oracle-ads 2.12.8__py3-none-any.whl → 2.12.10__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (82) hide show
  1. ads/aqua/__init__.py +4 -3
  2. ads/aqua/app.py +40 -18
  3. ads/aqua/client/__init__.py +3 -0
  4. ads/aqua/client/client.py +799 -0
  5. ads/aqua/common/enums.py +3 -0
  6. ads/aqua/common/utils.py +62 -2
  7. ads/aqua/data.py +2 -19
  8. ads/aqua/evaluation/entities.py +6 -0
  9. ads/aqua/evaluation/evaluation.py +45 -15
  10. ads/aqua/extension/aqua_ws_msg_handler.py +14 -7
  11. ads/aqua/extension/base_handler.py +12 -9
  12. ads/aqua/extension/deployment_handler.py +8 -4
  13. ads/aqua/extension/finetune_handler.py +8 -14
  14. ads/aqua/extension/model_handler.py +30 -6
  15. ads/aqua/extension/ui_handler.py +13 -1
  16. ads/aqua/finetuning/constants.py +5 -2
  17. ads/aqua/finetuning/entities.py +73 -17
  18. ads/aqua/finetuning/finetuning.py +110 -82
  19. ads/aqua/model/entities.py +5 -1
  20. ads/aqua/model/model.py +230 -104
  21. ads/aqua/modeldeployment/deployment.py +35 -11
  22. ads/aqua/modeldeployment/entities.py +7 -4
  23. ads/aqua/ui.py +24 -2
  24. ads/cli.py +16 -8
  25. ads/common/auth.py +9 -9
  26. ads/llm/autogen/__init__.py +2 -0
  27. ads/llm/autogen/constants.py +15 -0
  28. ads/llm/autogen/reports/__init__.py +2 -0
  29. ads/llm/autogen/reports/base.py +67 -0
  30. ads/llm/autogen/reports/data.py +103 -0
  31. ads/llm/autogen/reports/session.py +526 -0
  32. ads/llm/autogen/reports/templates/chat_box.html +13 -0
  33. ads/llm/autogen/reports/templates/chat_box_lt.html +5 -0
  34. ads/llm/autogen/reports/templates/chat_box_rt.html +6 -0
  35. ads/llm/autogen/reports/utils.py +56 -0
  36. ads/llm/autogen/v02/__init__.py +4 -0
  37. ads/llm/autogen/{client_v02.py → v02/client.py} +23 -10
  38. ads/llm/autogen/v02/log_handlers/__init__.py +2 -0
  39. ads/llm/autogen/v02/log_handlers/oci_file_handler.py +83 -0
  40. ads/llm/autogen/v02/loggers/__init__.py +6 -0
  41. ads/llm/autogen/v02/loggers/metric_logger.py +320 -0
  42. ads/llm/autogen/v02/loggers/session_logger.py +580 -0
  43. ads/llm/autogen/v02/loggers/utils.py +86 -0
  44. ads/llm/autogen/v02/runtime_logging.py +163 -0
  45. ads/llm/guardrails/base.py +6 -5
  46. ads/llm/langchain/plugins/chat_models/oci_data_science.py +46 -20
  47. ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py +38 -11
  48. ads/model/__init__.py +11 -13
  49. ads/model/artifact.py +47 -8
  50. ads/model/extractor/embedding_onnx_extractor.py +80 -0
  51. ads/model/framework/embedding_onnx_model.py +438 -0
  52. ads/model/generic_model.py +26 -24
  53. ads/model/model_metadata.py +8 -7
  54. ads/opctl/config/merger.py +13 -14
  55. ads/opctl/operator/common/operator_config.py +4 -4
  56. ads/opctl/operator/lowcode/common/transformations.py +50 -8
  57. ads/opctl/operator/lowcode/common/utils.py +22 -6
  58. ads/opctl/operator/lowcode/forecast/__main__.py +10 -0
  59. ads/opctl/operator/lowcode/forecast/const.py +3 -0
  60. ads/opctl/operator/lowcode/forecast/model/arima.py +19 -13
  61. ads/opctl/operator/lowcode/forecast/model/automlx.py +129 -36
  62. ads/opctl/operator/lowcode/forecast/model/autots.py +1 -0
  63. ads/opctl/operator/lowcode/forecast/model/base_model.py +58 -17
  64. ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py +1 -1
  65. ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +10 -3
  66. ads/opctl/operator/lowcode/forecast/model/prophet.py +25 -18
  67. ads/opctl/operator/lowcode/forecast/model_evaluator.py +3 -2
  68. ads/opctl/operator/lowcode/forecast/operator_config.py +31 -0
  69. ads/opctl/operator/lowcode/forecast/schema.yaml +76 -0
  70. ads/opctl/operator/lowcode/forecast/utils.py +8 -6
  71. ads/opctl/operator/lowcode/forecast/whatifserve/__init__.py +7 -0
  72. ads/opctl/operator/lowcode/forecast/whatifserve/deployment_manager.py +233 -0
  73. ads/opctl/operator/lowcode/forecast/whatifserve/score.py +238 -0
  74. ads/telemetry/base.py +18 -11
  75. ads/telemetry/client.py +33 -13
  76. ads/templates/schemas/openapi.json +1740 -0
  77. ads/templates/score_embedding_onnx.jinja2 +202 -0
  78. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10.dist-info}/METADATA +11 -10
  79. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10.dist-info}/RECORD +82 -56
  80. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10.dist-info}/LICENSE.txt +0 -0
  81. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10.dist-info}/WHEEL +0 -0
  82. {oracle_ads-2.12.8.dist-info → oracle_ads-2.12.10.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,202 @@
1
+ # score.py {{SCORE_VERSION}} generated by ADS {{ADS_VERSION}} on {{time_created}}
2
+ import os
3
+ import sys
4
+ import json
5
+ import subprocess
6
+ from functools import lru_cache
7
+ import onnxruntime as ort
8
+ import jsonschema
9
+ from jsonschema import validate, ValidationError
10
+ from transformers import AutoTokenizer
11
+ import logging
12
+
13
+ model_name = '{{model_file_name}}'
14
+ openapi_schema = 'openapi.json'
15
+
16
+
17
+ """
18
+ Inference script. This script is used for prediction by scoring server when schema is known.
19
+ """
20
+
21
+
22
+ @lru_cache(maxsize=10)
23
+ def load_model(model_file_name=model_name):
24
+ """
25
+ Loads model from the serialized format
26
+
27
+ Returns
28
+ -------
29
+ model: a model instance on which predict API can be invoked
30
+ """
31
+ model_dir = os.path.dirname(os.path.realpath(__file__))
32
+ if model_dir not in sys.path:
33
+ sys.path.insert(0, model_dir)
34
+ contents = os.listdir(model_dir)
35
+ if model_file_name in contents:
36
+ print(f'Start loading {model_file_name} from model directory {model_dir} ...')
37
+ providers= ['CPUExecutionProvider']
38
+ if is_gpu_available():
39
+ providers=['CUDAExecutionProvider','CPUExecutionProvider']
40
+ model = ort.InferenceSession(os.path.join(model_dir, model_file_name), providers=providers)
41
+ print("Model is successfully loaded.")
42
+ return model
43
+ else:
44
+ raise Exception(f'{model_file_name} is not found in model directory {model_dir}')
45
+
46
+
47
+ def is_gpu_available():
48
+ """Check if gpu is available on the infrastructure."""
49
+ try:
50
+ result = subprocess.run(["nvidia-smi"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
51
+ if result.returncode == 0:
52
+ return True
53
+ except FileNotFoundError:
54
+ return False
55
+
56
+
57
+ @lru_cache(maxsize=1)
58
+ def load_tokenizer(model_full_name):
59
+
60
+ model_dir = os.path.dirname(os.path.realpath(__file__))
61
+ # initialize tokenizer
62
+ return AutoTokenizer.from_pretrained(model_dir, clean_up_tokenization_spaces=True)
63
+
64
+ @lru_cache(maxsize=1)
65
+ def load_openapi_schema():
66
+ """
67
+ Loads the input schema for the incoming request
68
+
69
+ Returns
70
+ -------
71
+ schema: openapi schema as json
72
+ """
73
+ model_dir = os.path.dirname(os.path.realpath(__file__))
74
+ if model_dir not in sys.path:
75
+ sys.path.insert(0, model_dir)
76
+ contents = os.listdir(model_dir)
77
+
78
+ try:
79
+ with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), openapi_schema), 'r') as file:
80
+ return json.load(file)
81
+ except:
82
+ raise Exception(f'{openapi_schema} is not found in model directory {model_dir}')
83
+
84
+
85
+ def validate_inputs(data):
86
+
87
+ api_schema = load_openapi_schema()
88
+
89
+ # use a reference resolver for internal $refs
90
+ resolver = jsonschema.RefResolver.from_schema(api_schema)
91
+
92
+ # get the actual schema part to validate against
93
+ request_schema = api_schema["components"]["schemas"]["OpenAICompatRequest"]
94
+
95
+ try:
96
+ # validate the input JSON
97
+ validate(instance=data, schema=request_schema, resolver=resolver)
98
+ except ValidationError as e:
99
+ example_value = {
100
+ "input": ["What are activation functions?"],
101
+ "encoding_format": "float",
102
+ "model": "sentence-transformers/all-MiniLM-L6-v2",
103
+ "user": "user"
104
+ }
105
+ message = f"JSON is invalid. Error: {e.message}\n An example of the expected format for 'OpenAICompatRequest' looks like: \n {json.dumps(example_value, indent=2)}"
106
+ raise ValueError(message) from e
107
+
108
+
109
+ def pre_inference(data):
110
+ """
111
+ Preprocess data
112
+
113
+ Parameters
114
+ ----------
115
+ data: Data format as expected by the predict API.
116
+
117
+ Returns
118
+ -------
119
+ onnx_inputs: Data format after any processing
120
+ total_tokens: total tokens that will be processed by the model
121
+
122
+ """
123
+ validate_inputs(data)
124
+
125
+ tokenizer = load_tokenizer(data['model'])
126
+ inputs = tokenizer(data['input'], return_tensors="np", padding=True)
127
+
128
+ padding_token_id = tokenizer.pad_token_id
129
+ total_tokens = (inputs["input_ids"] != padding_token_id).sum().item()
130
+ onnx_inputs = {key: [l.tolist()for l in inputs[key] ] for key in inputs}
131
+
132
+ return onnx_inputs, total_tokens
133
+
134
+ def convert_embeddings_to_openapi_format(embeddings, model_name, total_tokens):
135
+
136
+ formatted_data = []
137
+ openai_compat_response = {}
138
+ for idx, embedding in enumerate(embeddings):
139
+
140
+ formatted_embedding = {
141
+ "object": "embedding",
142
+ "embedding": embedding,
143
+ "index": idx
144
+ }
145
+ formatted_data.append(formatted_embedding)
146
+
147
+ # create the final OpenAICompatResponse format
148
+ openai_compat_response = {
149
+ "object": "list",
150
+ "data": formatted_data,
151
+ "model": model_name, # Use the provided model name
152
+ "usage": {
153
+ "prompt_tokens": total_tokens, # represents the token count for just the text input
154
+ "total_tokens": total_tokens # total number of tokens involved in the request, same in case of embeddings
155
+ }
156
+ }
157
+
158
+ return openai_compat_response
159
+
160
+
161
+ def post_inference(outputs, model_name, total_tokens):
162
+ """
163
+ Post-process the model results
164
+
165
+ Parameters
166
+ ----------
167
+ outputs: Data format after calling model.run
168
+ model_name: name of model
169
+ total_tokens: total tokens that will be processed by the model
170
+
171
+ Returns
172
+ -------
173
+ outputs: Data format after any processing.
174
+
175
+ """
176
+ results = [embed.tolist() for embed in outputs]
177
+ response = convert_embeddings_to_openapi_format(results, model_name, total_tokens)
178
+ return response
179
+
180
+ def predict(data, model=load_model()):
181
+ """
182
+ Returns prediction given the model and data to predict
183
+
184
+ Parameters
185
+ ----------
186
+ model: Model instance returned by load_model API.
187
+ data: Data format as expected by the predict API of the core estimator. For eg. in case of sckit models it could be numpy array/List of list/Pandas DataFrame.
188
+
189
+ Returns
190
+ -------
191
+ predictions: Output from scoring server
192
+ Format: {'prediction': output from model.predict method}
193
+
194
+ """
195
+ # inputs contains 'input_ids', 'token_type_ids', 'attention_mask' but 'token_type_ids' is optional
196
+ inputs, total_tokens = pre_inference(data)
197
+
198
+ onnx_inputs = [inp.name for inp in model.get_inputs()]
199
+ embeddings = model.run(None, {key: inputs[key] if key in inputs else None for key in onnx_inputs})[0]
200
+
201
+ response = post_inference(embeddings, data['model'], total_tokens)
202
+ return response
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: oracle_ads
3
- Version: 2.12.8
3
+ Version: 2.12.10
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -30,16 +30,18 @@ Requires-Dist: pandas>=2.2.0; python_version>='3.9'
30
30
  Requires-Dist: psutil>=5.7.2
31
31
  Requires-Dist: python_jsonschema_objects>=0.3.13
32
32
  Requires-Dist: requests
33
- Requires-Dist: scikit-learn>=1.0
33
+ Requires-Dist: scikit-learn>=1.0,<1.6.0
34
34
  Requires-Dist: tabulate>=0.8.9
35
35
  Requires-Dist: tqdm>=4.59.0
36
36
  Requires-Dist: pydantic>=2.6.3
37
+ Requires-Dist: tenacity
38
+ Requires-Dist: httpx
37
39
  Requires-Dist: oracle_ads[opctl] ; extra == "anomaly"
38
40
  Requires-Dist: autots ; extra == "anomaly"
39
41
  Requires-Dist: oracledb ; extra == "anomaly"
40
- Requires-Dist: report-creator==1.0.28 ; extra == "anomaly"
42
+ Requires-Dist: report-creator==1.0.32 ; extra == "anomaly"
41
43
  Requires-Dist: rrcf==0.4.4 ; extra == "anomaly"
42
- Requires-Dist: scikit-learn ; extra == "anomaly"
44
+ Requires-Dist: scikit-learn<1.6.0 ; extra == "anomaly"
43
45
  Requires-Dist: salesforce-merlion[all]==2.0.4 ; extra == "anomaly"
44
46
  Requires-Dist: jupyter_server ; extra == "aqua"
45
47
  Requires-Dist: hdfs[kerberos] ; extra == "bds"
@@ -63,13 +65,12 @@ Requires-Dist: nbformat ; extra == "forecast"
63
65
  Requires-Dist: oci-cli ; extra == "forecast"
64
66
  Requires-Dist: py-cpuinfo ; extra == "forecast"
65
67
  Requires-Dist: rich ; extra == "forecast"
66
- Requires-Dist: autots[additional] ; extra == "forecast"
68
+ Requires-Dist: autots ; extra == "forecast"
67
69
  Requires-Dist: mlforecast ; extra == "forecast"
68
70
  Requires-Dist: neuralprophet>=0.7.0 ; extra == "forecast"
69
71
  Requires-Dist: numpy<2.0.0 ; extra == "forecast"
70
72
  Requires-Dist: oci-cli ; extra == "forecast"
71
73
  Requires-Dist: optuna ; extra == "forecast"
72
- Requires-Dist: oracle-ads ; extra == "forecast"
73
74
  Requires-Dist: pmdarima ; extra == "forecast"
74
75
  Requires-Dist: prophet ; extra == "forecast"
75
76
  Requires-Dist: shap ; extra == "forecast"
@@ -77,7 +78,7 @@ Requires-Dist: sktime ; extra == "forecast"
77
78
  Requires-Dist: statsmodels ; extra == "forecast"
78
79
  Requires-Dist: plotly ; extra == "forecast"
79
80
  Requires-Dist: oracledb ; extra == "forecast"
80
- Requires-Dist: report-creator==1.0.28 ; extra == "forecast"
81
+ Requires-Dist: report-creator==1.0.32 ; extra == "forecast"
81
82
  Requires-Dist: geopandas<1.0.0 ; extra == "geo"
82
83
  Requires-Dist: fiona<=1.9.6 ; extra == "geo"
83
84
  Requires-Dist: oracle_ads[viz] ; extra == "geo"
@@ -121,16 +122,16 @@ Requires-Dist: scrubadub==2.0.1 ; extra == "pii"
121
122
  Requires-Dist: scrubadub_spacy ; extra == "pii"
122
123
  Requires-Dist: spacy-transformers==1.2.5 ; extra == "pii"
123
124
  Requires-Dist: spacy==3.6.1 ; extra == "pii"
124
- Requires-Dist: report-creator==1.0.28 ; extra == "pii"
125
+ Requires-Dist: report-creator==1.0.32 ; extra == "pii"
125
126
  Requires-Dist: oracle_ads[opctl] ; extra == "recommender"
126
127
  Requires-Dist: scikit-surprise ; extra == "recommender"
127
128
  Requires-Dist: plotly ; extra == "recommender"
128
- Requires-Dist: report-creator==1.0.28 ; extra == "recommender"
129
+ Requires-Dist: report-creator==1.0.32 ; extra == "recommender"
129
130
  Requires-Dist: pyspark>=3.0.0 ; extra == "spark"
130
131
  Requires-Dist: oracle_ads[viz] ; extra == "tensorflow"
131
132
  Requires-Dist: tensorflow<=2.15.1 ; extra == "tensorflow"
132
133
  Requires-Dist: arff ; extra == "testsuite"
133
- Requires-Dist: autogen-agentchat~=0.2 ; extra == "testsuite"
134
+ Requires-Dist: autogen-agentchat<0.4 ; extra == "testsuite"
134
135
  Requires-Dist: category_encoders==2.6.3 ; extra == "testsuite"
135
136
  Requires-Dist: cohere==4.53 ; extra == "testsuite"
136
137
  Requires-Dist: faiss-cpu ; extra == "testsuite"
@@ -1,18 +1,20 @@
1
1
  ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
- ads/cli.py,sha256=hjRcQfXFzkh37fbyUBg95I3R0brslZLf9IQU8nSCxio,3933
2
+ ads/cli.py,sha256=WkOpZv8jWgFYN9BNkt2LJBs9KzJHgFqq3pIymsqc8Q4,4292
3
3
  ads/config.py,sha256=WGFgS5-dxqC9_iRJKakn-mh9545gHJpWB_Y0hT5O3ec,8016
4
- ads/aqua/__init__.py,sha256=IUKZAsxUGVicsyeSwsGwK6rAUJ1vIUW9ywduA3U22xc,1015
5
- ads/aqua/app.py,sha256=BQuQ9RERU0rKmn3N3xicKzYaXOd7xBwX1aVuVLNgw98,11993
4
+ ads/aqua/__init__.py,sha256=T5v0LVPaeyXuXmA-0NbH44cnR3pGmQVFwRVKxRbEI9U,1068
5
+ ads/aqua/app.py,sha256=M1Axewjnkkpk5eHhTqLxw4y5WqzCV3UVt9g15SzxDkI,13227
6
6
  ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
7
  ads/aqua/constants.py,sha256=fTPrRuWaZB1_THZ2I1nOrwW1pQGpvMC44--Ok5Myr5Y,2978
8
- ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
9
- ads/aqua/ui.py,sha256=hGl4btUsMImkpzZ-Ae_WVVaRqfpdG_gUeHKD9E1nKbE,26195
8
+ ads/aqua/data.py,sha256=HfxLfKiNiPJecMQy0JAztUsT3IdZilHHHOrCJnjZMc4,408
9
+ ads/aqua/ui.py,sha256=aRVtvJslhq8Zq8B_2AQdmlFbuLWpHakFTZg6T9uvHU0,27248
10
+ ads/aqua/client/__init__.py,sha256=-46EcKQjnWEXxTt85bQzXjA5xsfoBXIGm_syKFlVL1c,178
11
+ ads/aqua/client/client.py,sha256=HiEA0XjvC7iuuz6vhiu6UG0qMd9x2t1pYwTe22N-I-U,30065
10
12
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
11
13
  ads/aqua/common/decorator.py,sha256=JEN6Cy4DYgQbmIR3ShCjTuBMCnilDxq7jkYMJse1rcM,4112
12
14
  ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
13
- ads/aqua/common/enums.py,sha256=HnaraHfkYmuqC5mEF7gyvQmqbOc6r_9EI2MF-cieb5o,2991
15
+ ads/aqua/common/enums.py,sha256=CObWpoNzNuVFT6Hh6tLbWrUMS6LkY5jDK0ifTGLJnSc,3068
14
16
  ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
15
- ads/aqua/common/utils.py,sha256=ipWRenYo3x_N9QN9pyverZXfxxd9fBIk4acmpZclwzY,37516
17
+ ads/aqua/common/utils.py,sha256=7vZM2T74LqspzKzuaSuG7H0NnswnA3r6CwNGAumc2xU,39568
16
18
  ads/aqua/config/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
17
19
  ads/aqua/config/config.py,sha256=MNY4ttccaQdhxUyS1o367YIDl-U_AiSLVlgvzSd7JE4,944
18
20
  ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
@@ -26,40 +28,40 @@ ads/aqua/dummy_data/oci_models.json,sha256=mxUU8o3plmAFfr06fQmIQuiGe2qFFBlUB7QNP
26
28
  ads/aqua/dummy_data/readme.md,sha256=AlBPt0HBSOFA5HbYVsFsdTm-BC3R5NRpcKrTxdjEnlI,1256
27
29
  ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89a0,298
28
30
  ads/aqua/evaluation/constants.py,sha256=GvcXvPIw-VDKw4a8WNKs36uWdT-f7VJrWSpnnRnthGg,1533
29
- ads/aqua/evaluation/entities.py,sha256=OqD2AfCO31ZO88hfORsjLdmJRqOjZrep2zVESEj6qJc,5488
31
+ ads/aqua/evaluation/entities.py,sha256=pvZWrO-Hlsh0TIFnly84OijKHULRVM13D5a-4ZGxte8,5733
30
32
  ads/aqua/evaluation/errors.py,sha256=qzR63YEIA8haCh4HcBHFFm7j4g6jWDfGszqrPkXx9zQ,4564
31
- ads/aqua/evaluation/evaluation.py,sha256=UGo6Ly148qw3br1tNo-fagvyipDi4P-2AEZ8T4m6GR4,57856
33
+ ads/aqua/evaluation/evaluation.py,sha256=Kn__jUSFwG7FE_R7GM8PGMoXNvfFuRaYgTQWAgH_7U0,59521
32
34
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
33
- ads/aqua/extension/aqua_ws_msg_handler.py,sha256=soSRnIFx93JCFf6HsuF_BQEpJ2mre-IVQDUDKUKPijY,3392
34
- ads/aqua/extension/base_handler.py,sha256=Zbb-uSNLljRU5NPOndn3_lx8MN_1yxlF2GHVpBT-kWk,5233
35
+ ads/aqua/extension/aqua_ws_msg_handler.py,sha256=zR7Fb3LEXzPrEICooWvuo_ahoY6KhcABpKUmYQkEpS0,3626
36
+ ads/aqua/extension/base_handler.py,sha256=s49sfCEzy_WpXsBCMilMsrp4_mKEbSGN7ajfCe0FJVo,5351
35
37
  ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
36
38
  ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
37
- ads/aqua/extension/deployment_handler.py,sha256=i2UAZQ8_uVgg32OmM1vif3kplAVuRwxZsjgTfUSKnH8,11025
39
+ ads/aqua/extension/deployment_handler.py,sha256=abTwz9OFJB2_OPbRZaDvNMb3BjRmkSmNh28EtGNstg4,11287
38
40
  ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
39
41
  ads/aqua/extension/errors.py,sha256=ojDolyr3_0UCCwKqPtiZZyMQuX35jr8h8MQRP6HcBs4,519
40
42
  ads/aqua/extension/evaluation_handler.py,sha256=fJH73fa0xmkEiP8SxKL4A4dJgj-NoL3z_G-w_WW2zJs,4353
41
43
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
42
- ads/aqua/extension/finetune_handler.py,sha256=abiDXNhkhtoV9hrYhCzwhDjdQKlqQ_KSqxKWntkvh3E,3288
43
- ads/aqua/extension/model_handler.py,sha256=Ec7NiU3Xvp_sZEvCvN6aVqeoiFrOpJMhDI5xtP_pSuw,10612
44
+ ads/aqua/extension/finetune_handler.py,sha256=97obbhITswTrBvl88g7gk4GvF2SUHBGUAq4rOylFbtQ,3079
45
+ ads/aqua/extension/model_handler.py,sha256=NUR3PeLLAM-A1uyhwmglFhB4GgzembBY27CTPQ0Pm2Q,11682
44
46
  ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
45
- ads/aqua/extension/ui_handler.py,sha256=3TibTMeqcsSWfPsorspFrhIV0PRh8_4FoWpudycT80g,10664
47
+ ads/aqua/extension/ui_handler.py,sha256=Q0LkrV6VtVUI4GpNgqJQt8SGzxHzp4X5hdHF6KgPp9M,11217
46
48
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
47
49
  ads/aqua/extension/utils.py,sha256=UKafTX6tN6ObOkWCLy6c3y_cNmUHfD64PtIaR5B7Sl0,1476
48
50
  ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
51
  ads/aqua/extension/models/ws_models.py,sha256=-m6IJRS-4I6AMLDwgu19XdrvHyOStuBx9t4B0LgS07g,3348
50
52
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
51
- ads/aqua/finetuning/constants.py,sha256=g0ze760c4LlD6ppN0Lww_ZAkr1IpNJMJDxq_USx4IEk,807
52
- ads/aqua/finetuning/entities.py,sha256=S7Ll_0WyWGh23my-6ow3vwHLDZqTel8CMCoE9oLowOY,4126
53
- ads/aqua/finetuning/finetuning.py,sha256=mwKl8KA2Artp0dXzjXxxKn_UBnkYpNXMYN7ykrZcyEM,25145
53
+ ads/aqua/finetuning/constants.py,sha256=va1TIAdMD5ATOdC39PSQpLycL1N5ubIOWTWrPKQSghY,886
54
+ ads/aqua/finetuning/entities.py,sha256=1RRaRFuxoBtApeCIqG-0H8Iom2kz2dv7LOX6y2wWLnA,6116
55
+ ads/aqua/finetuning/finetuning.py,sha256=0GnaEXL2_tJZ5JU5T7-4bmLLpI-ZlmTGvgIrZHZ7Ko8,26329
54
56
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
55
57
  ads/aqua/model/constants.py,sha256=H239zDu3koa3UTdw-uQveXHX2NDwidclVcS4QIrCTJo,1593
56
- ads/aqua/model/entities.py,sha256=wv1j18OG8NrmKLwIevyJ1ZVw965n3_3titOfwqyzlI8,9765
58
+ ads/aqua/model/entities.py,sha256=5XaJapNoRRxvSJCWVq7pIg_GCN_W1M1q9mxz6Cp3A28,9955
57
59
  ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
58
- ads/aqua/model/model.py,sha256=pFG4lkaqtovSpiu3BOCGT7scMtXt4rwup9Rof6Hl_CU,63908
60
+ ads/aqua/model/model.py,sha256=uJ408_MZpGqea7jUxomiy5SH82CUxZyWP_42XegUlLQ,69762
59
61
  ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
60
62
  ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
61
- ads/aqua/modeldeployment/deployment.py,sha256=bk58MfjnrUiDUFwjBRJwBR_8b-6z8IuzTts2T0-pK3E,30729
62
- ads/aqua/modeldeployment/entities.py,sha256=7aoE2HemsFEvkQynAI4PCfZBcfPJrvbyZeEYvc7OIAA,5111
63
+ ads/aqua/modeldeployment/deployment.py,sha256=UxyxAvte4mTkWz3Vp4-OACNKNujcZW7WvpVYIUgt_nY,31804
64
+ ads/aqua/modeldeployment/entities.py,sha256=EV7hxfKRZNY9kJDy_1IC7PoSIsRQ0yy02pll0gCsCkY,5171
63
65
  ads/aqua/modeldeployment/inference.py,sha256=JPqzbHJoM-PpIU_Ft9lHudO9_1vFr7OPQ2GHjPoAufU,2142
64
66
  ads/aqua/training/__init__.py,sha256=w2DNWltXtASQgbrHyvKo0gMs5_chZoG-CSDMI4qe7i0,202
65
67
  ads/aqua/training/exceptions.py,sha256=S5gHUeUiiPErxuwqG0TB1Yf11mhsAGNYb9o3zd1L1dI,13627
@@ -76,7 +78,7 @@ ads/catalog/project.py,sha256=eiCBOu9bHyQUH9SquSi880PDQftyRy3dONO_Qxtdeyk,16092
76
78
  ads/catalog/summary.py,sha256=Zy_koBb5FTsP64zyNbqmQZJEWqtoV0lOvI-ZRCQSXa4,5790
77
79
  ads/common/__init__.py,sha256=NBFa_nDAtft8NSiHIfDh5yfxbcJnXISamVH6DrJR_50,293
78
80
  ads/common/analyzer.py,sha256=MrFxBNJwFJwv_kbuJheqvOTz537z7ITE3Il244l3eZU,1893
79
- ads/common/auth.py,sha256=xU9R_WwtOhe9x815lgmdn0Q2lXlxaY6RDCcfjyjhhFI,45961
81
+ ads/common/auth.py,sha256=ay_o7qoURV2iLSCKw73Af1pHcNnWYSAkTvy1MnJSU4Y,45970
80
82
  ads/common/card_identifier.py,sha256=csCCSQNka8wpHE90IGUJqFmFvjbFd42eEIlmUZuOwMA,2458
81
83
  ads/common/config.py,sha256=5QNJaJ5A2tMrDRJemJt62jxZ0pSGRz4bPkn9HGA__N0,20253
82
84
  ads/common/data.py,sha256=jQHf9Kc7llzdnQjseGgMhVuR0XLRafBvEQVk0OY2s_8,6939
@@ -450,33 +452,50 @@ ads/llm/chat_template.py,sha256=t2QRfLLR_c_cq3JqABghWqiCSWjjuVc_mfEN-yVYG10,934
450
452
  ads/llm/deploy.py,sha256=5oZipFWU6q_9dCyt3WE4ic-n5rNZgQsYU_3lS_Vp_nY,2275
451
453
  ads/llm/requirements.txt,sha256=vaVwhWCteqmo0fRsEk6M8S1LQMjULU_Bt_syBAa2G-s,55
452
454
  ads/llm/serialize.py,sha256=WjQNMPACyR8nIh1dB7BLFUmqUrumld6vt91lg1DWzWI,7281
453
- ads/llm/autogen/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
454
- ads/llm/autogen/client_v02.py,sha256=-8fH-u769txu9eCfGi8XDkQ09DMPl5cCOmmywOFUguc,11127
455
+ ads/llm/autogen/__init__.py,sha256=tJ0lezCBSrr9NxU2M4qBIJ1ed5T_jVZOFUvLGh1JMHM,179
456
+ ads/llm/autogen/constants.py,sha256=ZXuWpM3vf2uR7SdwwOWlN7Z92FXI0VGLaQyAMsWzZOA,487
457
+ ads/llm/autogen/reports/__init__.py,sha256=tJ0lezCBSrr9NxU2M4qBIJ1ed5T_jVZOFUvLGh1JMHM,179
458
+ ads/llm/autogen/reports/base.py,sha256=USRtImKoCCayBPn0WrwvpsKnVH1hVxFweIA29XuTgT8,2395
459
+ ads/llm/autogen/reports/data.py,sha256=vj6Opf3MXAF1RadpRQK6leR1Txe-3X5pIOpDDeGbYTY,2767
460
+ ads/llm/autogen/reports/session.py,sha256=ra7U-U82tT7tAl4v_dHSRT7qmiyrsvJUb4QwQ_deN1o,19463
461
+ ads/llm/autogen/reports/utils.py,sha256=PZuNyVMMR7lBxItfEw5JKMxtxSoIPYOYFJ2iWBbeoR8,1512
462
+ ads/llm/autogen/reports/templates/chat_box.html,sha256=_aiTJ3WZ4btDcciKg-vEo2X1nRwMRG2otEyqkuSE1ps,465
463
+ ads/llm/autogen/reports/templates/chat_box_lt.html,sha256=r2vB71nehOW9Et_HAQSEEWZMWNAoP69G6fNu8HYlqjQ,198
464
+ ads/llm/autogen/reports/templates/chat_box_rt.html,sha256=grG7H6Ms9SWcGDwHDXVmJEPtRCwbKiORLmsFpKWTCAo,224
465
+ ads/llm/autogen/v02/__init__.py,sha256=tidxEIknklVQ8VlApHDgcQF3PrmY5x0Q2uBNGSxmXKo,264
466
+ ads/llm/autogen/v02/client.py,sha256=9nmrWAMcOsBddyrLRAZdHS7vwkLHHZboyieFHBQM6JA,11425
467
+ ads/llm/autogen/v02/runtime_logging.py,sha256=r2nZ0TvqNvW9uQTfyneiibwXzTgSW8vxkLSbyaAnSak,5742
468
+ ads/llm/autogen/v02/log_handlers/__init__.py,sha256=tJ0lezCBSrr9NxU2M4qBIJ1ed5T_jVZOFUvLGh1JMHM,179
469
+ ads/llm/autogen/v02/log_handlers/oci_file_handler.py,sha256=-YJg0DLmkJbbx7SYKaflz5B6mL7v4gtS5bbjU3ahAgc,2509
470
+ ads/llm/autogen/v02/loggers/__init__.py,sha256=oM0LaTmmcbRciOFvcR-DPb5IL6rzQcNFDTGozWci6Is,338
471
+ ads/llm/autogen/v02/loggers/metric_logger.py,sha256=lOHp2ADptnyuLtKaCpjrveEPoEGr0w4i05EthY5V6Co,11097
472
+ ads/llm/autogen/v02/loggers/session_logger.py,sha256=50GhTLCEa7JcAy_tHRFRngagVweXWxam6p4m-QoTruE,19255
473
+ ads/llm/autogen/v02/loggers/utils.py,sha256=h5IMT3q8sCBQYBWDc53hPKVi7Uh_jfKKUu7_Gh9-OLc,2692
455
474
  ads/llm/guardrails/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
456
- ads/llm/guardrails/base.py,sha256=scli_YSqDbArIJW5sA5PLjCd6G8_-dNUcpTybvQvZnk,16468
475
+ ads/llm/guardrails/base.py,sha256=L-hAW18PsEVKoh8h8PU3WhAZIAgxKhygfkvD4zHOIts,16503
457
476
  ads/llm/guardrails/huggingface.py,sha256=4DFanCYb3R1SKYSFdcEyGH2ywQgf2yFDDZGJtOcoph0,1304
458
477
  ads/llm/langchain/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
459
478
  ads/llm/langchain/plugins/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
460
479
  ads/llm/langchain/plugins/chat_models/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
461
- ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=wWVH7nuN6umNfsHD07NnkuoaAGhFy6IKGgx_v9QgYG0,35405
480
+ ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=tf_n8KfSbEwTLk4TZ58ZiNHYAj4sooPhFzAfWslhR_A,36480
462
481
  ads/llm/langchain/plugins/llms/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
463
- ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=0QGNpDuV_QorZw9i62PEkTqRxOLs4d2aPrg_lXq0akQ,32466
482
+ ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=UJ6Wm6fxOWxaBHMIMWlCMyOXlWAqq626gcZ-8TRwrbQ,33448
464
483
  ads/llm/serializers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
465
484
  ads/llm/serializers/retrieval_qa.py,sha256=VQ4rFRrDHOpAcMYNvRbT19LcDGwRrE1lczerLQYKxwU,5133
466
485
  ads/llm/serializers/runnable_parallel.py,sha256=USCVhMNi67AiCmu-s_mmOvc0sK7v4yKVwBTJm60x7wE,835
467
486
  ads/llm/templates/score_chain.jinja2,sha256=RVB7RImjGifDbzaZPtfsmANqIiLx3yRJbH2thk_VHWE,4831
468
487
  ads/llm/templates/tool_chat_template_hermes.jinja,sha256=nQgWGwZludNFmUO7V8emgPQud828l9T4e5QmsDyLq4k,5226
469
488
  ads/llm/templates/tool_chat_template_mistral_parallel.jinja,sha256=xkZLgw50a3wPiw9I5HmDlZiEAXPg9wtwnrkhaAiI_1o,4773
470
- ads/model/__init__.py,sha256=r4U2NvroKMUa-tqNnXBtND9cA6b1Yefmdj6lgdoKlDk,1900
471
- ads/model/artifact.py,sha256=ONKyjZKO5wmAYI-GT63z8yLm_QsmIGXcob9KrnwtF5k,20503
489
+ ads/model/__init__.py,sha256=7j42v0yXueMcWn1e9OUaSGNjxGCJZVdGEk9CrQEPxa4,1970
490
+ ads/model/artifact.py,sha256=CmHdeINF0K6p2MaWZOwU5tLPQ9PoIdnfQis2voMAhHE,21459
472
491
  ads/model/artifact_downloader.py,sha256=-9IYkjZ0LaMWf5foz5HUGTZCEm67f-3LbDsigNlzEPg,9751
473
492
  ads/model/artifact_uploader.py,sha256=jdkpmncczceOc28LyMkv4u6f845HJ1vVCoI-hLBT-RM,11305
474
493
  ads/model/base_properties.py,sha256=YeVyjCync4fzqqruMc9UfZKR4PnscU31n0mf4CJv3R8,7885
475
494
  ads/model/datascience_model.py,sha256=pKjoVmYWZBXC7wYQVhCJe_ii_aE7FakrjaTWpBRWXLA,82022
476
- ads/model/generic_model.py,sha256=jjRn0U6X9eVAo_1VMhJoZ6aVKa7J_PNN4tr02XbAYCk,146988
495
+ ads/model/generic_model.py,sha256=pKOfpsq8hTwbITHBEkbX94DOP6xmxjk7QMfWPEyYA7Q,147037
477
496
  ads/model/model_file_description_schema.json,sha256=NZw_U4CvKf9oOdxCKr1eUxq8FHwjR_g0GSDk0Hz3SnE,1402
478
497
  ads/model/model_introspect.py,sha256=z9pJul9dwT9w8flvRguhu0ZKoEkbm2Tvdutw_SHYTeg,9745
479
- ads/model/model_metadata.py,sha256=TkE2XU_Gafyct_c7_Fs-eNBD6q-Kpe8v9wYff1UDEaY,54566
498
+ ads/model/model_metadata.py,sha256=QFSoJcHJf73GHkhcyNA9Zep9pD2WKovPhfCClVXsz1o,54574
480
499
  ads/model/model_metadata_mixin.py,sha256=XJc7GmK0pk8AqBMBPa9jYqm4BgRLkiX08bZhooQcJRw,16898
481
500
  ads/model/model_properties.py,sha256=OHK2CK3DXcnWtgVm7QNuX7hdHNN8U_y5DZmJfcbTVrE,2190
482
501
  ads/model/model_version_set.py,sha256=Jfj3KS9AfaXTIPu4MMtnhyRoWSu9jxiQGvG4cPfTqB0,22782
@@ -493,6 +512,7 @@ ads/model/deployment/common/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe
493
512
  ads/model/deployment/common/utils.py,sha256=gERBsZp2ujkSBD20LXnOA3PoNOOrmRJEzqZqEc-k91E,10076
494
513
  ads/model/extractor/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
495
514
  ads/model/extractor/automl_extractor.py,sha256=ZZVx253jYy2VgbdGkbLs1D5WhjmSibgoeLpk-NrDzG8,2352
515
+ ads/model/extractor/embedding_onnx_extractor.py,sha256=nAdRdE3uLfK5lks1aEGY72hHINdtLMOqytJtojqfUrw,2027
496
516
  ads/model/extractor/huggingface_extractor.py,sha256=yE2Ly2iAwMIfWaAlAjJOY5tYHvX8l97QEE9AGyF_nQc,2244
497
517
  ads/model/extractor/keras_extractor.py,sha256=l-LgYC7cpZPZZ29fNzCD4U-0IWKn9_WbVbQaj4kucAI,2081
498
518
  ads/model/extractor/lightgbm_extractor.py,sha256=pZt7UkrDu4KlDw0NPZ2el4RuuNNBUNjc3LrjIkNJM8g,2442
@@ -505,6 +525,7 @@ ads/model/extractor/tensorflow_extractor.py,sha256=I2D0b8_GYN2Re9-odhxbdZfmOfLnX
505
525
  ads/model/extractor/xgboost_extractor.py,sha256=iiezFMN13PheJTR0wGtkdiDTouMaZwXBq2oRreQ7AZc,2472
506
526
  ads/model/framework/__init__.py,sha256=2KsW2ahw_qXll0Z0yrLCpKgxzXE9pxI9u6RmkD8rIZc,201
507
527
  ads/model/framework/automl_model.py,sha256=-WQWAh6K2QQmaAWv7e1y3ggHhH-6iuxGJ5QS5XXfeiE,7561
528
+ ads/model/framework/embedding_onnx_model.py,sha256=1Lwc86fly9GdXl2iyvTViqylezFNqV8iXrqdTe8vjOc,16269
508
529
  ads/model/framework/huggingface_model.py,sha256=vLVgBzk9A7zJb1Lu-K3EqVbRnqgk2e3Qy2uxEfw1llE,17008
509
530
  ads/model/framework/lightgbm_model.py,sha256=21avv5Qjt1J3sjZX2rlALX9xYcm8_XGAa22bf_BRTXk,10414
510
531
  ads/model/framework/pytorch_model.py,sha256=DKOmoXyswtPfVLakSMKfhKbB5TZrbPDqt6LadDxG7Gg,11379
@@ -576,7 +597,7 @@ ads/opctl/conda/multipart_uploader.py,sha256=1R09ajToBYZsQjgM3-ASnheIOsnZf7sYCHI
576
597
  ads/opctl/conda/pack.py,sha256=ghv-mudoS2KVZ2qbEjW7cK1bRu6R3Hto1_3bga0HCMQ,2921
577
598
  ads/opctl/config/__init__.py,sha256=DwYupQz6SOfMLmmAjJ9danchK0shQRJKTGPU--naQgY,204
578
599
  ads/opctl/config/base.py,sha256=R4Grgdjjnax7LLNiNC90VzeUHtsPPjbOcOs1WN5Tlxs,1472
579
- ads/opctl/config/merger.py,sha256=DMSTnZj7OOmbO_QM4uKrWUjS9REvMn8zkK8V0uZHO1I,11332
600
+ ads/opctl/config/merger.py,sha256=0RPI1ZSzvQ9E1vpw9GEWShp1fyYeOle_E7WMj_dYu0Y,11370
580
601
  ads/opctl/config/resolver.py,sha256=80lCYoPMUlu2qZ_GBKLxmWgRorP0pFJUMf1hJuy8JYc,12666
581
602
  ads/opctl/config/utils.py,sha256=doSgPuDfhr3xqPSgeGk5I1F8biQjGNhQGIcoQzSbr34,2326
582
603
  ads/opctl/config/validator.py,sha256=_N_KaHx3vVLbZocj3lPkI7U3JFiNTvR5l-99AySeaio,630
@@ -628,7 +649,7 @@ ads/opctl/operator/common/backend_factory.py,sha256=VLQJ4oTA-VKFjMRV7al1oEPgOLEs
628
649
  ads/opctl/operator/common/const.py,sha256=Zrmroh9uAaCrPbNgL2L8qKOdkNQ2-5FaO0qbDivKEAE,832
629
650
  ads/opctl/operator/common/dictionary_merger.py,sha256=nCakCzP3S8e-RnJJXLfdMugPyaMEkOjYgghoX5bv8YQ,4753
630
651
  ads/opctl/operator/common/errors.py,sha256=ljRocG90rO6jb5ryLUiTsaGI05x6mf7TnaV4wHcmbBQ,1510
631
- ads/opctl/operator/common/operator_config.py,sha256=1OEWqNOj7w4vpnSQ9lLxkGDOM4lI06cF2VQd4n_-KSw,2680
652
+ ads/opctl/operator/common/operator_config.py,sha256=Kgi6MuyMRepX4Yw4An8CBUDDOgsdxd3Ibh9eRInFBBU,2683
632
653
  ads/opctl/operator/common/operator_loader.py,sha256=fpdrqDyOF9h4lsnGOsdDQsZl1xbdRFtqU6haaQJ15Ls,24146
633
654
  ads/opctl/operator/common/operator_schema.yaml,sha256=kIXKI9GCkwGhkby6THJR2zY6YK0waIgPfPxw85I7aG4,3046
634
655
  ads/opctl/operator/common/operator_yaml_generator.py,sha256=hH6wYj7oDYeAsE1grcIF4K1EE_RhguLXltxPbmB65iQ,5108
@@ -660,8 +681,8 @@ ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi
660
681
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
661
682
  ads/opctl/operator/lowcode/common/data.py,sha256=nKwE0ubF9fTHFOls5uQ3BBpcPNRtwvGW3UGK-JjAm84,4107
662
683
  ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
663
- ads/opctl/operator/lowcode/common/transformations.py,sha256=WQsVKmYmPecZTsGvabUDCBzuNJfzpQVSe93nzElRnIc,9804
664
- ads/opctl/operator/lowcode/common/utils.py,sha256=XadRZMiIgAUdXw7rDXl4xUPfta9Z_NQsQbDQIR-L73Q,9327
684
+ ads/opctl/operator/lowcode/common/transformations.py,sha256=6zrrPdfbphVKDyQ8xHBbLIblpwxWP3CZzfLATka4Dc0,11226
685
+ ads/opctl/operator/lowcode/common/utils.py,sha256=d0Ex6YxVJm1s2W8tfSjy46jw0iM4ukNIw9qQKGWcGdc,9772
665
686
  ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
666
687
  ads/opctl/operator/lowcode/feature_store_marketplace/README.md,sha256=fN9ROzOPdEZdRgSP_uYvAmD5bD983NC7Irfe_D-mvrw,1356
667
688
  ads/opctl/operator/lowcode/feature_store_marketplace/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
@@ -679,25 +700,28 @@ ads/opctl/operator/lowcode/feature_store_marketplace/models/serializable_yaml_mo
679
700
  ads/opctl/operator/lowcode/forecast/MLoperator,sha256=xM8yBUQObjG_6Mg36f3Vv8b9N3L8_5RUZJE2riOjXuw,5981
680
701
  ads/opctl/operator/lowcode/forecast/README.md,sha256=kbCCEdo-0pwKlZp9ctnWUK6Z31n69IsnG0i26b202Zg,9768
681
702
  ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
682
- ads/opctl/operator/lowcode/forecast/__main__.py,sha256=5Vh-kClwxTsvZLEuECyQBvbZFfH37HQW2G09RwX11Kw,2503
703
+ ads/opctl/operator/lowcode/forecast/__main__.py,sha256=2NmZ4Z-Hu9ViuH6LOQ27ciVN7uryho9Fxs3adfWQkbk,2894
683
704
  ads/opctl/operator/lowcode/forecast/cmd.py,sha256=uwU-QvnYwxoRFXZv7_JFkzAUnjTNoSsHEme2FF-9Rl0,1151
684
- ads/opctl/operator/lowcode/forecast/const.py,sha256=jyoXhrRXFipcATwGIU_3rFRZL-r6hvbKNUVO2uG2siY,2597
705
+ ads/opctl/operator/lowcode/forecast/const.py,sha256=XEH74IeAJ89_wCOXWuIrAWl5Rwjzfadl7aSsmLSMZk4,2695
685
706
  ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
686
707
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
687
- ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=HssIlfJlJt5HetwzT87rDeRYRwJAXG1yoSjT4SUB8D0,9266
688
- ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=vG7n-RIiazujH0UtJ0uarx9IKDIAS0b4WcCo1dNLVL0,6422
689
- ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=r9vll4zNn3maiEXO0aQdt4bQ9l9DmK_Jy7lpidhVubc,10135
690
- ads/opctl/operator/lowcode/forecast/utils.py,sha256=B7X3vLxmbx3MyUQxoplhQCMb0bgmPk2g-KN-OY768E8,13908
708
+ ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=IutyI2bo_aFopHsWlJ3z7TcBPXs6G3NufdIaXBUD6Tw,9352
709
+ ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=fcq0WrqW4AYkcW6d_L1lPETj95zjboZRmVGvAXxDQu4,7618
710
+ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=nDrY-8Qyv-_6Olxi4CoUgyQe65h7I9CPYghtSVGIxVE,12437
711
+ ads/opctl/operator/lowcode/forecast/utils.py,sha256=0ssrXBAEL5hjQX4avLPkSwFp3sKE8QV5M3K5InqvzYg,14137
691
712
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
692
- ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=lU7NlpXI1-g-O_1rGJLlEL17_ruGXAdzzY7H8nFRvGQ,10943
693
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=lrNktixdaJJHHXqIrSmgzCZKEzB_CirQcuquf73AYUQ,14978
694
- ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=Y9_EAfDD5r6SPZq7iGp7YMh-vH0lwAGNpyNT2sm7cqo,13027
695
- ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=H9yQ1DzyfGqnggEaSWgUJjW_bxml6Kto62gohuEO9y4,31006
713
+ ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=sWGTUxisV8ytUA-_MK54bdP2FVO_9BMD8-EsulJEYxE,11430
714
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=lXJoeMFHapyd5aYLi81T4WOV4ilheVz0FrNW6yE2dg4,19362
715
+ ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=RyLeD3dwMfrb6St-QFoH2MM8vH3inepVamRRovI-bwM,13086
716
+ ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=h0PGYUKfO2CSH34EK3YtYnZHnpiRJThvIkwyIiKqxDI,33531
696
717
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=hSRPPWdpIRSMYPUFMIUuxc2TPZt-SG18MiqhtdfL3mg,3488
697
- ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=GCwX9Udh4U79wBNG5bjSYabgRDO0u-ElVJkSC_HcBeA,16563
718
+ ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=BFZL-F2pec5Gb5UTRcFlNPi3LT65z4pGzRJvhgxK0TE,16562
698
719
  ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=NSZ2L6gRw4S68BUF0Vyu-cUPSsq8LRxgoVajW9Ra63k,9640
699
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=rt4106o9qIKwoHnYICB9sOnQ8ujXyI83eoFY26KzsOU,18774
700
- ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=h3So9XYBZPRNqMvYNpU5bxbHgvwgpspuATALCuIWHeM,14368
720
+ ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=URtnP4oEMP7tGwe0WfWtfMFftAXQzN3K9RurAv_cgnY,19251
721
+ ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=yiCIP0bR0jg-b2XHVJSfO7CFZ3_GXEnpLkW_MkV45Jo,14983
722
+ ads/opctl/operator/lowcode/forecast/whatifserve/__init__.py,sha256=JNDDjLrNorKXMHUuXMifqXea3eheST-lnrcwCl2bWrk,242
723
+ ads/opctl/operator/lowcode/forecast/whatifserve/deployment_manager.py,sha256=fTu5h18dyNi61wX4u0bcevBVd5QCx2avpW4g1Ry-xwM,11168
724
+ ads/opctl/operator/lowcode/forecast/whatifserve/score.py,sha256=KpWx7fGFGPb5VUKIoMpEDbUs6q9j3hT-Zax7rsbfYuw,8172
701
725
  ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
702
726
  ads/opctl/operator/lowcode/pii/README.md,sha256=2P3tpKv6v__Eehj6iLfTXgyDhS4lmi1BTfEdmJhT0K4,9237
703
727
  ads/opctl/operator/lowcode/pii/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
@@ -772,14 +796,15 @@ ads/secrets/mysqldb.py,sha256=hVkWV6drmkmLzLX8WeZr4yriMZvzf-n4am15SRTiIgc,5668
772
796
  ads/secrets/oracledb.py,sha256=VAbsY206gc_Ru8FBOCKNGnIlX4VprIIQ9PmBoujRy_k,6146
773
797
  ads/secrets/secrets.py,sha256=k_f3hwh5RI7Hv7zEKDDuxh7kGB-F29bK15jxgu4sxVw,15197
774
798
  ads/telemetry/__init__.py,sha256=_pKx4hDK7DUXHjvAq4Zbeg6wl9_UkgGE7O77KWezu8g,230
775
- ads/telemetry/base.py,sha256=ONabbRFCWBT0wWsTrjSbhwwwLzUrGBFOvhsCNVAepVk,1937
776
- ads/telemetry/client.py,sha256=HJKMrmQJvpF4eyjmbcYrn-9z1_emrq9_hCVFTsECbT4,4104
799
+ ads/telemetry/base.py,sha256=6kKVSfTxx2Dr0XL7R8OfjTy3hJoJpKMvP6D7RdVddl4,2199
800
+ ads/telemetry/client.py,sha256=33xG082IGoWCbhD5xmYkDgI2znqL9LgqLM2kfvbg6fw,4975
777
801
  ads/telemetry/telemetry.py,sha256=xCu64tUEzYzFaXEMxnMdtQJPme5-9sW8l3uxibN4E04,7930
778
802
  ads/templates/dataflow_pyspark.jinja2,sha256=JiTuaGt5LC7z1mrDoDIbZ5UskBETLpm0lMpn5VZYNGs,254
779
803
  ads/templates/dataflow_sparksql.jinja2,sha256=8MvGzj7PWgUNo-9dg6zil8WTpBL3eNcR815fz64v1yM,466
780
804
  ads/templates/func.jinja2,sha256=pLV51Q2nvYrieEBAEdccdoCBl4bm0xq3LlLK_U6wwfU,441
781
805
  ads/templates/score-pkl.jinja2,sha256=ouAogLuud1bPgIhSdhfDTEfBng7gBH2KUAo_1KNpyiU,5304
782
806
  ads/templates/score.jinja2,sha256=3W_UYiOSLi3sHUYG1kAVX4q9X9YcyRjj5kosXQ8bLWU,10498
807
+ ads/templates/score_embedding_onnx.jinja2,sha256=4aTTXJRDwG4u_NCHMxVxZx247u770EMCb6arSmBk1NM,6412
783
808
  ads/templates/score_generic.jinja2,sha256=TM_Anz6gDi3L7NVfJJTWC6pJnd-H85HjhTzJNCKZXjI,4956
784
809
  ads/templates/score_huggingface_pipeline.jinja2,sha256=va6CIpzAKCQDeL3fiJzYvw5LtIwxRakl3EU8HgQa6u0,5455
785
810
  ads/templates/score_lightgbm.jinja2,sha256=kiPFPE6lS-HoEd7d5BX5JI7k4SSxMGCUwgqybeSzNts,5695
@@ -791,6 +816,7 @@ ads/templates/score_pytorch.jinja2,sha256=cpttsir8nS2JGMGmXKpMP--ge4EfDwLv5UIS4j
791
816
  ads/templates/score_scikit-learn.jinja2,sha256=MgHSp3Yy-p3Fw07fKym8eOHIHw7N8Uet0-U41qM_b9M,5743
792
817
  ads/templates/score_tensorflow.jinja2,sha256=QU29NUxop74oczG4-kAuM7H8Lab7tvyVJprWJukb-uw,5626
793
818
  ads/templates/score_xgboost.jinja2,sha256=xapSYplB8ry04uiG2q-XRRLRhnDArdZCx__4mZQS04I,5516
819
+ ads/templates/schemas/openapi.json,sha256=-TJCg6wOfRmRTbYnMNs_w3dlp-jXQWEgBV853GFEjFc,46874
794
820
  ads/text_dataset/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
795
821
  ads/text_dataset/backends.py,sha256=3yVyqsHd1AAlduFvLL3daEgfcAxONFw8lu1YXTicVBY,6563
796
822
  ads/text_dataset/dataset.py,sha256=xr7D8TEDAQV7b5-WfOsK_oojMcox9K71xBsLjTLqA9E,15378
@@ -815,8 +841,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
815
841
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
816
842
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
817
843
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
818
- oracle_ads-2.12.8.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
819
- oracle_ads-2.12.8.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
820
- oracle_ads-2.12.8.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
821
- oracle_ads-2.12.8.dist-info/METADATA,sha256=aKjc1EqBFSoyK7K30kgMzGfqvemx9-25hmyl5mZZ-xU,16282
822
- oracle_ads-2.12.8.dist-info/RECORD,,
844
+ oracle_ads-2.12.10.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
845
+ oracle_ads-2.12.10.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
846
+ oracle_ads-2.12.10.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
847
+ oracle_ads-2.12.10.dist-info/METADATA,sha256=4AtkVkRDwKVtIbfRR4Px30ehD9NBBCYyPVKra6iI3dY,16280
848
+ oracle_ads-2.12.10.dist-info/RECORD,,