPoAufU,2142
64
64
  ads/aqua/training/__init__.py,sha256=w2DNWltXtASQgbrHyvKo0gMs5_chZoG-CSDMI4qe7i0,202
65
65
  ads/aqua/training/exceptions.py,sha256=S5gHUeUiiPErxuwqG0TB1Yf11mhsAGNYb9o3zd1L1dI,13627
@@ -76,7 +76,7 @@ ads/catalog/project.py,sha256=eiCBOu9bHyQUH9SquSi880PDQftyRy3dONO_Qxtdeyk,16092
76
76
  ads/catalog/summary.py,sha256=Zy_koBb5FTsP64zyNbqmQZJEWqtoV0lOvI-ZRCQSXa4,5790
77
77
  ads/common/__init__.py,sha256=NBFa_nDAtft8NSiHIfDh5yfxbcJnXISamVH6DrJR_50,293
78
78
  ads/common/analyzer.py,sha256=MrFxBNJwFJwv_kbuJheqvOTz537z7ITE3Il244l3eZU,1893
79
- ads/common/auth.py,sha256=xU9R_WwtOhe9x815lgmdn0Q2lXlxaY6RDCcfjyjhhFI,45961
79
+ ads/common/auth.py,sha256=ay_o7qoURV2iLSCKw73Af1pHcNnWYSAkTvy1MnJSU4Y,45970
80
80
  ads/common/card_identifier.py,sha256=csCCSQNka8wpHE90IGUJqFmFvjbFd42eEIlmUZuOwMA,2458
81
81
  ads/common/config.py,sha256=5QNJaJ5A2tMrDRJemJt62jxZ0pSGRz4bPkn9HGA__N0,20253
82
82
  ads/common/data.py,sha256=jQHf9Kc7llzdnQjseGgMhVuR0XLRafBvEQVk0OY2s_8,6939
@@ -450,33 +450,50 @@ ads/llm/chat_template.py,sha256=t2QRfLLR_c_cq3JqABghWqiCSWjjuVc_mfEN-yVYG10,934
450
450
  ads/llm/deploy.py,sha256=5oZipFWU6q_9dCyt3WE4ic-n5rNZgQsYU_3lS_Vp_nY,2275
451
451
  ads/llm/requirements.txt,sha256=vaVwhWCteqmo0fRsEk6M8S1LQMjULU_Bt_syBAa2G-s,55
452
452
  ads/llm/serialize.py,sha256=WjQNMPACyR8nIh1dB7BLFUmqUrumld6vt91lg1DWzWI,7281
453
- ads/llm/autogen/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
454
- ads/llm/autogen/client_v02.py,sha256=-8fH-u769txu9eCfGi8XDkQ09DMPl5cCOmmywOFUguc,11127
453
+ ads/llm/autogen/__init__.py,sha256=tJ0lezCBSrr9NxU2M4qBIJ1ed5T_jVZOFUvLGh1JMHM,179
454
+ ads/llm/autogen/constants.py,sha256=ZXuWpM3vf2uR7SdwwOWlN7Z92FXI0VGLaQyAMsWzZOA,487
455
+ ads/llm/autogen/reports/__init__.py,sha256=tJ0lezCBSrr9NxU2M4qBIJ1ed5T_jVZOFUvLGh1JMHM,179
456
+ ads/llm/autogen/reports/base.py,sha256=USRtImKoCCayBPn0WrwvpsKnVH1hVxFweIA29XuTgT8,2395
457
+ ads/llm/autogen/reports/data.py,sha256=vj6Opf3MXAF1RadpRQK6leR1Txe-3X5pIOpDDeGbYTY,2767
458
+ ads/llm/autogen/reports/session.py,sha256=ra7U-U82tT7tAl4v_dHSRT7qmiyrsvJUb4QwQ_deN1o,19463
459
+ ads/llm/autogen/reports/utils.py,sha256=PZuNyVMMR7lBxItfEw5JKMxtxSoIPYOYFJ2iWBbeoR8,1512
460
+ ads/llm/autogen/reports/templates/chat_box.html,sha256=_aiTJ3WZ4btDcciKg-vEo2X1nRwMRG2otEyqkuSE1ps,465
461
+ ads/llm/autogen/reports/templates/chat_box_lt.html,sha256=r2vB71nehOW9Et_HAQSEEWZMWNAoP69G6fNu8HYlqjQ,198
462
+ ads/llm/autogen/reports/templates/chat_box_rt.html,sha256=grG7H6Ms9SWcGDwHDXVmJEPtRCwbKiORLmsFpKWTCAo,224
463
+ ads/llm/autogen/v02/__init__.py,sha256=tidxEIknklVQ8VlApHDgcQF3PrmY5x0Q2uBNGSxmXKo,264
464
+ ads/llm/autogen/v02/client.py,sha256=9nmrWAMcOsBddyrLRAZdHS7vwkLHHZboyieFHBQM6JA,11425
465
+ ads/llm/autogen/v02/runtime_logging.py,sha256=r2nZ0TvqNvW9uQTfyneiibwXzTgSW8vxkLSbyaAnSak,5742
466
+ ads/llm/autogen/v02/log_handlers/__init__.py,sha256=tJ0lezCBSrr9NxU2M4qBIJ1ed5T_jVZOFUvLGh1JMHM,179
467
+ ads/llm/autogen/v02/log_handlers/oci_file_handler.py,sha256=-YJg0DLmkJbbx7SYKaflz5B6mL7v4gtS5bbjU3ahAgc,2509
468
+ ads/llm/autogen/v02/loggers/__init__.py,sha256=oM0LaTmmcbRciOFvcR-DPb5IL6rzQcNFDTGozWci6Is,338
469
+ ads/llm/autogen/v02/loggers/metric_logger.py,sha256=lOHp2ADptnyuLtKaCpjrveEPoEGr0w4i05EthY5V6Co,11097
470
+ ads/llm/autogen/v02/loggers/session_logger.py,sha256=50GhTLCEa7JcAy_tHRFRngagVweXWxam6p4m-QoTruE,19255
471
+ ads/llm/autogen/v02/loggers/utils.py,sha256=h5IMT3q8sCBQYBWDc53hPKVi7Uh_jfKKUu7_Gh9-OLc,2692
455
472
  ads/llm/guardrails/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
456
- ads/llm/guardrails/base.py,sha256=scli_YSqDbArIJW5sA5PLjCd6G8_-dNUcpTybvQvZnk,16468
473
+ ads/llm/guardrails/base.py,sha256=L-hAW18PsEVKoh8h8PU3WhAZIAgxKhygfkvD4zHOIts,16503
457
474
  ads/llm/guardrails/huggingface.py,sha256=4DFanCYb3R1SKYSFdcEyGH2ywQgf2yFDDZGJtOcoph0,1304
458
475
  ads/llm/langchain/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
459
476
  ads/llm/langchain/plugins/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
460
477
  ads/llm/langchain/plugins/chat_models/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
461
- ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=wWVH7nuN6umNfsHD07NnkuoaAGhFy6IKGgx_v9QgYG0,35405
478
+ ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=tf_n8KfSbEwTLk4TZ58ZiNHYAj4sooPhFzAfWslhR_A,36480
462
479
  ads/llm/langchain/plugins/llms/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
463
- ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=0QGNpDuV_QorZw9i62PEkTqRxOLs4d2aPrg_lXq0akQ,32466
480
+ ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=UJ6Wm6fxOWxaBHMIMWlCMyOXlWAqq626gcZ-8TRwrbQ,33448
464
481
  ads/llm/serializers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
465
482
  ads/llm/serializers/retrieval_qa.py,sha256=VQ4rFRrDHOpAcMYNvRbT19LcDGwRrE1lczerLQYKxwU,5133
466
483
  ads/llm/serializers/runnable_parallel.py,sha256=USCVhMNi67AiCmu-s_mmOvc0sK7v4yKVwBTJm60x7wE,835
467
484
  ads/llm/templates/score_chain.jinja2,sha256=RVB7RImjGifDbzaZPtfsmANqIiLx3yRJbH2thk_VHWE,4831
468
485
  ads/llm/templates/tool_chat_template_hermes.jinja,sha256=nQgWGwZludNFmUO7V8emgPQud828l9T4e5QmsDyLq4k,5226
469
486
  ads/llm/templates/tool_chat_template_mistral_parallel.jinja,sha256=xkZLgw50a3wPiw9I5HmDlZiEAXPg9wtwnrkhaAiI_1o,4773
470
- ads/model/__init__.py,sha256=r4U2NvroKMUa-tqNnXBtND9cA6b1Yefmdj6lgdoKlDk,1900
471
- ads/model/artifact.py,sha256=ONKyjZKO5wmAYI-GT63z8yLm_QsmIGXcob9KrnwtF5k,20503
487
+ ads/model/__init__.py,sha256=7j42v0yXueMcWn1e9OUaSGNjxGCJZVdGEk9CrQEPxa4,1970
488
+ ads/model/artifact.py,sha256=CmHdeINF0K6p2MaWZOwU5tLPQ9PoIdnfQis2voMAhHE,21459
472
489
  ads/model/artifact_downloader.py,sha256=-9IYkjZ0LaMWf5foz5HUGTZCEm67f-3LbDsigNlzEPg,9751
473
490
  ads/model/artifact_uploader.py,sha256=jdkpmncczceOc28LyMkv4u6f845HJ1vVCoI-hLBT-RM,11305
474
491
  ads/model/base_properties.py,sha256=YeVyjCync4fzqqruMc9UfZKR4PnscU31n0mf4CJv3R8,7885
475
492
  ads/model/datascience_model.py,sha256=pKjoVmYWZBXC7wYQVhCJe_ii_aE7FakrjaTWpBRWXLA,82022
476
- ads/model/generic_model.py,sha256=jjRn0U6X9eVAo_1VMhJoZ6aVKa7J_PNN4tr02XbAYCk,146988
493
+ ads/model/generic_model.py,sha256=pKOfpsq8hTwbITHBEkbX94DOP6xmxjk7QMfWPEyYA7Q,147037
477
494
  ads/model/model_file_description_schema.json,sha256=NZw_U4CvKf9oOdxCKr1eUxq8FHwjR_g0GSDk0Hz3SnE,1402
478
495
  ads/model/model_introspect.py,sha256=z9pJul9dwT9w8flvRguhu0ZKoEkbm2Tvdutw_SHYTeg,9745
479
- ads/model/model_metadata.py,sha256=TkE2XU_Gafyct_c7_Fs-eNBD6q-Kpe8v9wYff1UDEaY,54566
496
+ ads/model/model_metadata.py,sha256=QFSoJcHJf73GHkhcyNA9Zep9pD2WKovPhfCClVXsz1o,54574
480
497
  ads/model/model_metadata_mixin.py,sha256=XJc7GmK0pk8AqBMBPa9jYqm4BgRLkiX08bZhooQcJRw,16898
481
498
  ads/model/model_properties.py,sha256=OHK2CK3DXcnWtgVm7QNuX7hdHNN8U_y5DZmJfcbTVrE,2190
482
499
  ads/model/model_version_set.py,sha256=Jfj3KS9AfaXTIPu4MMtnhyRoWSu9jxiQGvG4cPfTqB0,22782
@@ -493,6 +510,7 @@ ads/model/deployment/common/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe
493
510
  ads/model/deployment/common/utils.py,sha256=gERBsZp2ujkSBD20LXnOA3PoNOOrmRJEzqZqEc-k91E,10076
494
511
  ads/model/extractor/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
495
512
  ads/model/extractor/automl_extractor.py,sha256=ZZVx253jYy2VgbdGkbLs1D5WhjmSibgoeLpk-NrDzG8,2352
513
+ ads/model/extractor/embedding_onnx_extractor.py,sha256=nAdRdE3uLfK5lks1aEGY72hHINdtLMOqytJtojqfUrw,2027
496
514
  ads/model/extractor/huggingface_extractor.py,sha256=yE2Ly2iAwMIfWaAlAjJOY5tYHvX8l97QEE9AGyF_nQc,2244
497
515
  ads/model/extractor/keras_extractor.py,sha256=l-LgYC7cpZPZZ29fNzCD4U-0IWKn9_WbVbQaj4kucAI,2081
498
516
  ads/model/extractor/lightgbm_extractor.py,sha256=pZt7UkrDu4KlDw0NPZ2el4RuuNNBUNjc3LrjIkNJM8g,2442
@@ -505,6 +523,7 @@ ads/model/extractor/tensorflow_extractor.py,sha256=I2D0b8_GYN2Re9-odhxbdZfmOfLnX
505
523
  ads/model/extractor/xgboost_extractor.py,sha256=iiezFMN13PheJTR0wGtkdiDTouMaZwXBq2oRreQ7AZc,2472
506
524
  ads/model/framework/__init__.py,sha256=2KsW2ahw_qXll0Z0yrLCpKgxzXE9pxI9u6RmkD8rIZc,201
507
525
  ads/model/framework/automl_model.py,sha256=-WQWAh6K2QQmaAWv7e1y3ggHhH-6iuxGJ5QS5XXfeiE,7561
526
+ ads/model/framework/embedding_onnx_model.py,sha256=1Lwc86fly9GdXl2iyvTViqylezFNqV8iXrqdTe8vjOc,16269
508
527
  ads/model/framework/huggingface_model.py,sha256=vLVgBzk9A7zJb1Lu-K3EqVbRnqgk2e3Qy2uxEfw1llE,17008
509
528
  ads/model/framework/lightgbm_model.py,sha256=21avv5Qjt1J3sjZX2rlALX9xYcm8_XGAa22bf_BRTXk,10414
510
529
  ads/model/framework/pytorch_model.py,sha256=DKOmoXyswtPfVLakSMKfhKbB5TZrbPDqt6LadDxG7Gg,11379
@@ -576,7 +595,7 @@ ads/opctl/conda/multipart_uploader.py,sha256=1R09ajToBYZsQjgM3-ASnheIOsnZf7sYCHI
576
595
  ads/opctl/conda/pack.py,sha256=ghv-mudoS2KVZ2qbEjW7cK1bRu6R3Hto1_3bga0HCMQ,2921
577
596
  ads/opctl/config/__init__.py,sha256=DwYupQz6SOfMLmmAjJ9danchK0shQRJKTGPU--naQgY,204
578
597
  ads/opctl/config/base.py,sha256=R4Grgdjjnax7LLNiNC90VzeUHtsPPjbOcOs1WN5Tlxs,1472
579
- ads/opctl/config/merger.py,sha256=DMSTnZj7OOmbO_QM4uKrWUjS9REvMn8zkK8V0uZHO1I,11332
598
+ ads/opctl/config/merger.py,sha256=0RPI1ZSzvQ9E1vpw9GEWShp1fyYeOle_E7WMj_dYu0Y,11370
580
599
  ads/opctl/config/resolver.py,sha256=80lCYoPMUlu2qZ_GBKLxmWgRorP0pFJUMf1hJuy8JYc,12666
581
600
  ads/opctl/config/utils.py,sha256=doSgPuDfhr3xqPSgeGk5I1F8biQjGNhQGIcoQzSbr34,2326
582
601
  ads/opctl/config/validator.py,sha256=_N_KaHx3vVLbZocj3lPkI7U3JFiNTvR5l-99AySeaio,630
@@ -628,7 +647,7 @@ ads/opctl/operator/common/backend_factory.py,sha256=VLQJ4oTA-VKFjMRV7al1oEPgOLEs
628
647
  ads/opctl/operator/common/const.py,sha256=Zrmroh9uAaCrPbNgL2L8qKOdkNQ2-5FaO0qbDivKEAE,832
629
648
  ads/opctl/operator/common/dictionary_merger.py,sha256=nCakCzP3S8e-RnJJXLfdMugPyaMEkOjYgghoX5bv8YQ,4753
630
649
  ads/opctl/operator/common/errors.py,sha256=ljRocG90rO6jb5ryLUiTsaGI05x6mf7TnaV4wHcmbBQ,1510
631
- ads/opctl/operator/common/operator_config.py,sha256=1OEWqNOj7w4vpnSQ9lLxkGDOM4lI06cF2VQd4n_-KSw,2680
650
+ ads/opctl/operator/common/operator_config.py,sha256=Kgi6MuyMRepX4Yw4An8CBUDDOgsdxd3Ibh9eRInFBBU,2683
632
651
  ads/opctl/operator/common/operator_loader.py,sha256=fpdrqDyOF9h4lsnGOsdDQsZl1xbdRFtqU6haaQJ15Ls,24146
633
652
  ads/opctl/operator/common/operator_schema.yaml,sha256=kIXKI9GCkwGhkby6THJR2zY6YK0waIgPfPxw85I7aG4,3046
634
653
  ads/opctl/operator/common/operator_yaml_generator.py,sha256=hH6wYj7oDYeAsE1grcIF4K1EE_RhguLXltxPbmB65iQ,5108
@@ -660,8 +679,8 @@ ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi
660
679
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
661
680
  ads/opctl/operator/lowcode/common/data.py,sha256=nKwE0ubF9fTHFOls5uQ3BBpcPNRtwvGW3UGK-JjAm84,4107
662
681
  ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
663
- ads/opctl/operator/lowcode/common/transformations.py,sha256=WQsVKmYmPecZTsGvabUDCBzuNJfzpQVSe93nzElRnIc,9804
664
- ads/opctl/operator/lowcode/common/utils.py,sha256=XadRZMiIgAUdXw7rDXl4xUPfta9Z_NQsQbDQIR-L73Q,9327
682
+ ads/opctl/operator/lowcode/common/transformations.py,sha256=Qjbnjle_x1SdWbr2frG2tvpGd1WzdH6yi8QT6caWlsQ,9990
683
+ ads/opctl/operator/lowcode/common/utils.py,sha256=gnXQijt3tLRoJSoKyJIt0gMS9TpSY37KiXTifUAvkJ8,9490
665
684
  ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
666
685
  ads/opctl/operator/lowcode/feature_store_marketplace/README.md,sha256=fN9ROzOPdEZdRgSP_uYvAmD5bD983NC7Irfe_D-mvrw,1356
667
686
  ads/opctl/operator/lowcode/feature_store_marketplace/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
@@ -681,23 +700,23 @@ ads/opctl/operator/lowcode/forecast/README.md,sha256=kbCCEdo-0pwKlZp9ctnWUK6Z31n
681
700
  ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
682
701
  ads/opctl/operator/lowcode/forecast/__main__.py,sha256=5Vh-kClwxTsvZLEuECyQBvbZFfH37HQW2G09RwX11Kw,2503
683
702
  ads/opctl/operator/lowcode/forecast/cmd.py,sha256=uwU-QvnYwxoRFXZv7_JFkzAUnjTNoSsHEme2FF-9Rl0,1151
684
- ads/opctl/operator/lowcode/forecast/const.py,sha256=jyoXhrRXFipcATwGIU_3rFRZL-r6hvbKNUVO2uG2siY,2597
703
+ ads/opctl/operator/lowcode/forecast/const.py,sha256=XEH74IeAJ89_wCOXWuIrAWl5Rwjzfadl7aSsmLSMZk4,2695
685
704
  ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
686
705
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
687
- ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=HssIlfJlJt5HetwzT87rDeRYRwJAXG1yoSjT4SUB8D0,9266
706
+ ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=IutyI2bo_aFopHsWlJ3z7TcBPXs6G3NufdIaXBUD6Tw,9352
688
707
  ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=vG7n-RIiazujH0UtJ0uarx9IKDIAS0b4WcCo1dNLVL0,6422
689
- ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=r9vll4zNn3maiEXO0aQdt4bQ9l9DmK_Jy7lpidhVubc,10135
690
- ads/opctl/operator/lowcode/forecast/utils.py,sha256=B7X3vLxmbx3MyUQxoplhQCMb0bgmPk2g-KN-OY768E8,13908
708
+ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=hfKL3K8lPooZBsM6Oj2kA49f2sqo6238Kz1F8wr0QmE,10411
709
+ ads/opctl/operator/lowcode/forecast/utils.py,sha256=0ssrXBAEL5hjQX4avLPkSwFp3sKE8QV5M3K5InqvzYg,14137
691
710
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
692
- ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=lU7NlpXI1-g-O_1rGJLlEL17_ruGXAdzzY7H8nFRvGQ,10943
693
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=lrNktixdaJJHHXqIrSmgzCZKEzB_CirQcuquf73AYUQ,14978
694
- ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=Y9_EAfDD5r6SPZq7iGp7YMh-vH0lwAGNpyNT2sm7cqo,13027
695
- ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=H9yQ1DzyfGqnggEaSWgUJjW_bxml6Kto62gohuEO9y4,31006
711
+ ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=sWGTUxisV8ytUA-_MK54bdP2FVO_9BMD8-EsulJEYxE,11430
712
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=lXJoeMFHapyd5aYLi81T4WOV4ilheVz0FrNW6yE2dg4,19362
713
+ ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=RyLeD3dwMfrb6St-QFoH2MM8vH3inepVamRRovI-bwM,13086
714
+ ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=h0PGYUKfO2CSH34EK3YtYnZHnpiRJThvIkwyIiKqxDI,33531
696
715
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=hSRPPWdpIRSMYPUFMIUuxc2TPZt-SG18MiqhtdfL3mg,3488
697
716
  ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=GCwX9Udh4U79wBNG5bjSYabgRDO0u-ElVJkSC_HcBeA,16563
698
717
  ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=NSZ2L6gRw4S68BUF0Vyu-cUPSsq8LRxgoVajW9Ra63k,9640
699
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=rt4106o9qIKwoHnYICB9sOnQ8ujXyI83eoFY26KzsOU,18774
700
- ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=h3So9XYBZPRNqMvYNpU5bxbHgvwgpspuATALCuIWHeM,14368
718
+ ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=URtnP4oEMP7tGwe0WfWtfMFftAXQzN3K9RurAv_cgnY,19251
719
+ ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=yiCIP0bR0jg-b2XHVJSfO7CFZ3_GXEnpLkW_MkV45Jo,14983
701
720
  ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
702
721
  ads/opctl/operator/lowcode/pii/README.md,sha256=2P3tpKv6v__Eehj6iLfTXgyDhS4lmi1BTfEdmJhT0K4,9237
703
722
  ads/opctl/operator/lowcode/pii/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
@@ -772,14 +791,15 @@ ads/secrets/mysqldb.py,sha256=hVkWV6drmkmLzLX8WeZr4yriMZvzf-n4am15SRTiIgc,5668
772
791
  ads/secrets/oracledb.py,sha256=VAbsY206gc_Ru8FBOCKNGnIlX4VprIIQ9PmBoujRy_k,6146
773
792
  ads/secrets/secrets.py,sha256=k_f3hwh5RI7Hv7zEKDDuxh7kGB-F29bK15jxgu4sxVw,15197
774
793
  ads/telemetry/__init__.py,sha256=_pKx4hDK7DUXHjvAq4Zbeg6wl9_UkgGE7O77KWezu8g,230
775
- ads/telemetry/base.py,sha256=ONabbRFCWBT0wWsTrjSbhwwwLzUrGBFOvhsCNVAepVk,1937
776
- ads/telemetry/client.py,sha256=HJKMrmQJvpF4eyjmbcYrn-9z1_emrq9_hCVFTsECbT4,4104
794
+ ads/telemetry/base.py,sha256=6kKVSfTxx2Dr0XL7R8OfjTy3hJoJpKMvP6D7RdVddl4,2199
795
+ ads/telemetry/client.py,sha256=33xG082IGoWCbhD5xmYkDgI2znqL9LgqLM2kfvbg6fw,4975
777
796
  ads/telemetry/telemetry.py,sha256=xCu64tUEzYzFaXEMxnMdtQJPme5-9sW8l3uxibN4E04,7930
778
797
  ads/templates/dataflow_pyspark.jinja2,sha256=JiTuaGt5LC7z1mrDoDIbZ5UskBETLpm0lMpn5VZYNGs,254
779
798
  ads/templates/dataflow_sparksql.jinja2,sha256=8MvGzj7PWgUNo-9dg6zil8WTpBL3eNcR815fz64v1yM,466
780
799
  ads/templates/func.jinja2,sha256=pLV51Q2nvYrieEBAEdccdoCBl4bm0xq3LlLK_U6wwfU,441
781
800
  ads/templates/score-pkl.jinja2,sha256=ouAogLuud1bPgIhSdhfDTEfBng7gBH2KUAo_1KNpyiU,5304
782
801
  ads/templates/score.jinja2,sha256=3W_UYiOSLi3sHUYG1kAVX4q9X9YcyRjj5kosXQ8bLWU,10498
802
+ ads/templates/score_embedding_onnx.jinja2,sha256=4aTTXJRDwG4u_NCHMxVxZx247u770EMCb6arSmBk1NM,6412
783
803
  ads/templates/score_generic.jinja2,sha256=TM_Anz6gDi3L7NVfJJTWC6pJnd-H85HjhTzJNCKZXjI,4956
784
804
  ads/templates/score_huggingface_pipeline.jinja2,sha256=va6CIpzAKCQDeL3fiJzYvw5LtIwxRakl3EU8HgQa6u0,5455
785
805
  ads/templates/score_lightgbm.jinja2,sha256=kiPFPE6lS-HoEd7d5BX5JI7k4SSxMGCUwgqybeSzNts,5695
@@ -791,6 +811,7 @@ ads/templates/score_pytorch.jinja2,sha256=cpttsir8nS2JGMGmXKpMP--ge4EfDwLv5UIS4j
791
811
  ads/templates/score_scikit-learn.jinja2,sha256=MgHSp3Yy-p3Fw07fKym8eOHIHw7N8Uet0-U41qM_b9M,5743
792
812
  ads/templates/score_tensorflow.jinja2,sha256=QU29NUxop74oczG4-kAuM7H8Lab7tvyVJprWJukb-uw,5626
793
813
  ads/templates/score_xgboost.jinja2,sha256=xapSYplB8ry04uiG2q-XRRLRhnDArdZCx__4mZQS04I,5516
814
+ ads/templates/schemas/openapi.json,sha256=-TJCg6wOfRmRTbYnMNs_w3dlp-jXQWEgBV853GFEjFc,46874
794
815
  ads/text_dataset/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
795
816
  ads/text_dataset/backends.py,sha256=3yVyqsHd1AAlduFvLL3daEgfcAxONFw8lu1YXTicVBY,6563
796
817
  ads/text_dataset/dataset.py,sha256=xr7D8TEDAQV7b5-WfOsK_oojMcox9K71xBsLjTLqA9E,15378
@@ -815,8 +836,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
815
836
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
816
837
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
817
838
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
818
- oracle_ads-2.12.8.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
819
- oracle_ads-2.12.8.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
820
- oracle_ads-2.12.8.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
821
- oracle_ads-2.12.8.dist-info/METADATA,sha256=aKjc1EqBFSoyK7K30kgMzGfqvemx9-25hmyl5mZZ-xU,16282
822
- oracle_ads-2.12.8.dist-info/RECORD,,
839
+ oracle_ads-2.12.10rc0.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
840
+ oracle_ads-2.12.10rc0.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
841
+ oracle_ads-2.12.10rc0.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
842
+ oracle_ads-2.12.10rc0.dist-info/METADATA,sha256=m-HTzIoPcZGQXZwa4ObkkwJw5cmv8FTxFEqELz4xCzw,16238
843
+ oracle_ads-2.12.10rc0.dist-info/RECORD,,