oracle-ads 2.12.4__py3-none-any.whl → 2.12.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (33) hide show
  1. ads/aqua/common/decorator.py +10 -0
  2. ads/aqua/evaluation/entities.py +12 -2
  3. ads/aqua/evaluation/evaluation.py +1 -1
  4. ads/aqua/extension/aqua_ws_msg_handler.py +2 -0
  5. ads/aqua/extension/base_handler.py +2 -0
  6. ads/aqua/finetuning/constants.py +3 -0
  7. ads/aqua/finetuning/finetuning.py +13 -2
  8. ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py +6 -5
  9. ads/opctl/operator/lowcode/anomaly/model/automlx.py +12 -8
  10. ads/opctl/operator/lowcode/anomaly/model/autots.py +6 -3
  11. ads/opctl/operator/lowcode/anomaly/model/base_model.py +19 -7
  12. ads/opctl/operator/lowcode/anomaly/model/isolationforest.py +9 -10
  13. ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py +10 -11
  14. ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py +6 -2
  15. ads/opctl/operator/lowcode/common/data.py +13 -11
  16. ads/opctl/operator/lowcode/forecast/model/arima.py +14 -12
  17. ads/opctl/operator/lowcode/forecast/model/automlx.py +26 -26
  18. ads/opctl/operator/lowcode/forecast/model/autots.py +16 -18
  19. ads/opctl/operator/lowcode/forecast/model/base_model.py +45 -36
  20. ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py +36 -47
  21. ads/opctl/operator/lowcode/forecast/model/ml_forecast.py +3 -0
  22. ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +30 -46
  23. ads/opctl/operator/lowcode/forecast/model/prophet.py +15 -20
  24. ads/opctl/operator/lowcode/forecast/model_evaluator.py +25 -20
  25. ads/opctl/operator/lowcode/forecast/utils.py +30 -33
  26. ads/opctl/operator/lowcode/pii/model/report.py +11 -7
  27. ads/opctl/operator/lowcode/recommender/model/base_model.py +58 -45
  28. ads/opctl/operator/lowcode/recommender/model/svd.py +47 -29
  29. {oracle_ads-2.12.4.dist-info → oracle_ads-2.12.6.dist-info}/METADATA +5 -5
  30. {oracle_ads-2.12.4.dist-info → oracle_ads-2.12.6.dist-info}/RECORD +33 -33
  31. {oracle_ads-2.12.4.dist-info → oracle_ads-2.12.6.dist-info}/LICENSE.txt +0 -0
  32. {oracle_ads-2.12.4.dist-info → oracle_ads-2.12.6.dist-info}/WHEEL +0 -0
  33. {oracle_ads-2.12.4.dist-info → oracle_ads-2.12.6.dist-info}/entry_points.txt +0 -0
@@ -1,39 +1,43 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
3
  # Copyright (c) 2023, 2024 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
5
 
6
+ import logging
7
7
  import os
8
8
  import tempfile
9
9
  import time
10
10
  from abc import ABC, abstractmethod
11
- from typing import Tuple, Dict
11
+ from typing import Dict, Tuple
12
12
 
13
13
  import fsspec
14
14
  import pandas as pd
15
15
  import report_creator as rc
16
+ from plotly import graph_objects as go
16
17
 
17
18
  from ads.common.object_storage_details import ObjectStorageDetails
18
19
  from ads.opctl import logger
19
- from ads.opctl.operator.lowcode.common.utils import default_signer
20
20
  from ads.opctl.operator.lowcode.common.utils import (
21
- human_time_friendly,
22
- enable_print,
21
+ default_signer,
23
22
  disable_print,
23
+ enable_print,
24
+ human_time_friendly,
24
25
  write_data,
25
26
  )
27
+
28
+ from ..operator_config import RecommenderOperatorConfig
26
29
  from .factory import SupportedModels
27
30
  from .recommender_dataset import RecommenderDatasets
28
- from ..operator_config import RecommenderOperatorConfig
29
- from plotly import graph_objects as go
30
- import matplotlib.pyplot as plt
31
+
32
+ logging.getLogger("report_creator").setLevel(logging.WARNING)
31
33
 
32
34
 
33
35
  class RecommenderOperatorBaseModel(ABC):
34
36
  """The base class for the recommender detection operator models."""
35
37
 
36
- def __init__(self, config: RecommenderOperatorConfig, datasets: RecommenderDatasets):
38
+ def __init__(
39
+ self, config: RecommenderOperatorConfig, datasets: RecommenderDatasets
40
+ ):
37
41
  self.config = config
38
42
  self.spec = self.config.spec
39
43
  self.datasets = datasets
@@ -71,7 +75,7 @@ class RecommenderOperatorBaseModel(ABC):
71
75
  rc.Metric(
72
76
  heading="Num items",
73
77
  value=len(self.datasets.items),
74
- )
78
+ ),
75
79
  ),
76
80
  )
77
81
 
@@ -83,62 +87,67 @@ class RecommenderOperatorBaseModel(ABC):
83
87
  user_rating_counts = self.datasets.interactions[user_col].value_counts()
84
88
  fig_user = go.Figure(data=[go.Histogram(x=user_rating_counts, nbinsx=100)])
85
89
  fig_user.update_layout(
86
- title=f'Distribution of the number of interactions by {user_col}',
87
- xaxis_title=f'Number of {interaction_col}',
88
- yaxis_title=f'Number of {user_col}',
89
- bargap=0.2
90
+ title=f"Distribution of the number of interactions by {user_col}",
91
+ xaxis_title=f"Number of {interaction_col}",
92
+ yaxis_title=f"Number of {user_col}",
93
+ bargap=0.2,
90
94
  )
91
95
  item_title = rc.Heading("Item Statistics", level=2)
92
96
  item_rating_counts = self.datasets.interactions[item_col].value_counts()
93
97
  fig_item = go.Figure(data=[go.Histogram(x=item_rating_counts, nbinsx=100)])
94
98
  fig_item.update_layout(
95
- title=f'Distribution of the number of interactions by {item_col}',
96
- xaxis_title=f'Number of {interaction_col}',
97
- yaxis_title=f'Number of {item_col}',
98
- bargap=0.2
99
+ title=f"Distribution of the number of interactions by {item_col}",
100
+ xaxis_title=f"Number of {interaction_col}",
101
+ yaxis_title=f"Number of {item_col}",
102
+ bargap=0.2,
99
103
  )
100
104
  result_heatmap_title = rc.Heading("Sample Recommendations", level=2)
101
105
  sample_items = result_df[item_col].head(100).index
102
106
  filtered_df = result_df[result_df[item_col].isin(sample_items)]
103
- data = filtered_df.pivot(index=user_col, columns=item_col, values=interaction_col)
104
- fig = go.Figure(data=go.Heatmap(
105
- z=data.values,
106
- x=data.columns,
107
- y=data.index,
108
- colorscale='Viridis'
109
- ))
107
+ data = filtered_df.pivot(
108
+ index=user_col, columns=item_col, values=interaction_col
109
+ )
110
+ fig = go.Figure(
111
+ data=go.Heatmap(
112
+ z=data.values, x=data.columns, y=data.index, colorscale="Viridis"
113
+ )
114
+ )
110
115
  fig.update_layout(
111
- title='Recommendation heatmap of User-Item Interactions (sample)',
116
+ title="Recommendation heatmap of User-Item Interactions (sample)",
112
117
  width=1500,
113
118
  height=800,
114
119
  xaxis_title=item_col,
115
120
  yaxis_title=user_col,
116
- coloraxis_colorbar=dict(title=interaction_col)
121
+ coloraxis_colorbar={"title": interaction_col},
117
122
  )
118
- plots = [user_title, rc.Widget(fig_user),
119
- item_title, rc.Widget(fig_item),
120
- result_heatmap_title, rc.Widget(fig)]
123
+ plots = [
124
+ user_title,
125
+ rc.Widget(fig_user),
126
+ item_title,
127
+ rc.Widget(fig_item),
128
+ result_heatmap_title,
129
+ rc.Widget(fig),
130
+ ]
121
131
 
122
132
  test_metrics_sections = [rc.DataTable(pd.DataFrame(metrics, index=[0]))]
123
133
  yaml_appendix_title = rc.Heading("Reference: YAML File", level=2)
124
134
  yaml_appendix = rc.Yaml(self.config.to_dict())
125
135
  report_sections = (
126
- [summary]
127
- + plots
128
- + test_metrics_sections
129
- + other_sections
130
- + [yaml_appendix_title, yaml_appendix]
136
+ [summary]
137
+ + plots
138
+ + test_metrics_sections
139
+ + other_sections
140
+ + [yaml_appendix_title, yaml_appendix]
131
141
  )
132
142
 
133
143
  # save the report and result CSV
134
- self._save_report(
135
- report_sections=report_sections,
136
- result_df=result_df
137
- )
144
+ self._save_report(report_sections=report_sections, result_df=result_df)
138
145
 
146
+ @abstractmethod
139
147
  def _evaluation_metrics(self):
140
148
  pass
141
149
 
150
+ @abstractmethod
142
151
  def _test_data_evaluate_metrics(self):
143
152
  pass
144
153
 
@@ -150,7 +159,7 @@ class RecommenderOperatorBaseModel(ABC):
150
159
  if ObjectStorageDetails.is_oci_path(unique_output_dir):
151
160
  storage_options = default_signer()
152
161
  else:
153
- storage_options = dict()
162
+ storage_options = {}
154
163
 
155
164
  # report-creator html report
156
165
  if self.spec.generate_report:
@@ -161,19 +170,23 @@ class RecommenderOperatorBaseModel(ABC):
161
170
  report.save(rc.Block(*report_sections), report_local_path)
162
171
  enable_print()
163
172
 
164
- report_path = os.path.join(unique_output_dir, self.spec.report_filename)
173
+ report_path = os.path.join(
174
+ unique_output_dir, self.spec.report_filename
175
+ )
165
176
  with open(report_local_path) as f1:
166
177
  with fsspec.open(
167
- report_path,
168
- "w",
169
- **storage_options,
178
+ report_path,
179
+ "w",
180
+ **storage_options,
170
181
  ) as f2:
171
182
  f2.write(f1.read())
172
183
 
173
184
  # recommender csv report
174
185
  write_data(
175
186
  data=result_df,
176
- filename=os.path.join(unique_output_dir, self.spec.recommendations_filename),
187
+ filename=os.path.join(
188
+ unique_output_dir, self.spec.recommendations_filename
189
+ ),
177
190
  format="csv",
178
191
  storage_options=storage_options,
179
192
  )
@@ -1,28 +1,30 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
- from typing import Tuple, Dict, Any
4
-
5
2
  # Copyright (c) 2023, 2024 Oracle and/or its affiliates.
6
3
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
4
+ import logging
5
+ from typing import Dict, Tuple
7
6
 
8
7
  import pandas as pd
8
+ import report_creator as rc
9
9
  from pandas import DataFrame
10
+ from surprise import SVD, Dataset, Reader
11
+ from surprise.accuracy import mae, rmse
12
+ from surprise.model_selection import train_test_split
10
13
 
11
- from .recommender_dataset import RecommenderDatasets
14
+ from ..constant import SupportedMetrics
12
15
  from ..operator_config import RecommenderOperatorConfig
13
16
  from .factory import RecommenderOperatorBaseModel
14
- from surprise import Dataset, Reader
15
- from surprise.model_selection import train_test_split
16
- from surprise import SVD
17
- from surprise.accuracy import rmse, mae
18
- import report_creator as rc
19
- from ..constant import SupportedMetrics
17
+ from .recommender_dataset import RecommenderDatasets
18
+
19
+ logging.getLogger("report_creator").setLevel(logging.WARNING)
20
20
 
21
21
 
22
22
  class SVDOperatorModel(RecommenderOperatorBaseModel):
23
23
  """Class representing scikit surprise SVD operator model."""
24
24
 
25
- def __init__(self, config: RecommenderOperatorConfig, datasets: RecommenderDatasets):
25
+ def __init__(
26
+ self, config: RecommenderOperatorConfig, datasets: RecommenderDatasets
27
+ ):
26
28
  super().__init__(config, datasets)
27
29
  self.interactions = datasets.interactions
28
30
  self.users = datasets.users
@@ -35,8 +37,12 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
35
37
 
36
38
  def _get_recommendations(self, user_id, n):
37
39
  all_item_ids = self.items[self.item_id].unique()
38
- rated_items = self.interactions[self.interactions[self.user_id] == user_id][self.item_id]
39
- unrated_items = [item_id for item_id in all_item_ids if item_id not in rated_items.values]
40
+ rated_items = self.interactions[self.interactions[self.user_id] == user_id][
41
+ self.item_id
42
+ ]
43
+ unrated_items = [
44
+ item_id for item_id in all_item_ids if item_id not in rated_items.values
45
+ ]
40
46
  predictions = [self.algo.predict(user_id, item_id) for item_id in unrated_items]
41
47
  predictions.sort(key=lambda x: x.est, reverse=True)
42
48
  top_n_recommendations = predictions[:n]
@@ -46,7 +52,10 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
46
52
  min_rating = self.interactions[self.interaction_column].min()
47
53
  max_rating = self.interactions[self.interaction_column].max()
48
54
  reader = Reader(rating_scale=(min_rating, max_rating))
49
- data = Dataset.load_from_df(self.interactions[[self.user_id, self.item_id, self.interaction_column]], reader)
55
+ data = Dataset.load_from_df(
56
+ self.interactions[[self.user_id, self.item_id, self.interaction_column]],
57
+ reader,
58
+ )
50
59
  trainset, testset = train_test_split(data, test_size=self.test_size)
51
60
  self.algo.fit(trainset)
52
61
  predictions = self.algo.test(testset)
@@ -58,11 +67,13 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
58
67
  for user_id in self.users[self.user_id]:
59
68
  recommendations = self._get_recommendations(user_id, n=self.spec.top_k)
60
69
  for item_id, est_rating in recommendations:
61
- all_recommendations.append({
62
- self.user_id: user_id,
63
- self.item_id: item_id,
64
- self.interaction_column: est_rating
65
- })
70
+ all_recommendations.append(
71
+ {
72
+ self.user_id: user_id,
73
+ self.item_id: item_id,
74
+ self.interaction_column: est_rating,
75
+ }
76
+ )
66
77
  recommendations_df = pd.DataFrame(all_recommendations)
67
78
  return recommendations_df, metric
68
79
 
@@ -72,17 +83,24 @@ class SVDOperatorModel(RecommenderOperatorBaseModel):
72
83
  decompose a user-item interaction matrix into three constituent matrices. These matrices capture the
73
84
  latent factors that explain the observed interactions.
74
85
  """
75
- new_user_recommendations = self._get_recommendations("__new_user__", self.spec.top_k)
86
+ new_user_recommendations = self._get_recommendations(
87
+ "__new_user__", self.spec.top_k
88
+ )
76
89
  new_recommendations = []
77
90
  for item_id, est_rating in new_user_recommendations:
78
- new_recommendations.append({
79
- self.user_id: "__new_user__",
80
- self.item_id: item_id,
81
- self.interaction_column: est_rating
82
- })
91
+ new_recommendations.append(
92
+ {
93
+ self.user_id: "__new_user__",
94
+ self.item_id: item_id,
95
+ self.interaction_column: est_rating,
96
+ }
97
+ )
83
98
  title = rc.Heading("Recommendations for new users", level=2)
84
99
  other_sections = [title, rc.DataTable(new_recommendations)]
85
- return (
86
- model_description,
87
- other_sections
88
- )
100
+ return (model_description, other_sections)
101
+
102
+ def _evaluation_metrics(self):
103
+ pass
104
+
105
+ def _test_data_evaluate_metrics(self):
106
+ pass
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: oracle_ads
3
- Version: 2.12.4
3
+ Version: 2.12.6
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -37,7 +37,7 @@ Requires-Dist: pydantic>=2.6.3
37
37
  Requires-Dist: oracle_ads[opctl] ; extra == "anomaly"
38
38
  Requires-Dist: autots ; extra == "anomaly"
39
39
  Requires-Dist: oracledb ; extra == "anomaly"
40
- Requires-Dist: report-creator==1.0.9 ; extra == "anomaly"
40
+ Requires-Dist: report-creator==1.0.28 ; extra == "anomaly"
41
41
  Requires-Dist: rrcf==0.4.4 ; extra == "anomaly"
42
42
  Requires-Dist: scikit-learn ; extra == "anomaly"
43
43
  Requires-Dist: salesforce-merlion[all]==2.0.4 ; extra == "anomaly"
@@ -77,7 +77,7 @@ Requires-Dist: sktime ; extra == "forecast"
77
77
  Requires-Dist: statsmodels ; extra == "forecast"
78
78
  Requires-Dist: plotly ; extra == "forecast"
79
79
  Requires-Dist: oracledb ; extra == "forecast"
80
- Requires-Dist: report-creator==1.0.9 ; extra == "forecast"
80
+ Requires-Dist: report-creator==1.0.28 ; extra == "forecast"
81
81
  Requires-Dist: geopandas<1.0.0 ; extra == "geo"
82
82
  Requires-Dist: fiona<=1.9.6 ; extra == "geo"
83
83
  Requires-Dist: oracle_ads[viz] ; extra == "geo"
@@ -121,11 +121,11 @@ Requires-Dist: scrubadub==2.0.1 ; extra == "pii"
121
121
  Requires-Dist: scrubadub_spacy ; extra == "pii"
122
122
  Requires-Dist: spacy-transformers==1.2.5 ; extra == "pii"
123
123
  Requires-Dist: spacy==3.6.1 ; extra == "pii"
124
- Requires-Dist: report-creator==1.0.9 ; extra == "pii"
124
+ Requires-Dist: report-creator==1.0.28 ; extra == "pii"
125
125
  Requires-Dist: oracle_ads[opctl] ; extra == "recommender"
126
126
  Requires-Dist: scikit-surprise ; extra == "recommender"
127
127
  Requires-Dist: plotly ; extra == "recommender"
128
- Requires-Dist: report-creator==1.0.9 ; extra == "recommender"
128
+ Requires-Dist: report-creator==1.0.28 ; extra == "recommender"
129
129
  Requires-Dist: pyspark>=3.0.0 ; extra == "spark"
130
130
  Requires-Dist: oracle_ads[viz] ; extra == "tensorflow"
131
131
  Requires-Dist: tensorflow<=2.15.1 ; extra == "tensorflow"
@@ -8,7 +8,7 @@ ads/aqua/constants.py,sha256=UAfB1aQXMDJ4OQ98IeZb4l5TYhmCsnwXbS4Uylgnfro,2947
8
8
  ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
9
9
  ads/aqua/ui.py,sha256=hGl4btUsMImkpzZ-Ae_WVVaRqfpdG_gUeHKD9E1nKbE,26195
10
10
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
11
- ads/aqua/common/decorator.py,sha256=XFS7tYGkN4dVzmB1wTYiJk1XqJ-VLhvzfZjExiQClgc,3640
11
+ ads/aqua/common/decorator.py,sha256=JEN6Cy4DYgQbmIR3ShCjTuBMCnilDxq7jkYMJse1rcM,4112
12
12
  ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
13
13
  ads/aqua/common/enums.py,sha256=HnaraHfkYmuqC5mEF7gyvQmqbOc6r_9EI2MF-cieb5o,2991
14
14
  ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
@@ -26,12 +26,12 @@ ads/aqua/dummy_data/oci_models.json,sha256=mxUU8o3plmAFfr06fQmIQuiGe2qFFBlUB7QNP
26
26
  ads/aqua/dummy_data/readme.md,sha256=AlBPt0HBSOFA5HbYVsFsdTm-BC3R5NRpcKrTxdjEnlI,1256
27
27
  ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89a0,298
28
28
  ads/aqua/evaluation/constants.py,sha256=GvcXvPIw-VDKw4a8WNKs36uWdT-f7VJrWSpnnRnthGg,1533
29
- ads/aqua/evaluation/entities.py,sha256=bDIEtIwyNkUK-1S5jsbbne6xy49U-UmtuzzNuYf0tgk,5430
29
+ ads/aqua/evaluation/entities.py,sha256=3Ni4AIULLZ79rcaGdcZGx4HUxR2QjyJza6auYohPcFM,5466
30
30
  ads/aqua/evaluation/errors.py,sha256=qzR63YEIA8haCh4HcBHFFm7j4g6jWDfGszqrPkXx9zQ,4564
31
- ads/aqua/evaluation/evaluation.py,sha256=iOSznRW2AioEgJnJ4xIrkyqDiEdTsGBa7LgkzHprnfQ,58011
31
+ ads/aqua/evaluation/evaluation.py,sha256=iopL7A6RNfqsaLg19xsg9lRnSZ0aI6mkx8kooDyulio,58016
32
32
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
33
- ads/aqua/extension/aqua_ws_msg_handler.py,sha256=PcRhBqGpq5aOPP0ibhaKfmkA8ajimldsvJC32o9JeTw,3291
34
- ads/aqua/extension/base_handler.py,sha256=MuVxsJG66NdatL-Hh99UD3VQOQw1ir-q2YBajwh9cJk,5132
33
+ ads/aqua/extension/aqua_ws_msg_handler.py,sha256=soSRnIFx93JCFf6HsuF_BQEpJ2mre-IVQDUDKUKPijY,3392
34
+ ads/aqua/extension/base_handler.py,sha256=Zbb-uSNLljRU5NPOndn3_lx8MN_1yxlF2GHVpBT-kWk,5233
35
35
  ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
36
36
  ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
37
37
  ads/aqua/extension/deployment_handler.py,sha256=i2UAZQ8_uVgg32OmM1vif3kplAVuRwxZsjgTfUSKnH8,11025
@@ -48,9 +48,9 @@ ads/aqua/extension/utils.py,sha256=UKafTX6tN6ObOkWCLy6c3y_cNmUHfD64PtIaR5B7Sl0,1
48
48
  ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
49
49
  ads/aqua/extension/models/ws_models.py,sha256=-m6IJRS-4I6AMLDwgu19XdrvHyOStuBx9t4B0LgS07g,3348
50
50
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
51
- ads/aqua/finetuning/constants.py,sha256=7LGF-rbbp-3IS8APjM9ABVHvm0EsaoC9A7XvxTgnRz4,743
51
+ ads/aqua/finetuning/constants.py,sha256=g0ze760c4LlD6ppN0Lww_ZAkr1IpNJMJDxq_USx4IEk,807
52
52
  ads/aqua/finetuning/entities.py,sha256=S7Ll_0WyWGh23my-6ow3vwHLDZqTel8CMCoE9oLowOY,4126
53
- ads/aqua/finetuning/finetuning.py,sha256=CKJflhDAt964weaMavwyCNa3pcbBbs_j7CeO8o-eDUs,24699
53
+ ads/aqua/finetuning/finetuning.py,sha256=mwKl8KA2Artp0dXzjXxxKn_UBnkYpNXMYN7ykrZcyEM,25145
54
54
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
55
55
  ads/aqua/model/constants.py,sha256=H239zDu3koa3UTdw-uQveXHX2NDwidclVcS4QIrCTJo,1593
56
56
  ads/aqua/model/entities.py,sha256=9SsdJfoBH7fDKGXQYs8pKLiZ-SqFnXaZrJod4FWU3mI,9670
@@ -645,18 +645,18 @@ ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=CrqXpSgGPwv4NVL5gEZNHChdVC
645
645
  ads/opctl/operator/lowcode/anomaly/utils.py,sha256=edOuq7lbZ4Iz_T9FXtFv21ePBElaCGutfWE1QOhvxsg,2841
646
646
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
647
647
  ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
648
- ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=ifcIDHsQLlUOEpP_nzu_DFOOaL7Gos7YkaZTMvenw2k,5839
649
- ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=Zn4ySrGfLbaKW0KIduwdnY0-YK8XAprCcMhElA4g-Vc,3401
650
- ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=KfbW5ffJj7oDIOfbrSPd5pzOYR8jO_9vmPt2S7uzQRc,4108
651
- ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=bq2VgRxLIRFov8pEoYCPGw3AXUmTJktA2nszQN8La2c,15365
648
+ ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=IT0g6wf2rZI-GFuuOgtESWYTE_D77P8y9YeRZ6ucguQ,5836
649
+ ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=40rY-mVYoLBmDw5uagayRoyYSkjsIY4U4LfyeU11AoA,3469
650
+ ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Ft6bLEXdpIMMDv4lLBzLhC2kRZki7zD9Jnu-LIPDDbw,4154
651
+ ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=Lbwyt0bCVaF80mSbZPq_05-Dw4oqX3RK6lF7S8QJeEI,15562
652
652
  ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=yld9CI-ZZJO2dDB24aOm6SLXbibNMeK1NQEZHpGNdfY,4144
653
- ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=Kjsuio7cM-dKv63p58B9Jj0XPly6Z0hqfghs5nnXepA,2671
654
- ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eQpNyax1hnufLHhL8Rbzee28comD2fF7TLn3TpzMrs8,2583
655
- ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=bl50nulatim34tqlNsuJASSPlILSx_aCypdHr4wouoM,4270
653
+ ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=e_C_I6d6PVojPoHz_D5r8nC_JctTYooVVKFlcX5kkls,2657
654
+ ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eejgAtxwjGzWJBVdgp0oZHM4NCLAQh-AksGE0YuM7D4,2557
655
+ ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=K8fVcG952bSUkgoXm7uU1jUUyBd8jvHprkbM4a7i_Xs,4329
656
656
  ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=_v0KkdTKD3nqzOu3P5tE7bSV63Jy91h6Hr88Eequ0RU,4175
657
657
  ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
658
658
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
659
- ads/opctl/operator/lowcode/common/data.py,sha256=L96XltNUllEYn8VOGVnJ3CrqBn_MRMRJCvU0npiBHnc,4149
659
+ ads/opctl/operator/lowcode/common/data.py,sha256=nKwE0ubF9fTHFOls5uQ3BBpcPNRtwvGW3UGK-JjAm84,4107
660
660
  ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
661
661
  ads/opctl/operator/lowcode/common/transformations.py,sha256=Minukbv9Ja1yNJYgTQICU9kykIdbBELhrFFyWECgtes,9630
662
662
  ads/opctl/operator/lowcode/common/utils.py,sha256=jQIyjtg4i4hfrhBIGhSOzkry2-ziZrn8cBj8lcTv66E,9292
@@ -682,20 +682,20 @@ ads/opctl/operator/lowcode/forecast/cmd.py,sha256=uwU-QvnYwxoRFXZv7_JFkzAUnjTNoS
682
682
  ads/opctl/operator/lowcode/forecast/const.py,sha256=jyoXhrRXFipcATwGIU_3rFRZL-r6hvbKNUVO2uG2siY,2597
683
683
  ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
684
684
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
685
- ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=dSV1aj25wzv0V3y72YdYj4rCPjXAog13ppxYDNY9HQU,8913
685
+ ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=HssIlfJlJt5HetwzT87rDeRYRwJAXG1yoSjT4SUB8D0,9266
686
686
  ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=vG7n-RIiazujH0UtJ0uarx9IKDIAS0b4WcCo1dNLVL0,6422
687
687
  ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=twmsn0wPPkgdVk8tKPZL3zBlxqecuXL0GSlIz3I8ZEI,10136
688
- ads/opctl/operator/lowcode/forecast/utils.py,sha256=oc6eBH9naYg4BB14KS2HL0uFdZHMgKsxx9vG28dJrXA,14347
688
+ ads/opctl/operator/lowcode/forecast/utils.py,sha256=B7X3vLxmbx3MyUQxoplhQCMb0bgmPk2g-KN-OY768E8,13908
689
689
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
690
- ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=6ZXtzXcqoEMVF9DChzX0cnTJ-9tXKdbPiiSPQq4a9oM,10914
691
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=D7U-y-sTdkiqynk_l86z1HNSjn9c58DJTU7l8T33BJk,14856
692
- ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=QxU24eZeaRpnC5rTqBFe6-5ylMorPN0sCamHUiNQVaE,13162
693
- ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s4_lvasasCqvrj49ubD0H_2wA9pvh16_f5BiivqvL20,30876
690
+ ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=lU7NlpXI1-g-O_1rGJLlEL17_ruGXAdzzY7H8nFRvGQ,10943
691
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=5_mVPpGqXUXSIKW9dM3fh0mYv-B_7XZu03yqFPrzHdc,14740
692
+ ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=Y9_EAfDD5r6SPZq7iGp7YMh-vH0lwAGNpyNT2sm7cqo,13027
693
+ ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=b7ZVnGKTIULBWE5W_pQQGzcLM4g2YZIUEH3P94L41aQ,30988
694
694
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=RrE6JJcUmkypjD6IQOR53I9GCg7jQO380r53oLmVK6A,3439
695
- ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=02gOA-0KKtD0VYj87SsgRMq4EP2VSnhfuxoH1suAIO0,16968
696
- ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=6ynnmfVESR5rBjh5FaX1YEXYziIydEJ4t4IDpiUe-Jg,9554
697
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=pRmhLHjP027gmPbkgqzR2SZYKvj1rG9Heev2P8mSZ_k,19347
698
- ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=0OBnyVP9bFpo1zSAqA5qtobZxICRTLVT9mwPOlHb3sM,14554
695
+ ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=GCwX9Udh4U79wBNG5bjSYabgRDO0u-ElVJkSC_HcBeA,16563
696
+ ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=NSZ2L6gRw4S68BUF0Vyu-cUPSsq8LRxgoVajW9Ra63k,9640
697
+ ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=rt4106o9qIKwoHnYICB9sOnQ8ujXyI83eoFY26KzsOU,18774
698
+ ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=s9tWZdD1g50lnu5YgER2SNiXsQ3y51Q-XwYxIsWmmiQ,14284
699
699
  ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
700
700
  ads/opctl/operator/lowcode/pii/README.md,sha256=2P3tpKv6v__Eehj6iLfTXgyDhS4lmi1BTfEdmJhT0K4,9237
701
701
  ads/opctl/operator/lowcode/pii/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
@@ -711,7 +711,7 @@ ads/opctl/operator/lowcode/pii/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmS
711
711
  ads/opctl/operator/lowcode/pii/model/factory.py,sha256=Fuq8iiN_GkyGBJlGvJJcN0byAfy0bSqKVgkgOE9B2XQ,2452
712
712
  ads/opctl/operator/lowcode/pii/model/guardrails.py,sha256=--GUFt-zlVyJY5WQZNMHjQDlVfVy-tYeXubgvYN-H-U,6246
713
713
  ads/opctl/operator/lowcode/pii/model/pii.py,sha256=hbOomsCNgj7uZNOdUIja3rE-iTGhh9P2hKh8xrtpXR4,5110
714
- ads/opctl/operator/lowcode/pii/model/report.py,sha256=4HHEiSb1qHWs0jtR971xrnYmcGuB4RaQyFsFDyMa-y0,16260
714
+ ads/opctl/operator/lowcode/pii/model/report.py,sha256=vDivP5dWWBoIzDpT1ww2WMBZKybX6DigaPSCW46F__Q,16361
715
715
  ads/opctl/operator/lowcode/pii/model/processor/__init__.py,sha256=febfGPoGJXTD-hCJoiVmsnBP3K3MYBqfuQoTNPm_4kY,910
716
716
  ads/opctl/operator/lowcode/pii/model/processor/email_replacer.py,sha256=sTjMbP8UfwszrzFI0QgzZ0BwWfVqYxhWJ1z8S5AcE2U,996
717
717
  ads/opctl/operator/lowcode/pii/model/processor/mbi_replacer.py,sha256=nm4dRZjFwxraktXTR1FConaAH4o1uagiXMVeGU0H0O0,1025
@@ -728,10 +728,10 @@ ads/opctl/operator/lowcode/recommender/environment.yaml,sha256=m3jYkrFpkQfL1dpiA
728
728
  ads/opctl/operator/lowcode/recommender/operator_config.py,sha256=HE30TuiXbVrC6Uy7G2mw4KU_xRSjzgTQHlMNumQauqE,2920
729
729
  ads/opctl/operator/lowcode/recommender/schema.yaml,sha256=OvaQRc56sOO-NNrF2hYU7JEsD-fNkr2LJwP7Nzj_bo8,6029
730
730
  ads/opctl/operator/lowcode/recommender/utils.py,sha256=-DgqObJ3G54wZw04aLvA9zwI_NUqwgQ7jaPHQP_6Q9g,401
731
- ads/opctl/operator/lowcode/recommender/model/base_model.py,sha256=Ra8bwA6u-B8hztdJFH_PGDrjKb8uWJouQrUpFsj4pmk,7292
731
+ ads/opctl/operator/lowcode/recommender/model/base_model.py,sha256=wraH55srwQ9FfWfXTse1vOVTG-OOH8XZRdSDKP91DYM,7395
732
732
  ads/opctl/operator/lowcode/recommender/model/factory.py,sha256=CHCXR3-6HRSKJG3tCjdgBvUODtQ9C2zU0Nq-0zVb6p8,1798
733
733
  ads/opctl/operator/lowcode/recommender/model/recommender_dataset.py,sha256=QzcfA4Dzp412NCiNhFrJY2Rqbzlmneb1SAb98m_L_ms,870
734
- ads/opctl/operator/lowcode/recommender/model/svd.py,sha256=1zznofQRTNIZjQlGPIJYJLKf3FV6zbZSm7Q_EsN8wCE,4051
734
+ ads/opctl/operator/lowcode/recommender/model/svd.py,sha256=unPfnyvZk3wllN07syTjJAvVck3WpQ10XHc3a5_hPQY,4367
735
735
  ads/opctl/operator/runtime/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
736
736
  ads/opctl/operator/runtime/const.py,sha256=FSgllXcXKIRCbYSJiVAP8gZGpH7hGrEf3enYmUBrAIk,522
737
737
  ads/opctl/operator/runtime/container_runtime_schema.yaml,sha256=FU8Jjq1doq1eYW8b5YjlfSmWKnBN-lAuEk289_P9QFU,1235
@@ -813,8 +813,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
813
813
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
814
814
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
815
815
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
816
- oracle_ads-2.12.4.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
817
- oracle_ads-2.12.4.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
818
- oracle_ads-2.12.4.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
819
- oracle_ads-2.12.4.dist-info/METADATA,sha256=vOzUD-W4JvNIVdWdZw28o0VjPZ4CRk0CWLOLHuCABQM,16217
820
- oracle_ads-2.12.4.dist-info/RECORD,,
816
+ oracle_ads-2.12.6.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
817
+ oracle_ads-2.12.6.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
818
+ oracle_ads-2.12.6.dist-info/WHEEL,sha256=CpUCUxeHQbRN5UGRQHYRJorO5Af-Qy_fHMctcQ8DSGI,82
819
+ oracle_ads-2.12.6.dist-info/METADATA,sha256=pHpTpBQerpdiKY6McAZy4M1hQPHGZMKFLWEaFL1YrO0,16221
820
+ oracle_ads-2.12.6.dist-info/RECORD,,