oracle-ads 2.12.1__py3-none-any.whl → 2.12.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (43) hide show
  1. ads/aqua/common/enums.py +9 -0
  2. ads/aqua/common/utils.py +83 -6
  3. ads/aqua/config/config.py +0 -15
  4. ads/aqua/constants.py +2 -0
  5. ads/aqua/extension/deployment_handler.py +2 -0
  6. ads/aqua/extension/finetune_handler.py +1 -2
  7. ads/aqua/extension/ui_handler.py +22 -3
  8. ads/aqua/finetuning/entities.py +5 -4
  9. ads/aqua/finetuning/finetuning.py +13 -8
  10. ads/aqua/model/constants.py +1 -0
  11. ads/aqua/model/entities.py +2 -0
  12. ads/aqua/model/model.py +223 -138
  13. ads/aqua/modeldeployment/deployment.py +106 -62
  14. ads/aqua/modeldeployment/entities.py +10 -2
  15. ads/aqua/ui.py +29 -16
  16. ads/config.py +3 -8
  17. ads/llm/deploy.py +6 -0
  18. ads/llm/guardrails/base.py +0 -1
  19. ads/llm/langchain/plugins/chat_models/oci_data_science.py +118 -41
  20. ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py +18 -14
  21. ads/llm/templates/score_chain.jinja2 +0 -1
  22. ads/model/datascience_model.py +519 -16
  23. ads/model/deployment/model_deployment.py +13 -0
  24. ads/model/deployment/model_deployment_infrastructure.py +34 -0
  25. ads/model/generic_model.py +10 -0
  26. ads/model/model_properties.py +1 -0
  27. ads/model/service/oci_datascience_model.py +28 -0
  28. ads/opctl/operator/common/data/synthetic.csv +16001 -0
  29. ads/opctl/operator/lowcode/anomaly/MLoperator +1 -0
  30. ads/opctl/operator/lowcode/anomaly/const.py +66 -1
  31. ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py +161 -0
  32. ads/opctl/operator/lowcode/anomaly/model/autots.py +30 -15
  33. ads/opctl/operator/lowcode/anomaly/model/factory.py +15 -3
  34. ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py +1 -1
  35. ads/opctl/operator/lowcode/anomaly/schema.yaml +10 -0
  36. ads/opctl/operator/lowcode/anomaly/utils.py +3 -0
  37. {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/METADATA +2 -1
  38. {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/RECORD +41 -41
  39. ads/aqua/config/deployment_config_defaults.json +0 -37
  40. ads/aqua/config/resource_limit_names.json +0 -8
  41. {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/LICENSE.txt +0 -0
  42. {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/WHEEL +0 -0
  43. {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/entry_points.txt +0 -0
@@ -2,6 +2,7 @@ type: anomaly
2
2
  version: v1
3
3
  conda_type: service
4
4
  name: Anomaly Detection Operator
5
+ conda: anomaly_p310_cpu_x86_64_v1
5
6
  gpu: no
6
7
  keywords:
7
8
  - Anomaly Detection
@@ -21,6 +21,23 @@ class SupportedModels(str, metaclass=ExtendedEnumMeta):
21
21
  EE = "ee"
22
22
  ISOLATIONFOREST = "isolationforest"
23
23
 
24
+ # point anomaly
25
+ DAGMM = "dagmm"
26
+ DEEP_POINT_ANOMALY_DETECTOR = "deep_point_anomaly_detector"
27
+ LSTM_ED = "lstm_ed"
28
+ SPECTRAL_RESIDUAL = "spectral_residual"
29
+ VAE = "vae"
30
+
31
+ # forecast_based
32
+ ARIMA = "arima"
33
+ ETS = "ets"
34
+ PROPHET = "prophet"
35
+ SARIMA = "sarima"
36
+
37
+ # changepoint
38
+ BOCPD = "bocpd"
39
+
40
+
24
41
  class NonTimeADSupportedModels(str, metaclass=ExtendedEnumMeta):
25
42
  """Supported non time-based anomaly detection models."""
26
43
 
@@ -29,7 +46,7 @@ class NonTimeADSupportedModels(str, metaclass=ExtendedEnumMeta):
29
46
  RandomCutForest = "randomcutforest"
30
47
  # TODO : Add DBScan
31
48
  # DBScan = "dbscan"
32
-
49
+
33
50
 
34
51
  class TODSSubModels(str, metaclass=ExtendedEnumMeta):
35
52
  """Supported TODS sub models."""
@@ -61,6 +78,54 @@ TODS_MODEL_MAP = {
61
78
  }
62
79
 
63
80
 
81
+ class MerlionADModels(str, metaclass=ExtendedEnumMeta):
82
+ """Supported Merlion AD sub models."""
83
+
84
+ # point anomaly
85
+ DAGMM = "dagmm"
86
+ DEEP_POINT_ANOMALY_DETECTOR = "deep_point_anomaly_detector"
87
+ LSTM_ED = "lstm_ed"
88
+ SPECTRAL_RESIDUAL = "spectral_residual"
89
+ VAE = "vae"
90
+
91
+ # forecast_based
92
+ ARIMA = "arima"
93
+ ETS = "ets"
94
+ PROPHET = "prophet"
95
+ SARIMA = "sarima"
96
+
97
+ # changepoint
98
+ BOCPD = "bocpd"
99
+
100
+
101
+ MERLIONAD_IMPORT_MODEL_MAP = {
102
+ MerlionADModels.DAGMM: ".dagmm",
103
+ MerlionADModels.DEEP_POINT_ANOMALY_DETECTOR: ".deep_point_anomaly_detector",
104
+ MerlionADModels.LSTM_ED: ".lstm_ed",
105
+ MerlionADModels.SPECTRAL_RESIDUAL: ".spectral_residual",
106
+ MerlionADModels.VAE: ".vae",
107
+ MerlionADModels.ARIMA: ".forecast_based.arima",
108
+ MerlionADModels.ETS: ".forecast_based.ets",
109
+ MerlionADModels.PROPHET: ".forecast_based.prophet",
110
+ MerlionADModels.SARIMA: ".forecast_based.sarima",
111
+ MerlionADModels.BOCPD: ".change_point.bocpd",
112
+ }
113
+
114
+
115
+ MERLIONAD_MODEL_MAP = {
116
+ MerlionADModels.DAGMM: "DAGMM",
117
+ MerlionADModels.DEEP_POINT_ANOMALY_DETECTOR: "DeepPointAnomalyDetector",
118
+ MerlionADModels.LSTM_ED: "LSTMED",
119
+ MerlionADModels.SPECTRAL_RESIDUAL: "SpectralResidual",
120
+ MerlionADModels.VAE: "VAE",
121
+ MerlionADModels.ARIMA: "ArimaDetector",
122
+ MerlionADModels.ETS: "ETSDetector",
123
+ MerlionADModels.PROPHET: "ProphetDetector",
124
+ MerlionADModels.SARIMA: "SarimaDetector",
125
+ MerlionADModels.BOCPD: "BOCPD",
126
+ }
127
+
128
+
64
129
  class SupportedMetrics(str, metaclass=ExtendedEnumMeta):
65
130
  UNSUPERVISED_UNIFY95 = "unsupervised_unify95"
66
131
  UNSUPERVISED_UNIFY95_LOG_LOSS = "unsupervised_unify95_log_loss"
@@ -0,0 +1,161 @@
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) 2023, 2024 Oracle and/or its affiliates.
4
+ # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
5
+
6
+ import importlib
7
+
8
+ import numpy as np
9
+ import pandas as pd
10
+ from merlion.post_process.threshold import AggregateAlarms
11
+ from merlion.utils import TimeSeries
12
+
13
+ from ads.common.decorator.runtime_dependency import runtime_dependency
14
+ from ads.opctl.operator.lowcode.anomaly.const import (
15
+ MERLIONAD_IMPORT_MODEL_MAP,
16
+ MERLIONAD_MODEL_MAP,
17
+ OutputColumns,
18
+ SupportedModels,
19
+ )
20
+
21
+ from .anomaly_dataset import AnomalyOutput
22
+ from .base_model import AnomalyOperatorBaseModel
23
+
24
+
25
+ class AnomalyMerlionOperatorModel(AnomalyOperatorBaseModel):
26
+ """Class representing Merlion Anomaly Detection operator model."""
27
+
28
+ @runtime_dependency(
29
+ module="merlion",
30
+ err_msg=(
31
+ "Please run `pip3 install salesforce-merlion[all]` to "
32
+ "install the required packages."
33
+ ),
34
+ )
35
+ def _get_config_model(self, model_name):
36
+ """
37
+ Returns a dictionary with model names as keys and a list of model config and model object as values.
38
+
39
+ Parameters
40
+ ----------
41
+ model_name : str
42
+ model name from the Merlion model list.
43
+
44
+ Returns
45
+ -------
46
+ dict
47
+ A dictionary with model names as keys and a list of model config and model object as values.
48
+ """
49
+ model_config_map = {}
50
+ model_module = importlib.import_module(
51
+ name=MERLIONAD_IMPORT_MODEL_MAP.get(model_name),
52
+ package="merlion.models.anomaly",
53
+ )
54
+ model_config = getattr(
55
+ model_module, MERLIONAD_MODEL_MAP.get(model_name) + "Config"
56
+ )
57
+ model = getattr(model_module, MERLIONAD_MODEL_MAP.get(model_name))
58
+ model_config_map[model_name] = [model_config, model]
59
+ return model_config_map
60
+
61
+ def _build_model(self) -> AnomalyOutput:
62
+ """
63
+ Builds a Merlion anomaly detection model and trains it using the given data.
64
+
65
+ Parameters
66
+ ----------
67
+ None
68
+
69
+ Returns
70
+ -------
71
+ AnomalyOutput
72
+ An AnomalyOutput object containing the anomaly detection results.
73
+ """
74
+ model_kwargs = self.spec.model_kwargs
75
+ anomaly_output = AnomalyOutput(date_column="index")
76
+ anomaly_threshold = model_kwargs.get("anomaly_threshold", 95)
77
+ model_config_map = {}
78
+ model_config_map = self._get_config_model(self.spec.model)
79
+
80
+ date_column = self.spec.datetime_column.name
81
+
82
+ anomaly_output = AnomalyOutput(date_column=date_column)
83
+ # model_objects = defaultdict(list)
84
+ for target, df in self.datasets.full_data_dict.items():
85
+ data = df.set_index(date_column)
86
+ data = TimeSeries.from_pd(data)
87
+ for model_name, (model_config, model) in model_config_map.items():
88
+ if self.spec.model == SupportedModels.BOCPD:
89
+ model_config = model_config(**self.spec.model_kwargs)
90
+ else:
91
+ model_config = model_config(
92
+ **{
93
+ **self.spec.model_kwargs,
94
+ "threshold": AggregateAlarms(
95
+ alm_threshold=model_kwargs.get("alm_threshold")
96
+ if model_kwargs.get("alm_threshold")
97
+ else None
98
+ ),
99
+ }
100
+ )
101
+ if hasattr(model_config, "target_seq_index"):
102
+ model_config.target_seq_index = df.columns.get_loc(
103
+ self.spec.target_column
104
+ )
105
+ model = model(model_config)
106
+
107
+ scores = model.train(train_data=data, anomaly_labels=None)
108
+ scores = scores.to_pd().reset_index()
109
+ scores["anom_score"] = (
110
+ scores["anom_score"] - scores["anom_score"].min()
111
+ ) / (scores["anom_score"].max() - scores["anom_score"].min())
112
+
113
+ try:
114
+ y_pred = model.get_anomaly_label(data)
115
+ y_pred = (y_pred.to_pd().reset_index()["anom_score"] > 0).astype(
116
+ int
117
+ )
118
+ except Exception as e:
119
+ y_pred = (
120
+ scores["anom_score"]
121
+ > np.percentile(
122
+ scores["anom_score"],
123
+ anomaly_threshold,
124
+ )
125
+ ).astype(int)
126
+
127
+ index_col = df.columns[0]
128
+
129
+ anomaly = pd.DataFrame(
130
+ {index_col: df[index_col], OutputColumns.ANOMALY_COL: y_pred}
131
+ ).reset_index(drop=True)
132
+ score = pd.DataFrame(
133
+ {
134
+ index_col: df[index_col],
135
+ OutputColumns.SCORE_COL: scores["anom_score"],
136
+ }
137
+ ).reset_index(drop=True)
138
+ # model_objects[model_name].append(model)
139
+
140
+ anomaly_output.add_output(target, anomaly, score)
141
+ return anomaly_output
142
+
143
+ def _generate_report(self):
144
+ """Genreates a report for the model."""
145
+ import report_creator as rc
146
+
147
+ other_sections = [
148
+ rc.Heading("Selected Models Overview", level=2),
149
+ rc.Text(
150
+ "The following tables provide information regarding the chosen model."
151
+ ),
152
+ ]
153
+
154
+ model_description = rc.Text(
155
+ "The Merlion anomaly detection model is a full-stack automated machine learning system for anomaly detection."
156
+ )
157
+
158
+ return (
159
+ model_description,
160
+ other_sections,
161
+ )
@@ -5,15 +5,17 @@
5
5
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
6
 
7
7
  from ads.common.decorator.runtime_dependency import runtime_dependency
8
+ from ads.opctl import logger
8
9
  from ads.opctl.operator.lowcode.anomaly.const import OutputColumns
10
+
11
+ from ..const import SupportedModels
9
12
  from .anomaly_dataset import AnomalyOutput
10
13
  from .base_model import AnomalyOperatorBaseModel
11
- from ..const import SupportedModels
12
- from ads.opctl import logger
13
14
 
14
15
 
15
16
  class AutoTSOperatorModel(AnomalyOperatorBaseModel):
16
17
  """Class representing AutoTS Anomaly Detection operator model."""
18
+
17
19
  model_mapping = {
18
20
  "isolationforest": "IsolationForest",
19
21
  "lof": "LOF",
@@ -22,30 +24,43 @@ class AutoTSOperatorModel(AnomalyOperatorBaseModel):
22
24
  "rolling_zscore": "rolling_zscore",
23
25
  "mad": "mad",
24
26
  "minmax": "minmax",
25
- "iqr": "IQR"
27
+ "iqr": "IQR",
26
28
  }
27
29
 
28
30
  @runtime_dependency(
29
31
  module="autots",
30
32
  err_msg=(
31
- "Please run `pip3 install autots` to "
32
- "install the required dependencies for AutoTS."
33
+ "Please run `pip3 install autots` to "
34
+ "install the required dependencies for AutoTS."
33
35
  ),
34
36
  )
35
37
  def _build_model(self) -> AnomalyOutput:
36
38
  from autots.evaluator.anomaly_detector import AnomalyDetector
37
39
 
38
- method = SupportedModels.ISOLATIONFOREST if self.spec.model == SupportedModels.AutoTS else self.spec.model
39
- model_params = {"method": self.model_mapping[method],
40
- "transform_dict": self.spec.model_kwargs.get("transform_dict", {}),
41
- "output": self.spec.model_kwargs.get("output", "univariate"), "method_params": {}}
40
+ method = (
41
+ SupportedModels.ISOLATIONFOREST
42
+ if self.spec.model == SupportedModels.AutoTS
43
+ else self.spec.model
44
+ )
45
+ model_params = {
46
+ "method": self.model_mapping[method],
47
+ "transform_dict": self.spec.model_kwargs.get("transform_dict", {}),
48
+ "output": self.spec.model_kwargs.get("output", "univariate"),
49
+ "method_params": {},
50
+ }
42
51
  # Supported methods with contamination param
43
- if method in [SupportedModels.ISOLATIONFOREST, SupportedModels.LOF, SupportedModels.EE]:
44
- model_params["method_params"][
45
- "contamination"] = self.spec.contamination if self.spec.contamination else 0.01
46
- else:
47
- if self.spec.contamination:
48
- raise ValueError(f"The contamination parameter is not supported for the selected model \"{method}\"")
52
+ if method in [
53
+ SupportedModels.ISOLATIONFOREST,
54
+ SupportedModels.LOF,
55
+ SupportedModels.EE,
56
+ ]:
57
+ model_params["method_params"]["contamination"] = (
58
+ self.spec.contamination if self.spec.contamination else 0.01
59
+ )
60
+ elif self.spec.contamination:
61
+ raise ValueError(
62
+ f'The contamination parameter is not supported for the selected model "{method}"'
63
+ )
49
64
  logger.info(f"model params: {model_params}")
50
65
 
51
66
  model = AnomalyDetector(**model_params)
@@ -4,14 +4,16 @@
4
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
5
5
 
6
6
  from ads.opctl.operator.lowcode.anomaly.utils import select_auto_model
7
+
8
+ from ..const import NonTimeADSupportedModels, SupportedModels
9
+ from ..operator_config import AnomalyOperatorConfig
7
10
  from .anomaly_dataset import AnomalyDatasets
11
+ from .anomaly_merlion import AnomalyMerlionOperatorModel
8
12
  from .autots import AutoTSOperatorModel
9
13
  from .base_model import AnomalyOperatorBaseModel
10
14
  from .isolationforest import IsolationForestOperatorModel
11
15
  from .oneclasssvm import OneClassSVMOperatorModel
12
16
  from .randomcutforest import RandomCutForestOperatorModel
13
- from ..const import NonTimeADSupportedModels, SupportedModels
14
- from ..operator_config import AnomalyOperatorConfig
15
17
 
16
18
 
17
19
  class UnSupportedModelError(Exception):
@@ -48,7 +50,17 @@ class AnomalyOperatorModelFactory:
48
50
  SupportedModels.ZSCORE: AutoTSOperatorModel,
49
51
  SupportedModels.ROLLING_ZSCORE: AutoTSOperatorModel,
50
52
  SupportedModels.EE: AutoTSOperatorModel,
51
- SupportedModels.MAD: AutoTSOperatorModel
53
+ SupportedModels.MAD: AutoTSOperatorModel,
54
+ SupportedModels.DAGMM: AnomalyMerlionOperatorModel,
55
+ SupportedModels.DEEP_POINT_ANOMALY_DETECTOR: AnomalyMerlionOperatorModel,
56
+ SupportedModels.LSTM_ED: AnomalyMerlionOperatorModel,
57
+ SupportedModels.SPECTRAL_RESIDUAL: AnomalyMerlionOperatorModel,
58
+ SupportedModels.VAE: AnomalyMerlionOperatorModel,
59
+ SupportedModels.ARIMA: AnomalyMerlionOperatorModel,
60
+ SupportedModels.ETS: AnomalyMerlionOperatorModel,
61
+ SupportedModels.PROPHET: AnomalyMerlionOperatorModel,
62
+ SupportedModels.SARIMA: AnomalyMerlionOperatorModel,
63
+ SupportedModels.BOCPD: AnomalyMerlionOperatorModel,
52
64
  }
53
65
 
54
66
  _NonTime_MAP = {
@@ -36,7 +36,7 @@ class RandomCutForestOperatorModel(AnomalyOperatorBaseModel):
36
36
  # Set tree parameters
37
37
  num_trees = model_kwargs.get("num_trees", 200)
38
38
  shingle_size = model_kwargs.get("shingle_size", None)
39
- anomaly_threshold = model_kwargs.get("anamoly_threshold", 95)
39
+ anomaly_threshold = model_kwargs.get("anomaly_threshold", 95)
40
40
 
41
41
  for target, df in self.datasets.full_data_dict.items():
42
42
  try:
@@ -370,6 +370,16 @@ spec:
370
370
  - rolling_zscore
371
371
  - mad
372
372
  - ee
373
+ - dagmm
374
+ - deep_point_anomaly_detector
375
+ - lstm_ed
376
+ - spectral_residual
377
+ - vae
378
+ - arima
379
+ - ets
380
+ - sarima
381
+ - bocpd
382
+ - prophet
373
383
  meta:
374
384
  description: "The model to be used for anomaly detection"
375
385
 
@@ -5,6 +5,7 @@
5
5
 
6
6
  import os
7
7
 
8
+ import numpy as np
8
9
  import pandas as pd
9
10
 
10
11
  from ads.opctl import logger
@@ -27,6 +28,8 @@ def _build_metrics_df(y_true, y_pred, column_name):
27
28
  )
28
29
 
29
30
  metrics = {}
31
+ np.nan_to_num(y_true, copy=False)
32
+ np.nan_to_num(y_pred, copy=False)
30
33
  metrics[SupportedMetrics.RECALL] = recall_score(y_true, y_pred)
31
34
  metrics[SupportedMetrics.PRECISION] = precision_score(y_true, y_pred)
32
35
  metrics[SupportedMetrics.ACCURACY] = accuracy_score(y_true, y_pred)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oracle_ads
3
- Version: 2.12.1
3
+ Version: 2.12.3
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -40,6 +40,7 @@ Requires-Dist: oracledb ; extra == "anomaly"
40
40
  Requires-Dist: report-creator==1.0.9 ; extra == "anomaly"
41
41
  Requires-Dist: rrcf==0.4.4 ; extra == "anomaly"
42
42
  Requires-Dist: scikit-learn ; extra == "anomaly"
43
+ Requires-Dist: salesforce-merlion[all]==2.0.4 ; extra == "anomaly"
43
44
  Requires-Dist: jupyter_server ; extra == "aqua"
44
45
  Requires-Dist: hdfs[kerberos] ; extra == "bds"
45
46
  Requires-Dist: ibis-framework[impala] ; extra == "bds"
@@ -1,22 +1,20 @@
1
1
  ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
2
  ads/cli.py,sha256=hjRcQfXFzkh37fbyUBg95I3R0brslZLf9IQU8nSCxio,3933
3
- ads/config.py,sha256=t_zDKftVYOLPP-t8IcnzEbtmMRX-6a8QKY9E_SnqA8M,8163
3
+ ads/config.py,sha256=WGFgS5-dxqC9_iRJKakn-mh9545gHJpWB_Y0hT5O3ec,8016
4
4
  ads/aqua/__init__.py,sha256=IUKZAsxUGVicsyeSwsGwK6rAUJ1vIUW9ywduA3U22xc,1015
5
5
  ads/aqua/app.py,sha256=BQuQ9RERU0rKmn3N3xicKzYaXOd7xBwX1aVuVLNgw98,11993
6
6
  ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
- ads/aqua/constants.py,sha256=M2bbrIlq9z-DTq8stsv1OHNfLAxwhTA3X-cdtQ8uGcc,2868
7
+ ads/aqua/constants.py,sha256=UAfB1aQXMDJ4OQ98IeZb4l5TYhmCsnwXbS4Uylgnfro,2947
8
8
  ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
9
- ads/aqua/ui.py,sha256=2hH9YmyJfDd70qV2EQyx0HFuPY5KSMH-WyCKRBt3qGU,25211
9
+ ads/aqua/ui.py,sha256=hGl4btUsMImkpzZ-Ae_WVVaRqfpdG_gUeHKD9E1nKbE,26195
10
10
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
11
11
  ads/aqua/common/decorator.py,sha256=XFS7tYGkN4dVzmB1wTYiJk1XqJ-VLhvzfZjExiQClgc,3640
12
12
  ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
13
- ads/aqua/common/enums.py,sha256=hJABLhORCnAkZ6OxsjxhhkmZQQcMzfBzOQkAZLgxNXs,2603
13
+ ads/aqua/common/enums.py,sha256=HnaraHfkYmuqC5mEF7gyvQmqbOc6r_9EI2MF-cieb5o,2991
14
14
  ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
15
- ads/aqua/common/utils.py,sha256=MM-RZVpGNXm9KHmju1UZl7UjnbvQZjUzykcTISGsF4Y,34919
15
+ ads/aqua/common/utils.py,sha256=n8Da5PO-28xj9WG7w8zSQDoLCRs_kQRIrk_yXW-W85o,37310
16
16
  ads/aqua/config/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
17
- ads/aqua/config/config.py,sha256=YIbd_9yP5kZd3G2q4q0TM6hzMdJSQ8BHPRAFE_5Xk3s,1548
18
- ads/aqua/config/deployment_config_defaults.json,sha256=1fzb8EZOcFMjwktes40qgetKvdmUtEGCl4Jp4eb8tJg,665
19
- ads/aqua/config/resource_limit_names.json,sha256=0ecGLCLxll9qt3E7fVZPtzpurqe1PGdTk0Rjn_cWh8k,235
17
+ ads/aqua/config/config.py,sha256=MNY4ttccaQdhxUyS1o367YIDl-U_AiSLVlgvzSd7JE4,944
20
18
  ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
21
19
  ads/aqua/config/evaluation/evaluation_service_config.py,sha256=i3yRcCiwCwVp-7YGWBWO7pPg2iWlN9Pz0upCSYOVVj4,8769
22
20
  ads/aqua/config/evaluation/evaluation_service_model_config.py,sha256=ITs_RBCynWuygjNdcUD7e2BLbPyPP3UozryEWlnju9s,280
@@ -36,32 +34,32 @@ ads/aqua/extension/aqua_ws_msg_handler.py,sha256=PcRhBqGpq5aOPP0ibhaKfmkA8ajimld
36
34
  ads/aqua/extension/base_handler.py,sha256=MuVxsJG66NdatL-Hh99UD3VQOQw1ir-q2YBajwh9cJk,5132
37
35
  ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
38
36
  ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
39
- ads/aqua/extension/deployment_handler.py,sha256=8MafpUaN-1gqyIksJ9EO55mbdGV57IWf1GmJ-zs9h8c,9475
37
+ ads/aqua/extension/deployment_handler.py,sha256=UOhtlYNEHSXOG2oCQ9pLNZzOkcY0mbm7EeMhRc_TuKg,9600
40
38
  ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
41
39
  ads/aqua/extension/errors.py,sha256=i37EnRzxGgvxzUNoyEORzHYmB296DGOUb6pm7VwEyTU,451
42
40
  ads/aqua/extension/evaluation_handler.py,sha256=RT2W7WDtxNIT0uirLfTcDlmTPYCuMuWRhiDxYZYliZs,4542
43
41
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
44
- ads/aqua/extension/finetune_handler.py,sha256=ZCdXoEYzfViZfJsk0solCB6HQkg0skG1jFfqq1zF-vw,3312
42
+ ads/aqua/extension/finetune_handler.py,sha256=abiDXNhkhtoV9hrYhCzwhDjdQKlqQ_KSqxKWntkvh3E,3288
45
43
  ads/aqua/extension/model_handler.py,sha256=lsa8cRblUbITOtn2K9HuPWrl_CVGV2GXHq2aiGh4K5U,9130
46
44
  ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
47
- ads/aqua/extension/ui_handler.py,sha256=IYhtyL4oE8zlxe-kfbvWSmFsayyXaZZZButDdxM3hcA,9850
45
+ ads/aqua/extension/ui_handler.py,sha256=3TibTMeqcsSWfPsorspFrhIV0PRh8_4FoWpudycT80g,10664
48
46
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
49
47
  ads/aqua/extension/utils.py,sha256=UKafTX6tN6ObOkWCLy6c3y_cNmUHfD64PtIaR5B7Sl0,1476
50
48
  ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
51
49
  ads/aqua/extension/models/ws_models.py,sha256=-m6IJRS-4I6AMLDwgu19XdrvHyOStuBx9t4B0LgS07g,3348
52
50
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
53
51
  ads/aqua/finetuning/constants.py,sha256=7LGF-rbbp-3IS8APjM9ABVHvm0EsaoC9A7XvxTgnRz4,743
54
- ads/aqua/finetuning/entities.py,sha256=ZGFqewDV_YIGgmJqIXjrprSZE0yFZQF_tdbmQlvhTrQ,4045
55
- ads/aqua/finetuning/finetuning.py,sha256=5GXya26dmerhwlCxQ4TZJWZh5pr0h-TnkZ6WahJITvY,24497
52
+ ads/aqua/finetuning/entities.py,sha256=S7Ll_0WyWGh23my-6ow3vwHLDZqTel8CMCoE9oLowOY,4126
53
+ ads/aqua/finetuning/finetuning.py,sha256=CKJflhDAt964weaMavwyCNa3pcbBbs_j7CeO8o-eDUs,24699
56
54
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
57
- ads/aqua/model/constants.py,sha256=b2nszavi2fNGiMpfpqT5xPWpab_yTJUN_sEdC8gOG2M,1535
58
- ads/aqua/model/entities.py,sha256=5S2WFvDDt2XaQKYkWFAgs3P_g-VPpt74rpNQRM6-ssY,9580
55
+ ads/aqua/model/constants.py,sha256=H239zDu3koa3UTdw-uQveXHX2NDwidclVcS4QIrCTJo,1593
56
+ ads/aqua/model/entities.py,sha256=9SsdJfoBH7fDKGXQYs8pKLiZ-SqFnXaZrJod4FWU3mI,9670
59
57
  ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
60
- ads/aqua/model/model.py,sha256=gMoELf_HjuUYYcW05XfNRghXk3IhBP0PPaQDgP_-QUA,54277
58
+ ads/aqua/model/model.py,sha256=Vkm1oszD6Lw1rl8Yxf2azuWI1zF4jl-QE5Sk5SEDKWM,57414
61
59
  ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
62
60
  ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
63
- ads/aqua/modeldeployment/deployment.py,sha256=zrzC0i4H25M50dqrYF88ZyHUj3N6WjxQdcRLHLDgyA4,27976
64
- ads/aqua/modeldeployment/entities.py,sha256=QgiLxdWfoNg-u4P7DqauZh9oQQ-WjSs37s8WR84m164,4744
61
+ ads/aqua/modeldeployment/deployment.py,sha256=OE_jpPCGNxC6-p88kk7Xx1yQ1rKALgALRgcOnfLZb0A,29970
62
+ ads/aqua/modeldeployment/entities.py,sha256=7aoE2HemsFEvkQynAI4PCfZBcfPJrvbyZeEYvc7OIAA,5111
65
63
  ads/aqua/modeldeployment/inference.py,sha256=JPqzbHJoM-PpIU_Ft9lHudO9_1vFr7OPQ2GHjPoAufU,2142
66
64
  ads/aqua/training/__init__.py,sha256=w2DNWltXtASQgbrHyvKo0gMs5_chZoG-CSDMI4qe7i0,202
67
65
  ads/aqua/training/exceptions.py,sha256=S5gHUeUiiPErxuwqG0TB1Yf11mhsAGNYb9o3zd1L1dI,13627
@@ -449,22 +447,22 @@ ads/jobs/templates/oci_metrics.py,sha256=3l4h17W_dheSK34thp95pMvG0iqBufoXck3I8_4
449
447
  ads/llm/__init__.py,sha256=t5yoDsD5huaEp38qdI5iTtkfXmJQ-5XDSrvcHM_XnHU,830
450
448
  ads/llm/chain.py,sha256=KuQcZGQsrlcl3CjtLk8KOHtSu0XJvFRL_Wv0Gz2RdF4,9526
451
449
  ads/llm/chat_template.py,sha256=t2QRfLLR_c_cq3JqABghWqiCSWjjuVc_mfEN-yVYG10,934
452
- ads/llm/deploy.py,sha256=VYm_8ML8iXL_y-G8LqSm1VsQQTSFq7rA95VCdhLz1A0,1985
450
+ ads/llm/deploy.py,sha256=5oZipFWU6q_9dCyt3WE4ic-n5rNZgQsYU_3lS_Vp_nY,2275
453
451
  ads/llm/requirements.txt,sha256=vaVwhWCteqmo0fRsEk6M8S1LQMjULU_Bt_syBAa2G-s,55
454
452
  ads/llm/serialize.py,sha256=WjQNMPACyR8nIh1dB7BLFUmqUrumld6vt91lg1DWzWI,7281
455
453
  ads/llm/guardrails/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
456
- ads/llm/guardrails/base.py,sha256=UESjl8VgQGnDwpf8dy0PWpOJxpZKKnGHN6s46qnQUNw,16512
454
+ ads/llm/guardrails/base.py,sha256=scli_YSqDbArIJW5sA5PLjCd6G8_-dNUcpTybvQvZnk,16468
457
455
  ads/llm/guardrails/huggingface.py,sha256=4DFanCYb3R1SKYSFdcEyGH2ywQgf2yFDDZGJtOcoph0,1304
458
456
  ads/llm/langchain/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
459
457
  ads/llm/langchain/plugins/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
460
458
  ads/llm/langchain/plugins/chat_models/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
461
- ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=q398lxXycKlAtPmkVqeEE-Uaqymj13HZIRaCm2B_xDU,33667
459
+ ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=wWVH7nuN6umNfsHD07NnkuoaAGhFy6IKGgx_v9QgYG0,35405
462
460
  ads/llm/langchain/plugins/llms/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
463
- ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=ng3pEoXXEaCc_qSHkXwyJmZC9dGPO-imQT4JN6jAJnc,32353
461
+ ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=0QGNpDuV_QorZw9i62PEkTqRxOLs4d2aPrg_lXq0akQ,32466
464
462
  ads/llm/serializers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
465
463
  ads/llm/serializers/retrieval_qa.py,sha256=VQ4rFRrDHOpAcMYNvRbT19LcDGwRrE1lczerLQYKxwU,5133
466
464
  ads/llm/serializers/runnable_parallel.py,sha256=USCVhMNi67AiCmu-s_mmOvc0sK7v4yKVwBTJm60x7wE,835
467
- ads/llm/templates/score_chain.jinja2,sha256=H6_riqJlFtnQk7Za4rb7wGffWVLEUxxqgXlsbMPdInY,4869
465
+ ads/llm/templates/score_chain.jinja2,sha256=RVB7RImjGifDbzaZPtfsmANqIiLx3yRJbH2thk_VHWE,4831
468
466
  ads/llm/templates/tool_chat_template_hermes.jinja,sha256=nQgWGwZludNFmUO7V8emgPQud828l9T4e5QmsDyLq4k,5226
469
467
  ads/llm/templates/tool_chat_template_mistral_parallel.jinja,sha256=xkZLgw50a3wPiw9I5HmDlZiEAXPg9wtwnrkhaAiI_1o,4773
470
468
  ads/model/__init__.py,sha256=r4U2NvroKMUa-tqNnXBtND9cA6b1Yefmdj6lgdoKlDk,1900
@@ -472,21 +470,21 @@ ads/model/artifact.py,sha256=ONKyjZKO5wmAYI-GT63z8yLm_QsmIGXcob9KrnwtF5k,20503
472
470
  ads/model/artifact_downloader.py,sha256=-9IYkjZ0LaMWf5foz5HUGTZCEm67f-3LbDsigNlzEPg,9751
473
471
  ads/model/artifact_uploader.py,sha256=jdkpmncczceOc28LyMkv4u6f845HJ1vVCoI-hLBT-RM,11305
474
472
  ads/model/base_properties.py,sha256=YeVyjCync4fzqqruMc9UfZKR4PnscU31n0mf4CJv3R8,7885
475
- ads/model/datascience_model.py,sha256=Hejr_CAOCy2S_fSxNhI4ffis0SoYEVBfrA4MBPtrrzc,62775
476
- ads/model/generic_model.py,sha256=aQco26ziO79q1BkLbRoS7CuE4Se4JYioyjRsFI3U5fU,146170
473
+ ads/model/datascience_model.py,sha256=pKjoVmYWZBXC7wYQVhCJe_ii_aE7FakrjaTWpBRWXLA,82022
474
+ ads/model/generic_model.py,sha256=jjRn0U6X9eVAo_1VMhJoZ6aVKa7J_PNN4tr02XbAYCk,146988
477
475
  ads/model/model_file_description_schema.json,sha256=NZw_U4CvKf9oOdxCKr1eUxq8FHwjR_g0GSDk0Hz3SnE,1402
478
476
  ads/model/model_introspect.py,sha256=z9pJul9dwT9w8flvRguhu0ZKoEkbm2Tvdutw_SHYTeg,9745
479
477
  ads/model/model_metadata.py,sha256=TkE2XU_Gafyct_c7_Fs-eNBD6q-Kpe8v9wYff1UDEaY,54566
480
478
  ads/model/model_metadata_mixin.py,sha256=XJc7GmK0pk8AqBMBPa9jYqm4BgRLkiX08bZhooQcJRw,16898
481
- ads/model/model_properties.py,sha256=EpT8q6_2sRwp28iJEaY4YdmnklqJcMLHy-rj7P2FaZ0,2134
479
+ ads/model/model_properties.py,sha256=OHK2CK3DXcnWtgVm7QNuX7hdHNN8U_y5DZmJfcbTVrE,2190
482
480
  ads/model/model_version_set.py,sha256=Jfj3KS9AfaXTIPu4MMtnhyRoWSu9jxiQGvG4cPfTqB0,22782
483
481
  ads/model/common/.model-ignore,sha256=f4iI4uwnmkV8_zWz36VinQ2N4tnc9eEEbk-03EGuWEU,898
484
482
  ads/model/common/__init__.py,sha256=bAvA1JbCOuOzSs0qK0jJ8hMU2M0FA4wv1QsMFIj3sPM,207
485
483
  ads/model/common/utils.py,sha256=SE4BzCejJ8nj3m8DoRGU7kjpojJAeLVDbbo-I35F26E,4066
486
484
  ads/model/deployment/__init__.py,sha256=4EbCijBURociCrp8d7y3f7-XfqaFKcMOej5ai3zZgdQ,665
487
485
  ads/model/deployment/model_deployer.py,sha256=SARlidE868gbwmVHxjchp6F6x7zPUt_FhaKx4hQHRbw,17672
488
- ads/model/deployment/model_deployment.py,sha256=yGxjGjsaT1JwwKTmnK_T8pCrEJ7wx7o2lwuJ9Xr1lk8,66125
489
- ads/model/deployment/model_deployment_infrastructure.py,sha256=z_-hVut6szzBwuYNAdcQwccCTioU_nHPLxBVoc47QwE,20088
486
+ ads/model/deployment/model_deployment.py,sha256=Z-ab1j0C0KkIgXzh3Cv6r02LDeewY-7Di7btay430C4,66665
487
+ ads/model/deployment/model_deployment_infrastructure.py,sha256=ykLYuhU281P8VwK7rL_-UZtoqfabc0BKxjKXjENOsS4,21366
490
488
  ads/model/deployment/model_deployment_properties.py,sha256=tTK5-W8Zq3PeA6LWrGEIxpRL06cV37HyT8H9DyCkatw,18205
491
489
  ads/model/deployment/model_deployment_runtime.py,sha256=J5IiByj3u8X5_L0gJo6FgNdCCPqwnDkflbSlK6uXbgA,26555
492
490
  ads/model/deployment/common/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
@@ -533,7 +531,7 @@ ads/model/serde/common.py,sha256=cDtblusT8fZ04mbBASg7EC62oaB9Sp7X_NPPhPiDnJk,112
533
531
  ads/model/serde/model_input.py,sha256=MB6Uf4H_UzlAUTRIRqHTW4ZiyQKw0yerGtUE-WFSw-g,18577
534
532
  ads/model/serde/model_serializer.py,sha256=2vi4MoUHZV-V-4r1OWD5YJzwARFqIBv7-oyGeXGhrK4,43197
535
533
  ads/model/service/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
536
- ads/model/service/oci_datascience_model.py,sha256=GpnYql-CKuoYyNhIqctrngCF1qaxJmc8VI0D5uqiQPg,20126
534
+ ads/model/service/oci_datascience_model.py,sha256=aecUIn5RhgUOGiVa9n811p0uZ1pE9HbDLD1litwvB4A,21054
537
535
  ads/model/service/oci_datascience_model_deployment.py,sha256=ONiogPK_wN7omxdnTMAcJhcvDEZQwI_XqmT84Q1xoj0,18472
538
536
  ads/model/service/oci_datascience_model_version_set.py,sha256=lYw9BauH4BNZk2Jdf8mRjFO3MorQDSMPAxkP-inlwiM,5690
539
537
  ads/model/transformer/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
@@ -633,26 +631,28 @@ ads/opctl/operator/common/operator_loader.py,sha256=fpdrqDyOF9h4lsnGOsdDQsZl1xbd
633
631
  ads/opctl/operator/common/operator_schema.yaml,sha256=kIXKI9GCkwGhkby6THJR2zY6YK0waIgPfPxw85I7aG4,3046
634
632
  ads/opctl/operator/common/operator_yaml_generator.py,sha256=hH6wYj7oDYeAsE1grcIF4K1EE_RhguLXltxPbmB65iQ,5108
635
633
  ads/opctl/operator/common/utils.py,sha256=KQMTVimdm2A1igbE4r-u_aT_EQw7DkVQvDNFouYLmME,4971
634
+ ads/opctl/operator/common/data/synthetic.csv,sha256=zAxZ7NsWn0CKRWTW6IUKWWwdJs2OY_-yO1Nme_peFY4,769681
636
635
  ads/opctl/operator/lowcode/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
637
- ads/opctl/operator/lowcode/anomaly/MLoperator,sha256=sCt75S3welsf3YFu4pTWr7x_S_ssEmI7Se6HBO93kf0,475
636
+ ads/opctl/operator/lowcode/anomaly/MLoperator,sha256=mkf13TlGl64AZtgeNy4PVi81Z-0XEvntW2y7ME8wikw,509
638
637
  ads/opctl/operator/lowcode/anomaly/README.md,sha256=E3vpyc5iKvIq8iuvGj8ZvLq3i_Q5q7n78KfTKHFfb2s,10123
639
638
  ads/opctl/operator/lowcode/anomaly/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
640
639
  ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9ndF86RPd7KJ_kanltjM,3328
641
640
  ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
642
- ads/opctl/operator/lowcode/anomaly/const.py,sha256=XKJkWFkXy6BYPn68L0bopYOUUKbzOI_AyxBDEiGWgaM,3048
641
+ ads/opctl/operator/lowcode/anomaly/const.py,sha256=Ib7OmvXI0BFzziCz9wHS8ZLX0wbwJILndMRsd2kG7qI,4843
643
642
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
644
643
  ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
645
- ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=j2JvCyCStZ3owDxAm7b_v0E5Hrx7gE6DbYv1hSjOxD4,9314
646
- ads/opctl/operator/lowcode/anomaly/utils.py,sha256=Uj98FO5oM-sLjoqsOnoBmgSMF7iJiL0XX-gvphw9yiU,2746
644
+ ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=CrqXpSgGPwv4NVL5gEZNHChdVCFilm4k9OGDbY9UnGw,9509
645
+ ads/opctl/operator/lowcode/anomaly/utils.py,sha256=edOuq7lbZ4Iz_T9FXtFv21ePBElaCGutfWE1QOhvxsg,2841
647
646
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
648
647
  ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
648
+ ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=ifcIDHsQLlUOEpP_nzu_DFOOaL7Gos7YkaZTMvenw2k,5839
649
649
  ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=Zn4ySrGfLbaKW0KIduwdnY0-YK8XAprCcMhElA4g-Vc,3401
650
- ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Q9FjVIOjnyctGDvYWCMB_rtusbl5IK1wCzkVze_MKxw,3984
650
+ ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=KfbW5ffJj7oDIOfbrSPd5pzOYR8jO_9vmPt2S7uzQRc,4108
651
651
  ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=bq2VgRxLIRFov8pEoYCPGw3AXUmTJktA2nszQN8La2c,15365
652
- ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=uRVD44_VCJVJzr3s3Cy_fPpYyP45JwKRmmN7uE2lw3I,3450
652
+ ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=yld9CI-ZZJO2dDB24aOm6SLXbibNMeK1NQEZHpGNdfY,4144
653
653
  ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=Kjsuio7cM-dKv63p58B9Jj0XPly6Z0hqfghs5nnXepA,2671
654
654
  ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eQpNyax1hnufLHhL8Rbzee28comD2fF7TLn3TpzMrs8,2583
655
- ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=HUyWQOFjfLkIWsnmhfEn9354slKStlv6jIwQi5xzVj0,4270
655
+ ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=bl50nulatim34tqlNsuJASSPlILSx_aCypdHr4wouoM,4270
656
656
  ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=_v0KkdTKD3nqzOu3P5tE7bSV63Jy91h6Hr88Eequ0RU,4175
657
657
  ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
658
658
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
@@ -813,8 +813,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
813
813
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
814
814
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
815
815
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
816
- oracle_ads-2.12.1.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
817
- oracle_ads-2.12.1.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
818
- oracle_ads-2.12.1.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
819
- oracle_ads-2.12.1.dist-info/METADATA,sha256=5I5Ky6jb3u3gyBOYwjEu4ov9lwZAme6eaE7A_wcotMo,16150
820
- oracle_ads-2.12.1.dist-info/RECORD,,
816
+ oracle_ads-2.12.3.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
817
+ oracle_ads-2.12.3.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
818
+ oracle_ads-2.12.3.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
819
+ oracle_ads-2.12.3.dist-info/METADATA,sha256=y5hVMbLVQSS4QuN-cS9TW6TfE8Z8ntnDvgNMMs0-wbw,16217
820
+ oracle_ads-2.12.3.dist-info/RECORD,,