oracle-ads 2.12.5__py3-none-any.whl → 2.12.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ads/aqua/common/decorator.py +10 -0
- ads/aqua/evaluation/entities.py +12 -2
- ads/aqua/extension/aqua_ws_msg_handler.py +2 -0
- ads/aqua/extension/base_handler.py +2 -0
- ads/aqua/finetuning/constants.py +3 -0
- ads/aqua/finetuning/finetuning.py +13 -2
- ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py +6 -5
- ads/opctl/operator/lowcode/anomaly/model/automlx.py +12 -8
- ads/opctl/operator/lowcode/anomaly/model/autots.py +6 -3
- ads/opctl/operator/lowcode/anomaly/model/base_model.py +19 -7
- ads/opctl/operator/lowcode/anomaly/model/isolationforest.py +9 -10
- ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py +10 -11
- ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py +6 -2
- ads/opctl/operator/lowcode/common/data.py +13 -11
- ads/opctl/operator/lowcode/forecast/model/arima.py +14 -12
- ads/opctl/operator/lowcode/forecast/model/automlx.py +26 -26
- ads/opctl/operator/lowcode/forecast/model/autots.py +16 -18
- ads/opctl/operator/lowcode/forecast/model/base_model.py +45 -36
- ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py +36 -47
- ads/opctl/operator/lowcode/forecast/model/ml_forecast.py +3 -0
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +30 -46
- ads/opctl/operator/lowcode/forecast/model/prophet.py +15 -20
- ads/opctl/operator/lowcode/forecast/model_evaluator.py +25 -20
- ads/opctl/operator/lowcode/forecast/utils.py +30 -33
- ads/opctl/operator/lowcode/pii/model/report.py +11 -7
- ads/opctl/operator/lowcode/recommender/model/base_model.py +58 -45
- ads/opctl/operator/lowcode/recommender/model/svd.py +47 -29
- {oracle_ads-2.12.5.dist-info → oracle_ads-2.12.6.dist-info}/METADATA +5 -5
- {oracle_ads-2.12.5.dist-info → oracle_ads-2.12.6.dist-info}/RECORD +32 -32
- {oracle_ads-2.12.5.dist-info → oracle_ads-2.12.6.dist-info}/LICENSE.txt +0 -0
- {oracle_ads-2.12.5.dist-info → oracle_ads-2.12.6.dist-info}/WHEEL +0 -0
- {oracle_ads-2.12.5.dist-info → oracle_ads-2.12.6.dist-info}/entry_points.txt +0 -0
@@ -1,39 +1,43 @@
|
|
1
1
|
#!/usr/bin/env python
|
2
|
-
# -*- coding: utf-8 -*--
|
3
2
|
|
4
3
|
# Copyright (c) 2023, 2024 Oracle and/or its affiliates.
|
5
4
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
6
5
|
|
6
|
+
import logging
|
7
7
|
import os
|
8
8
|
import tempfile
|
9
9
|
import time
|
10
10
|
from abc import ABC, abstractmethod
|
11
|
-
from typing import
|
11
|
+
from typing import Dict, Tuple
|
12
12
|
|
13
13
|
import fsspec
|
14
14
|
import pandas as pd
|
15
15
|
import report_creator as rc
|
16
|
+
from plotly import graph_objects as go
|
16
17
|
|
17
18
|
from ads.common.object_storage_details import ObjectStorageDetails
|
18
19
|
from ads.opctl import logger
|
19
|
-
from ads.opctl.operator.lowcode.common.utils import default_signer
|
20
20
|
from ads.opctl.operator.lowcode.common.utils import (
|
21
|
-
|
22
|
-
enable_print,
|
21
|
+
default_signer,
|
23
22
|
disable_print,
|
23
|
+
enable_print,
|
24
|
+
human_time_friendly,
|
24
25
|
write_data,
|
25
26
|
)
|
27
|
+
|
28
|
+
from ..operator_config import RecommenderOperatorConfig
|
26
29
|
from .factory import SupportedModels
|
27
30
|
from .recommender_dataset import RecommenderDatasets
|
28
|
-
|
29
|
-
|
30
|
-
import matplotlib.pyplot as plt
|
31
|
+
|
32
|
+
logging.getLogger("report_creator").setLevel(logging.WARNING)
|
31
33
|
|
32
34
|
|
33
35
|
class RecommenderOperatorBaseModel(ABC):
|
34
36
|
"""The base class for the recommender detection operator models."""
|
35
37
|
|
36
|
-
def __init__(
|
38
|
+
def __init__(
|
39
|
+
self, config: RecommenderOperatorConfig, datasets: RecommenderDatasets
|
40
|
+
):
|
37
41
|
self.config = config
|
38
42
|
self.spec = self.config.spec
|
39
43
|
self.datasets = datasets
|
@@ -71,7 +75,7 @@ class RecommenderOperatorBaseModel(ABC):
|
|
71
75
|
rc.Metric(
|
72
76
|
heading="Num items",
|
73
77
|
value=len(self.datasets.items),
|
74
|
-
)
|
78
|
+
),
|
75
79
|
),
|
76
80
|
)
|
77
81
|
|
@@ -83,62 +87,67 @@ class RecommenderOperatorBaseModel(ABC):
|
|
83
87
|
user_rating_counts = self.datasets.interactions[user_col].value_counts()
|
84
88
|
fig_user = go.Figure(data=[go.Histogram(x=user_rating_counts, nbinsx=100)])
|
85
89
|
fig_user.update_layout(
|
86
|
-
title=f
|
87
|
-
xaxis_title=f
|
88
|
-
yaxis_title=f
|
89
|
-
bargap=0.2
|
90
|
+
title=f"Distribution of the number of interactions by {user_col}",
|
91
|
+
xaxis_title=f"Number of {interaction_col}",
|
92
|
+
yaxis_title=f"Number of {user_col}",
|
93
|
+
bargap=0.2,
|
90
94
|
)
|
91
95
|
item_title = rc.Heading("Item Statistics", level=2)
|
92
96
|
item_rating_counts = self.datasets.interactions[item_col].value_counts()
|
93
97
|
fig_item = go.Figure(data=[go.Histogram(x=item_rating_counts, nbinsx=100)])
|
94
98
|
fig_item.update_layout(
|
95
|
-
title=f
|
96
|
-
xaxis_title=f
|
97
|
-
yaxis_title=f
|
98
|
-
bargap=0.2
|
99
|
+
title=f"Distribution of the number of interactions by {item_col}",
|
100
|
+
xaxis_title=f"Number of {interaction_col}",
|
101
|
+
yaxis_title=f"Number of {item_col}",
|
102
|
+
bargap=0.2,
|
99
103
|
)
|
100
104
|
result_heatmap_title = rc.Heading("Sample Recommendations", level=2)
|
101
105
|
sample_items = result_df[item_col].head(100).index
|
102
106
|
filtered_df = result_df[result_df[item_col].isin(sample_items)]
|
103
|
-
data = filtered_df.pivot(
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
107
|
+
data = filtered_df.pivot(
|
108
|
+
index=user_col, columns=item_col, values=interaction_col
|
109
|
+
)
|
110
|
+
fig = go.Figure(
|
111
|
+
data=go.Heatmap(
|
112
|
+
z=data.values, x=data.columns, y=data.index, colorscale="Viridis"
|
113
|
+
)
|
114
|
+
)
|
110
115
|
fig.update_layout(
|
111
|
-
title=
|
116
|
+
title="Recommendation heatmap of User-Item Interactions (sample)",
|
112
117
|
width=1500,
|
113
118
|
height=800,
|
114
119
|
xaxis_title=item_col,
|
115
120
|
yaxis_title=user_col,
|
116
|
-
coloraxis_colorbar=
|
121
|
+
coloraxis_colorbar={"title": interaction_col},
|
117
122
|
)
|
118
|
-
plots = [
|
119
|
-
|
120
|
-
|
123
|
+
plots = [
|
124
|
+
user_title,
|
125
|
+
rc.Widget(fig_user),
|
126
|
+
item_title,
|
127
|
+
rc.Widget(fig_item),
|
128
|
+
result_heatmap_title,
|
129
|
+
rc.Widget(fig),
|
130
|
+
]
|
121
131
|
|
122
132
|
test_metrics_sections = [rc.DataTable(pd.DataFrame(metrics, index=[0]))]
|
123
133
|
yaml_appendix_title = rc.Heading("Reference: YAML File", level=2)
|
124
134
|
yaml_appendix = rc.Yaml(self.config.to_dict())
|
125
135
|
report_sections = (
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
136
|
+
[summary]
|
137
|
+
+ plots
|
138
|
+
+ test_metrics_sections
|
139
|
+
+ other_sections
|
140
|
+
+ [yaml_appendix_title, yaml_appendix]
|
131
141
|
)
|
132
142
|
|
133
143
|
# save the report and result CSV
|
134
|
-
self._save_report(
|
135
|
-
report_sections=report_sections,
|
136
|
-
result_df=result_df
|
137
|
-
)
|
144
|
+
self._save_report(report_sections=report_sections, result_df=result_df)
|
138
145
|
|
146
|
+
@abstractmethod
|
139
147
|
def _evaluation_metrics(self):
|
140
148
|
pass
|
141
149
|
|
150
|
+
@abstractmethod
|
142
151
|
def _test_data_evaluate_metrics(self):
|
143
152
|
pass
|
144
153
|
|
@@ -150,7 +159,7 @@ class RecommenderOperatorBaseModel(ABC):
|
|
150
159
|
if ObjectStorageDetails.is_oci_path(unique_output_dir):
|
151
160
|
storage_options = default_signer()
|
152
161
|
else:
|
153
|
-
storage_options =
|
162
|
+
storage_options = {}
|
154
163
|
|
155
164
|
# report-creator html report
|
156
165
|
if self.spec.generate_report:
|
@@ -161,19 +170,23 @@ class RecommenderOperatorBaseModel(ABC):
|
|
161
170
|
report.save(rc.Block(*report_sections), report_local_path)
|
162
171
|
enable_print()
|
163
172
|
|
164
|
-
report_path = os.path.join(
|
173
|
+
report_path = os.path.join(
|
174
|
+
unique_output_dir, self.spec.report_filename
|
175
|
+
)
|
165
176
|
with open(report_local_path) as f1:
|
166
177
|
with fsspec.open(
|
167
|
-
|
168
|
-
|
169
|
-
|
178
|
+
report_path,
|
179
|
+
"w",
|
180
|
+
**storage_options,
|
170
181
|
) as f2:
|
171
182
|
f2.write(f1.read())
|
172
183
|
|
173
184
|
# recommender csv report
|
174
185
|
write_data(
|
175
186
|
data=result_df,
|
176
|
-
filename=os.path.join(
|
187
|
+
filename=os.path.join(
|
188
|
+
unique_output_dir, self.spec.recommendations_filename
|
189
|
+
),
|
177
190
|
format="csv",
|
178
191
|
storage_options=storage_options,
|
179
192
|
)
|
@@ -1,28 +1,30 @@
|
|
1
1
|
#!/usr/bin/env python
|
2
|
-
# -*- coding: utf-8 -*--
|
3
|
-
from typing import Tuple, Dict, Any
|
4
|
-
|
5
2
|
# Copyright (c) 2023, 2024 Oracle and/or its affiliates.
|
6
3
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
4
|
+
import logging
|
5
|
+
from typing import Dict, Tuple
|
7
6
|
|
8
7
|
import pandas as pd
|
8
|
+
import report_creator as rc
|
9
9
|
from pandas import DataFrame
|
10
|
+
from surprise import SVD, Dataset, Reader
|
11
|
+
from surprise.accuracy import mae, rmse
|
12
|
+
from surprise.model_selection import train_test_split
|
10
13
|
|
11
|
-
from
|
14
|
+
from ..constant import SupportedMetrics
|
12
15
|
from ..operator_config import RecommenderOperatorConfig
|
13
16
|
from .factory import RecommenderOperatorBaseModel
|
14
|
-
from
|
15
|
-
|
16
|
-
|
17
|
-
from surprise.accuracy import rmse, mae
|
18
|
-
import report_creator as rc
|
19
|
-
from ..constant import SupportedMetrics
|
17
|
+
from .recommender_dataset import RecommenderDatasets
|
18
|
+
|
19
|
+
logging.getLogger("report_creator").setLevel(logging.WARNING)
|
20
20
|
|
21
21
|
|
22
22
|
class SVDOperatorModel(RecommenderOperatorBaseModel):
|
23
23
|
"""Class representing scikit surprise SVD operator model."""
|
24
24
|
|
25
|
-
def __init__(
|
25
|
+
def __init__(
|
26
|
+
self, config: RecommenderOperatorConfig, datasets: RecommenderDatasets
|
27
|
+
):
|
26
28
|
super().__init__(config, datasets)
|
27
29
|
self.interactions = datasets.interactions
|
28
30
|
self.users = datasets.users
|
@@ -35,8 +37,12 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
|
|
35
37
|
|
36
38
|
def _get_recommendations(self, user_id, n):
|
37
39
|
all_item_ids = self.items[self.item_id].unique()
|
38
|
-
rated_items = self.interactions[self.interactions[self.user_id] == user_id][
|
39
|
-
|
40
|
+
rated_items = self.interactions[self.interactions[self.user_id] == user_id][
|
41
|
+
self.item_id
|
42
|
+
]
|
43
|
+
unrated_items = [
|
44
|
+
item_id for item_id in all_item_ids if item_id not in rated_items.values
|
45
|
+
]
|
40
46
|
predictions = [self.algo.predict(user_id, item_id) for item_id in unrated_items]
|
41
47
|
predictions.sort(key=lambda x: x.est, reverse=True)
|
42
48
|
top_n_recommendations = predictions[:n]
|
@@ -46,7 +52,10 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
|
|
46
52
|
min_rating = self.interactions[self.interaction_column].min()
|
47
53
|
max_rating = self.interactions[self.interaction_column].max()
|
48
54
|
reader = Reader(rating_scale=(min_rating, max_rating))
|
49
|
-
data = Dataset.load_from_df(
|
55
|
+
data = Dataset.load_from_df(
|
56
|
+
self.interactions[[self.user_id, self.item_id, self.interaction_column]],
|
57
|
+
reader,
|
58
|
+
)
|
50
59
|
trainset, testset = train_test_split(data, test_size=self.test_size)
|
51
60
|
self.algo.fit(trainset)
|
52
61
|
predictions = self.algo.test(testset)
|
@@ -58,11 +67,13 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
|
|
58
67
|
for user_id in self.users[self.user_id]:
|
59
68
|
recommendations = self._get_recommendations(user_id, n=self.spec.top_k)
|
60
69
|
for item_id, est_rating in recommendations:
|
61
|
-
all_recommendations.append(
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
70
|
+
all_recommendations.append(
|
71
|
+
{
|
72
|
+
self.user_id: user_id,
|
73
|
+
self.item_id: item_id,
|
74
|
+
self.interaction_column: est_rating,
|
75
|
+
}
|
76
|
+
)
|
66
77
|
recommendations_df = pd.DataFrame(all_recommendations)
|
67
78
|
return recommendations_df, metric
|
68
79
|
|
@@ -72,17 +83,24 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
|
|
72
83
|
decompose a user-item interaction matrix into three constituent matrices. These matrices capture the
|
73
84
|
latent factors that explain the observed interactions.
|
74
85
|
"""
|
75
|
-
new_user_recommendations = self._get_recommendations(
|
86
|
+
new_user_recommendations = self._get_recommendations(
|
87
|
+
"__new_user__", self.spec.top_k
|
88
|
+
)
|
76
89
|
new_recommendations = []
|
77
90
|
for item_id, est_rating in new_user_recommendations:
|
78
|
-
new_recommendations.append(
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
91
|
+
new_recommendations.append(
|
92
|
+
{
|
93
|
+
self.user_id: "__new_user__",
|
94
|
+
self.item_id: item_id,
|
95
|
+
self.interaction_column: est_rating,
|
96
|
+
}
|
97
|
+
)
|
83
98
|
title = rc.Heading("Recommendations for new users", level=2)
|
84
99
|
other_sections = [title, rc.DataTable(new_recommendations)]
|
85
|
-
return (
|
86
|
-
|
87
|
-
|
88
|
-
|
100
|
+
return (model_description, other_sections)
|
101
|
+
|
102
|
+
def _evaluation_metrics(self):
|
103
|
+
pass
|
104
|
+
|
105
|
+
def _test_data_evaluate_metrics(self):
|
106
|
+
pass
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.3
|
2
2
|
Name: oracle_ads
|
3
|
-
Version: 2.12.
|
3
|
+
Version: 2.12.6
|
4
4
|
Summary: Oracle Accelerated Data Science SDK
|
5
5
|
Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
|
6
6
|
Author: Oracle Data Science
|
@@ -37,7 +37,7 @@ Requires-Dist: pydantic>=2.6.3
|
|
37
37
|
Requires-Dist: oracle_ads[opctl] ; extra == "anomaly"
|
38
38
|
Requires-Dist: autots ; extra == "anomaly"
|
39
39
|
Requires-Dist: oracledb ; extra == "anomaly"
|
40
|
-
Requires-Dist: report-creator==1.0.
|
40
|
+
Requires-Dist: report-creator==1.0.28 ; extra == "anomaly"
|
41
41
|
Requires-Dist: rrcf==0.4.4 ; extra == "anomaly"
|
42
42
|
Requires-Dist: scikit-learn ; extra == "anomaly"
|
43
43
|
Requires-Dist: salesforce-merlion[all]==2.0.4 ; extra == "anomaly"
|
@@ -77,7 +77,7 @@ Requires-Dist: sktime ; extra == "forecast"
|
|
77
77
|
Requires-Dist: statsmodels ; extra == "forecast"
|
78
78
|
Requires-Dist: plotly ; extra == "forecast"
|
79
79
|
Requires-Dist: oracledb ; extra == "forecast"
|
80
|
-
Requires-Dist: report-creator==1.0.
|
80
|
+
Requires-Dist: report-creator==1.0.28 ; extra == "forecast"
|
81
81
|
Requires-Dist: geopandas<1.0.0 ; extra == "geo"
|
82
82
|
Requires-Dist: fiona<=1.9.6 ; extra == "geo"
|
83
83
|
Requires-Dist: oracle_ads[viz] ; extra == "geo"
|
@@ -121,11 +121,11 @@ Requires-Dist: scrubadub==2.0.1 ; extra == "pii"
|
|
121
121
|
Requires-Dist: scrubadub_spacy ; extra == "pii"
|
122
122
|
Requires-Dist: spacy-transformers==1.2.5 ; extra == "pii"
|
123
123
|
Requires-Dist: spacy==3.6.1 ; extra == "pii"
|
124
|
-
Requires-Dist: report-creator==1.0.
|
124
|
+
Requires-Dist: report-creator==1.0.28 ; extra == "pii"
|
125
125
|
Requires-Dist: oracle_ads[opctl] ; extra == "recommender"
|
126
126
|
Requires-Dist: scikit-surprise ; extra == "recommender"
|
127
127
|
Requires-Dist: plotly ; extra == "recommender"
|
128
|
-
Requires-Dist: report-creator==1.0.
|
128
|
+
Requires-Dist: report-creator==1.0.28 ; extra == "recommender"
|
129
129
|
Requires-Dist: pyspark>=3.0.0 ; extra == "spark"
|
130
130
|
Requires-Dist: oracle_ads[viz] ; extra == "tensorflow"
|
131
131
|
Requires-Dist: tensorflow<=2.15.1 ; extra == "tensorflow"
|
@@ -8,7 +8,7 @@ ads/aqua/constants.py,sha256=UAfB1aQXMDJ4OQ98IeZb4l5TYhmCsnwXbS4Uylgnfro,2947
|
|
8
8
|
ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
|
9
9
|
ads/aqua/ui.py,sha256=hGl4btUsMImkpzZ-Ae_WVVaRqfpdG_gUeHKD9E1nKbE,26195
|
10
10
|
ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
|
11
|
-
ads/aqua/common/decorator.py,sha256=
|
11
|
+
ads/aqua/common/decorator.py,sha256=JEN6Cy4DYgQbmIR3ShCjTuBMCnilDxq7jkYMJse1rcM,4112
|
12
12
|
ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
|
13
13
|
ads/aqua/common/enums.py,sha256=HnaraHfkYmuqC5mEF7gyvQmqbOc6r_9EI2MF-cieb5o,2991
|
14
14
|
ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
|
@@ -26,12 +26,12 @@ ads/aqua/dummy_data/oci_models.json,sha256=mxUU8o3plmAFfr06fQmIQuiGe2qFFBlUB7QNP
|
|
26
26
|
ads/aqua/dummy_data/readme.md,sha256=AlBPt0HBSOFA5HbYVsFsdTm-BC3R5NRpcKrTxdjEnlI,1256
|
27
27
|
ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89a0,298
|
28
28
|
ads/aqua/evaluation/constants.py,sha256=GvcXvPIw-VDKw4a8WNKs36uWdT-f7VJrWSpnnRnthGg,1533
|
29
|
-
ads/aqua/evaluation/entities.py,sha256=
|
29
|
+
ads/aqua/evaluation/entities.py,sha256=3Ni4AIULLZ79rcaGdcZGx4HUxR2QjyJza6auYohPcFM,5466
|
30
30
|
ads/aqua/evaluation/errors.py,sha256=qzR63YEIA8haCh4HcBHFFm7j4g6jWDfGszqrPkXx9zQ,4564
|
31
31
|
ads/aqua/evaluation/evaluation.py,sha256=iopL7A6RNfqsaLg19xsg9lRnSZ0aI6mkx8kooDyulio,58016
|
32
32
|
ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
|
33
|
-
ads/aqua/extension/aqua_ws_msg_handler.py,sha256=
|
34
|
-
ads/aqua/extension/base_handler.py,sha256=
|
33
|
+
ads/aqua/extension/aqua_ws_msg_handler.py,sha256=soSRnIFx93JCFf6HsuF_BQEpJ2mre-IVQDUDKUKPijY,3392
|
34
|
+
ads/aqua/extension/base_handler.py,sha256=Zbb-uSNLljRU5NPOndn3_lx8MN_1yxlF2GHVpBT-kWk,5233
|
35
35
|
ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
|
36
36
|
ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
|
37
37
|
ads/aqua/extension/deployment_handler.py,sha256=i2UAZQ8_uVgg32OmM1vif3kplAVuRwxZsjgTfUSKnH8,11025
|
@@ -48,9 +48,9 @@ ads/aqua/extension/utils.py,sha256=UKafTX6tN6ObOkWCLy6c3y_cNmUHfD64PtIaR5B7Sl0,1
|
|
48
48
|
ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
49
49
|
ads/aqua/extension/models/ws_models.py,sha256=-m6IJRS-4I6AMLDwgu19XdrvHyOStuBx9t4B0LgS07g,3348
|
50
50
|
ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
|
51
|
-
ads/aqua/finetuning/constants.py,sha256=
|
51
|
+
ads/aqua/finetuning/constants.py,sha256=g0ze760c4LlD6ppN0Lww_ZAkr1IpNJMJDxq_USx4IEk,807
|
52
52
|
ads/aqua/finetuning/entities.py,sha256=S7Ll_0WyWGh23my-6ow3vwHLDZqTel8CMCoE9oLowOY,4126
|
53
|
-
ads/aqua/finetuning/finetuning.py,sha256=
|
53
|
+
ads/aqua/finetuning/finetuning.py,sha256=mwKl8KA2Artp0dXzjXxxKn_UBnkYpNXMYN7ykrZcyEM,25145
|
54
54
|
ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
|
55
55
|
ads/aqua/model/constants.py,sha256=H239zDu3koa3UTdw-uQveXHX2NDwidclVcS4QIrCTJo,1593
|
56
56
|
ads/aqua/model/entities.py,sha256=9SsdJfoBH7fDKGXQYs8pKLiZ-SqFnXaZrJod4FWU3mI,9670
|
@@ -645,18 +645,18 @@ ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=CrqXpSgGPwv4NVL5gEZNHChdVC
|
|
645
645
|
ads/opctl/operator/lowcode/anomaly/utils.py,sha256=edOuq7lbZ4Iz_T9FXtFv21ePBElaCGutfWE1QOhvxsg,2841
|
646
646
|
ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
647
647
|
ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
|
648
|
-
ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=
|
649
|
-
ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=
|
650
|
-
ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=
|
651
|
-
ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=
|
648
|
+
ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=IT0g6wf2rZI-GFuuOgtESWYTE_D77P8y9YeRZ6ucguQ,5836
|
649
|
+
ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=40rY-mVYoLBmDw5uagayRoyYSkjsIY4U4LfyeU11AoA,3469
|
650
|
+
ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Ft6bLEXdpIMMDv4lLBzLhC2kRZki7zD9Jnu-LIPDDbw,4154
|
651
|
+
ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=Lbwyt0bCVaF80mSbZPq_05-Dw4oqX3RK6lF7S8QJeEI,15562
|
652
652
|
ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=yld9CI-ZZJO2dDB24aOm6SLXbibNMeK1NQEZHpGNdfY,4144
|
653
|
-
ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=
|
654
|
-
ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=
|
655
|
-
ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=
|
653
|
+
ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=e_C_I6d6PVojPoHz_D5r8nC_JctTYooVVKFlcX5kkls,2657
|
654
|
+
ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eejgAtxwjGzWJBVdgp0oZHM4NCLAQh-AksGE0YuM7D4,2557
|
655
|
+
ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=K8fVcG952bSUkgoXm7uU1jUUyBd8jvHprkbM4a7i_Xs,4329
|
656
656
|
ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=_v0KkdTKD3nqzOu3P5tE7bSV63Jy91h6Hr88Eequ0RU,4175
|
657
657
|
ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
|
658
658
|
ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
|
659
|
-
ads/opctl/operator/lowcode/common/data.py,sha256=
|
659
|
+
ads/opctl/operator/lowcode/common/data.py,sha256=nKwE0ubF9fTHFOls5uQ3BBpcPNRtwvGW3UGK-JjAm84,4107
|
660
660
|
ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
|
661
661
|
ads/opctl/operator/lowcode/common/transformations.py,sha256=Minukbv9Ja1yNJYgTQICU9kykIdbBELhrFFyWECgtes,9630
|
662
662
|
ads/opctl/operator/lowcode/common/utils.py,sha256=jQIyjtg4i4hfrhBIGhSOzkry2-ziZrn8cBj8lcTv66E,9292
|
@@ -682,20 +682,20 @@ ads/opctl/operator/lowcode/forecast/cmd.py,sha256=uwU-QvnYwxoRFXZv7_JFkzAUnjTNoS
|
|
682
682
|
ads/opctl/operator/lowcode/forecast/const.py,sha256=jyoXhrRXFipcATwGIU_3rFRZL-r6hvbKNUVO2uG2siY,2597
|
683
683
|
ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
|
684
684
|
ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
|
685
|
-
ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=
|
685
|
+
ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=HssIlfJlJt5HetwzT87rDeRYRwJAXG1yoSjT4SUB8D0,9266
|
686
686
|
ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=vG7n-RIiazujH0UtJ0uarx9IKDIAS0b4WcCo1dNLVL0,6422
|
687
687
|
ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=twmsn0wPPkgdVk8tKPZL3zBlxqecuXL0GSlIz3I8ZEI,10136
|
688
|
-
ads/opctl/operator/lowcode/forecast/utils.py,sha256=
|
688
|
+
ads/opctl/operator/lowcode/forecast/utils.py,sha256=B7X3vLxmbx3MyUQxoplhQCMb0bgmPk2g-KN-OY768E8,13908
|
689
689
|
ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
690
|
-
ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=
|
691
|
-
ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=
|
692
|
-
ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=
|
693
|
-
ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=
|
690
|
+
ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=lU7NlpXI1-g-O_1rGJLlEL17_ruGXAdzzY7H8nFRvGQ,10943
|
691
|
+
ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=5_mVPpGqXUXSIKW9dM3fh0mYv-B_7XZu03yqFPrzHdc,14740
|
692
|
+
ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=Y9_EAfDD5r6SPZq7iGp7YMh-vH0lwAGNpyNT2sm7cqo,13027
|
693
|
+
ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=b7ZVnGKTIULBWE5W_pQQGzcLM4g2YZIUEH3P94L41aQ,30988
|
694
694
|
ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=RrE6JJcUmkypjD6IQOR53I9GCg7jQO380r53oLmVK6A,3439
|
695
|
-
ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=
|
696
|
-
ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=
|
697
|
-
ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=
|
698
|
-
ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=
|
695
|
+
ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=GCwX9Udh4U79wBNG5bjSYabgRDO0u-ElVJkSC_HcBeA,16563
|
696
|
+
ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=NSZ2L6gRw4S68BUF0Vyu-cUPSsq8LRxgoVajW9Ra63k,9640
|
697
|
+
ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=rt4106o9qIKwoHnYICB9sOnQ8ujXyI83eoFY26KzsOU,18774
|
698
|
+
ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=s9tWZdD1g50lnu5YgER2SNiXsQ3y51Q-XwYxIsWmmiQ,14284
|
699
699
|
ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
|
700
700
|
ads/opctl/operator/lowcode/pii/README.md,sha256=2P3tpKv6v__Eehj6iLfTXgyDhS4lmi1BTfEdmJhT0K4,9237
|
701
701
|
ads/opctl/operator/lowcode/pii/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
@@ -711,7 +711,7 @@ ads/opctl/operator/lowcode/pii/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmS
|
|
711
711
|
ads/opctl/operator/lowcode/pii/model/factory.py,sha256=Fuq8iiN_GkyGBJlGvJJcN0byAfy0bSqKVgkgOE9B2XQ,2452
|
712
712
|
ads/opctl/operator/lowcode/pii/model/guardrails.py,sha256=--GUFt-zlVyJY5WQZNMHjQDlVfVy-tYeXubgvYN-H-U,6246
|
713
713
|
ads/opctl/operator/lowcode/pii/model/pii.py,sha256=hbOomsCNgj7uZNOdUIja3rE-iTGhh9P2hKh8xrtpXR4,5110
|
714
|
-
ads/opctl/operator/lowcode/pii/model/report.py,sha256=
|
714
|
+
ads/opctl/operator/lowcode/pii/model/report.py,sha256=vDivP5dWWBoIzDpT1ww2WMBZKybX6DigaPSCW46F__Q,16361
|
715
715
|
ads/opctl/operator/lowcode/pii/model/processor/__init__.py,sha256=febfGPoGJXTD-hCJoiVmsnBP3K3MYBqfuQoTNPm_4kY,910
|
716
716
|
ads/opctl/operator/lowcode/pii/model/processor/email_replacer.py,sha256=sTjMbP8UfwszrzFI0QgzZ0BwWfVqYxhWJ1z8S5AcE2U,996
|
717
717
|
ads/opctl/operator/lowcode/pii/model/processor/mbi_replacer.py,sha256=nm4dRZjFwxraktXTR1FConaAH4o1uagiXMVeGU0H0O0,1025
|
@@ -728,10 +728,10 @@ ads/opctl/operator/lowcode/recommender/environment.yaml,sha256=m3jYkrFpkQfL1dpiA
|
|
728
728
|
ads/opctl/operator/lowcode/recommender/operator_config.py,sha256=HE30TuiXbVrC6Uy7G2mw4KU_xRSjzgTQHlMNumQauqE,2920
|
729
729
|
ads/opctl/operator/lowcode/recommender/schema.yaml,sha256=OvaQRc56sOO-NNrF2hYU7JEsD-fNkr2LJwP7Nzj_bo8,6029
|
730
730
|
ads/opctl/operator/lowcode/recommender/utils.py,sha256=-DgqObJ3G54wZw04aLvA9zwI_NUqwgQ7jaPHQP_6Q9g,401
|
731
|
-
ads/opctl/operator/lowcode/recommender/model/base_model.py,sha256=
|
731
|
+
ads/opctl/operator/lowcode/recommender/model/base_model.py,sha256=wraH55srwQ9FfWfXTse1vOVTG-OOH8XZRdSDKP91DYM,7395
|
732
732
|
ads/opctl/operator/lowcode/recommender/model/factory.py,sha256=CHCXR3-6HRSKJG3tCjdgBvUODtQ9C2zU0Nq-0zVb6p8,1798
|
733
733
|
ads/opctl/operator/lowcode/recommender/model/recommender_dataset.py,sha256=QzcfA4Dzp412NCiNhFrJY2Rqbzlmneb1SAb98m_L_ms,870
|
734
|
-
ads/opctl/operator/lowcode/recommender/model/svd.py,sha256=
|
734
|
+
ads/opctl/operator/lowcode/recommender/model/svd.py,sha256=unPfnyvZk3wllN07syTjJAvVck3WpQ10XHc3a5_hPQY,4367
|
735
735
|
ads/opctl/operator/runtime/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
736
736
|
ads/opctl/operator/runtime/const.py,sha256=FSgllXcXKIRCbYSJiVAP8gZGpH7hGrEf3enYmUBrAIk,522
|
737
737
|
ads/opctl/operator/runtime/container_runtime_schema.yaml,sha256=FU8Jjq1doq1eYW8b5YjlfSmWKnBN-lAuEk289_P9QFU,1235
|
@@ -813,8 +813,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
|
|
813
813
|
ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
|
814
814
|
ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
|
815
815
|
ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
|
816
|
-
oracle_ads-2.12.
|
817
|
-
oracle_ads-2.12.
|
818
|
-
oracle_ads-2.12.
|
819
|
-
oracle_ads-2.12.
|
820
|
-
oracle_ads-2.12.
|
816
|
+
oracle_ads-2.12.6.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
|
817
|
+
oracle_ads-2.12.6.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
|
818
|
+
oracle_ads-2.12.6.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
|
819
|
+
oracle_ads-2.12.6.dist-info/METADATA,sha256=pHpTpBQerpdiKY6McAZy4M1hQPHGZMKFLWEaFL1YrO0,16221
|
820
|
+
oracle_ads-2.12.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|