oracle-ads 2.12.1__py3-none-any.whl → 2.12.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ads/aqua/common/enums.py +9 -0
- ads/aqua/common/utils.py +83 -6
- ads/aqua/config/config.py +0 -15
- ads/aqua/constants.py +2 -0
- ads/aqua/extension/deployment_handler.py +2 -0
- ads/aqua/extension/finetune_handler.py +1 -2
- ads/aqua/extension/ui_handler.py +22 -3
- ads/aqua/finetuning/entities.py +5 -4
- ads/aqua/finetuning/finetuning.py +13 -8
- ads/aqua/model/constants.py +1 -0
- ads/aqua/model/entities.py +2 -0
- ads/aqua/model/model.py +223 -138
- ads/aqua/modeldeployment/deployment.py +106 -62
- ads/aqua/modeldeployment/entities.py +10 -2
- ads/aqua/ui.py +29 -16
- ads/config.py +3 -8
- ads/llm/deploy.py +6 -0
- ads/llm/guardrails/base.py +0 -1
- ads/llm/langchain/plugins/chat_models/oci_data_science.py +118 -41
- ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py +18 -14
- ads/llm/templates/score_chain.jinja2 +0 -1
- ads/model/datascience_model.py +519 -16
- ads/model/deployment/model_deployment.py +13 -0
- ads/model/deployment/model_deployment_infrastructure.py +34 -0
- ads/model/generic_model.py +10 -0
- ads/model/model_properties.py +1 -0
- ads/model/service/oci_datascience_model.py +28 -0
- ads/opctl/operator/common/data/synthetic.csv +16001 -0
- ads/opctl/operator/lowcode/anomaly/MLoperator +1 -0
- ads/opctl/operator/lowcode/anomaly/const.py +66 -1
- ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py +161 -0
- ads/opctl/operator/lowcode/anomaly/model/autots.py +30 -15
- ads/opctl/operator/lowcode/anomaly/model/factory.py +15 -3
- ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py +1 -1
- ads/opctl/operator/lowcode/anomaly/schema.yaml +10 -0
- ads/opctl/operator/lowcode/anomaly/utils.py +3 -0
- {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/METADATA +2 -1
- {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/RECORD +41 -41
- ads/aqua/config/deployment_config_defaults.json +0 -37
- ads/aqua/config/resource_limit_names.json +0 -8
- {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/LICENSE.txt +0 -0
- {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/WHEEL +0 -0
- {oracle_ads-2.12.1.dist-info → oracle_ads-2.12.3.dist-info}/entry_points.txt +0 -0
@@ -21,6 +21,23 @@ class SupportedModels(str, metaclass=ExtendedEnumMeta):
|
|
21
21
|
EE = "ee"
|
22
22
|
ISOLATIONFOREST = "isolationforest"
|
23
23
|
|
24
|
+
# point anomaly
|
25
|
+
DAGMM = "dagmm"
|
26
|
+
DEEP_POINT_ANOMALY_DETECTOR = "deep_point_anomaly_detector"
|
27
|
+
LSTM_ED = "lstm_ed"
|
28
|
+
SPECTRAL_RESIDUAL = "spectral_residual"
|
29
|
+
VAE = "vae"
|
30
|
+
|
31
|
+
# forecast_based
|
32
|
+
ARIMA = "arima"
|
33
|
+
ETS = "ets"
|
34
|
+
PROPHET = "prophet"
|
35
|
+
SARIMA = "sarima"
|
36
|
+
|
37
|
+
# changepoint
|
38
|
+
BOCPD = "bocpd"
|
39
|
+
|
40
|
+
|
24
41
|
class NonTimeADSupportedModels(str, metaclass=ExtendedEnumMeta):
|
25
42
|
"""Supported non time-based anomaly detection models."""
|
26
43
|
|
@@ -29,7 +46,7 @@ class NonTimeADSupportedModels(str, metaclass=ExtendedEnumMeta):
|
|
29
46
|
RandomCutForest = "randomcutforest"
|
30
47
|
# TODO : Add DBScan
|
31
48
|
# DBScan = "dbscan"
|
32
|
-
|
49
|
+
|
33
50
|
|
34
51
|
class TODSSubModels(str, metaclass=ExtendedEnumMeta):
|
35
52
|
"""Supported TODS sub models."""
|
@@ -61,6 +78,54 @@ TODS_MODEL_MAP = {
|
|
61
78
|
}
|
62
79
|
|
63
80
|
|
81
|
+
class MerlionADModels(str, metaclass=ExtendedEnumMeta):
|
82
|
+
"""Supported Merlion AD sub models."""
|
83
|
+
|
84
|
+
# point anomaly
|
85
|
+
DAGMM = "dagmm"
|
86
|
+
DEEP_POINT_ANOMALY_DETECTOR = "deep_point_anomaly_detector"
|
87
|
+
LSTM_ED = "lstm_ed"
|
88
|
+
SPECTRAL_RESIDUAL = "spectral_residual"
|
89
|
+
VAE = "vae"
|
90
|
+
|
91
|
+
# forecast_based
|
92
|
+
ARIMA = "arima"
|
93
|
+
ETS = "ets"
|
94
|
+
PROPHET = "prophet"
|
95
|
+
SARIMA = "sarima"
|
96
|
+
|
97
|
+
# changepoint
|
98
|
+
BOCPD = "bocpd"
|
99
|
+
|
100
|
+
|
101
|
+
MERLIONAD_IMPORT_MODEL_MAP = {
|
102
|
+
MerlionADModels.DAGMM: ".dagmm",
|
103
|
+
MerlionADModels.DEEP_POINT_ANOMALY_DETECTOR: ".deep_point_anomaly_detector",
|
104
|
+
MerlionADModels.LSTM_ED: ".lstm_ed",
|
105
|
+
MerlionADModels.SPECTRAL_RESIDUAL: ".spectral_residual",
|
106
|
+
MerlionADModels.VAE: ".vae",
|
107
|
+
MerlionADModels.ARIMA: ".forecast_based.arima",
|
108
|
+
MerlionADModels.ETS: ".forecast_based.ets",
|
109
|
+
MerlionADModels.PROPHET: ".forecast_based.prophet",
|
110
|
+
MerlionADModels.SARIMA: ".forecast_based.sarima",
|
111
|
+
MerlionADModels.BOCPD: ".change_point.bocpd",
|
112
|
+
}
|
113
|
+
|
114
|
+
|
115
|
+
MERLIONAD_MODEL_MAP = {
|
116
|
+
MerlionADModels.DAGMM: "DAGMM",
|
117
|
+
MerlionADModels.DEEP_POINT_ANOMALY_DETECTOR: "DeepPointAnomalyDetector",
|
118
|
+
MerlionADModels.LSTM_ED: "LSTMED",
|
119
|
+
MerlionADModels.SPECTRAL_RESIDUAL: "SpectralResidual",
|
120
|
+
MerlionADModels.VAE: "VAE",
|
121
|
+
MerlionADModels.ARIMA: "ArimaDetector",
|
122
|
+
MerlionADModels.ETS: "ETSDetector",
|
123
|
+
MerlionADModels.PROPHET: "ProphetDetector",
|
124
|
+
MerlionADModels.SARIMA: "SarimaDetector",
|
125
|
+
MerlionADModels.BOCPD: "BOCPD",
|
126
|
+
}
|
127
|
+
|
128
|
+
|
64
129
|
class SupportedMetrics(str, metaclass=ExtendedEnumMeta):
|
65
130
|
UNSUPERVISED_UNIFY95 = "unsupervised_unify95"
|
66
131
|
UNSUPERVISED_UNIFY95_LOG_LOSS = "unsupervised_unify95_log_loss"
|
@@ -0,0 +1,161 @@
|
|
1
|
+
#!/usr/bin/env python
|
2
|
+
|
3
|
+
# Copyright (c) 2023, 2024 Oracle and/or its affiliates.
|
4
|
+
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
5
|
+
|
6
|
+
import importlib
|
7
|
+
|
8
|
+
import numpy as np
|
9
|
+
import pandas as pd
|
10
|
+
from merlion.post_process.threshold import AggregateAlarms
|
11
|
+
from merlion.utils import TimeSeries
|
12
|
+
|
13
|
+
from ads.common.decorator.runtime_dependency import runtime_dependency
|
14
|
+
from ads.opctl.operator.lowcode.anomaly.const import (
|
15
|
+
MERLIONAD_IMPORT_MODEL_MAP,
|
16
|
+
MERLIONAD_MODEL_MAP,
|
17
|
+
OutputColumns,
|
18
|
+
SupportedModels,
|
19
|
+
)
|
20
|
+
|
21
|
+
from .anomaly_dataset import AnomalyOutput
|
22
|
+
from .base_model import AnomalyOperatorBaseModel
|
23
|
+
|
24
|
+
|
25
|
+
class AnomalyMerlionOperatorModel(AnomalyOperatorBaseModel):
|
26
|
+
"""Class representing Merlion Anomaly Detection operator model."""
|
27
|
+
|
28
|
+
@runtime_dependency(
|
29
|
+
module="merlion",
|
30
|
+
err_msg=(
|
31
|
+
"Please run `pip3 install salesforce-merlion[all]` to "
|
32
|
+
"install the required packages."
|
33
|
+
),
|
34
|
+
)
|
35
|
+
def _get_config_model(self, model_name):
|
36
|
+
"""
|
37
|
+
Returns a dictionary with model names as keys and a list of model config and model object as values.
|
38
|
+
|
39
|
+
Parameters
|
40
|
+
----------
|
41
|
+
model_name : str
|
42
|
+
model name from the Merlion model list.
|
43
|
+
|
44
|
+
Returns
|
45
|
+
-------
|
46
|
+
dict
|
47
|
+
A dictionary with model names as keys and a list of model config and model object as values.
|
48
|
+
"""
|
49
|
+
model_config_map = {}
|
50
|
+
model_module = importlib.import_module(
|
51
|
+
name=MERLIONAD_IMPORT_MODEL_MAP.get(model_name),
|
52
|
+
package="merlion.models.anomaly",
|
53
|
+
)
|
54
|
+
model_config = getattr(
|
55
|
+
model_module, MERLIONAD_MODEL_MAP.get(model_name) + "Config"
|
56
|
+
)
|
57
|
+
model = getattr(model_module, MERLIONAD_MODEL_MAP.get(model_name))
|
58
|
+
model_config_map[model_name] = [model_config, model]
|
59
|
+
return model_config_map
|
60
|
+
|
61
|
+
def _build_model(self) -> AnomalyOutput:
|
62
|
+
"""
|
63
|
+
Builds a Merlion anomaly detection model and trains it using the given data.
|
64
|
+
|
65
|
+
Parameters
|
66
|
+
----------
|
67
|
+
None
|
68
|
+
|
69
|
+
Returns
|
70
|
+
-------
|
71
|
+
AnomalyOutput
|
72
|
+
An AnomalyOutput object containing the anomaly detection results.
|
73
|
+
"""
|
74
|
+
model_kwargs = self.spec.model_kwargs
|
75
|
+
anomaly_output = AnomalyOutput(date_column="index")
|
76
|
+
anomaly_threshold = model_kwargs.get("anomaly_threshold", 95)
|
77
|
+
model_config_map = {}
|
78
|
+
model_config_map = self._get_config_model(self.spec.model)
|
79
|
+
|
80
|
+
date_column = self.spec.datetime_column.name
|
81
|
+
|
82
|
+
anomaly_output = AnomalyOutput(date_column=date_column)
|
83
|
+
# model_objects = defaultdict(list)
|
84
|
+
for target, df in self.datasets.full_data_dict.items():
|
85
|
+
data = df.set_index(date_column)
|
86
|
+
data = TimeSeries.from_pd(data)
|
87
|
+
for model_name, (model_config, model) in model_config_map.items():
|
88
|
+
if self.spec.model == SupportedModels.BOCPD:
|
89
|
+
model_config = model_config(**self.spec.model_kwargs)
|
90
|
+
else:
|
91
|
+
model_config = model_config(
|
92
|
+
**{
|
93
|
+
**self.spec.model_kwargs,
|
94
|
+
"threshold": AggregateAlarms(
|
95
|
+
alm_threshold=model_kwargs.get("alm_threshold")
|
96
|
+
if model_kwargs.get("alm_threshold")
|
97
|
+
else None
|
98
|
+
),
|
99
|
+
}
|
100
|
+
)
|
101
|
+
if hasattr(model_config, "target_seq_index"):
|
102
|
+
model_config.target_seq_index = df.columns.get_loc(
|
103
|
+
self.spec.target_column
|
104
|
+
)
|
105
|
+
model = model(model_config)
|
106
|
+
|
107
|
+
scores = model.train(train_data=data, anomaly_labels=None)
|
108
|
+
scores = scores.to_pd().reset_index()
|
109
|
+
scores["anom_score"] = (
|
110
|
+
scores["anom_score"] - scores["anom_score"].min()
|
111
|
+
) / (scores["anom_score"].max() - scores["anom_score"].min())
|
112
|
+
|
113
|
+
try:
|
114
|
+
y_pred = model.get_anomaly_label(data)
|
115
|
+
y_pred = (y_pred.to_pd().reset_index()["anom_score"] > 0).astype(
|
116
|
+
int
|
117
|
+
)
|
118
|
+
except Exception as e:
|
119
|
+
y_pred = (
|
120
|
+
scores["anom_score"]
|
121
|
+
> np.percentile(
|
122
|
+
scores["anom_score"],
|
123
|
+
anomaly_threshold,
|
124
|
+
)
|
125
|
+
).astype(int)
|
126
|
+
|
127
|
+
index_col = df.columns[0]
|
128
|
+
|
129
|
+
anomaly = pd.DataFrame(
|
130
|
+
{index_col: df[index_col], OutputColumns.ANOMALY_COL: y_pred}
|
131
|
+
).reset_index(drop=True)
|
132
|
+
score = pd.DataFrame(
|
133
|
+
{
|
134
|
+
index_col: df[index_col],
|
135
|
+
OutputColumns.SCORE_COL: scores["anom_score"],
|
136
|
+
}
|
137
|
+
).reset_index(drop=True)
|
138
|
+
# model_objects[model_name].append(model)
|
139
|
+
|
140
|
+
anomaly_output.add_output(target, anomaly, score)
|
141
|
+
return anomaly_output
|
142
|
+
|
143
|
+
def _generate_report(self):
|
144
|
+
"""Genreates a report for the model."""
|
145
|
+
import report_creator as rc
|
146
|
+
|
147
|
+
other_sections = [
|
148
|
+
rc.Heading("Selected Models Overview", level=2),
|
149
|
+
rc.Text(
|
150
|
+
"The following tables provide information regarding the chosen model."
|
151
|
+
),
|
152
|
+
]
|
153
|
+
|
154
|
+
model_description = rc.Text(
|
155
|
+
"The Merlion anomaly detection model is a full-stack automated machine learning system for anomaly detection."
|
156
|
+
)
|
157
|
+
|
158
|
+
return (
|
159
|
+
model_description,
|
160
|
+
other_sections,
|
161
|
+
)
|
@@ -5,15 +5,17 @@
|
|
5
5
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
6
6
|
|
7
7
|
from ads.common.decorator.runtime_dependency import runtime_dependency
|
8
|
+
from ads.opctl import logger
|
8
9
|
from ads.opctl.operator.lowcode.anomaly.const import OutputColumns
|
10
|
+
|
11
|
+
from ..const import SupportedModels
|
9
12
|
from .anomaly_dataset import AnomalyOutput
|
10
13
|
from .base_model import AnomalyOperatorBaseModel
|
11
|
-
from ..const import SupportedModels
|
12
|
-
from ads.opctl import logger
|
13
14
|
|
14
15
|
|
15
16
|
class AutoTSOperatorModel(AnomalyOperatorBaseModel):
|
16
17
|
"""Class representing AutoTS Anomaly Detection operator model."""
|
18
|
+
|
17
19
|
model_mapping = {
|
18
20
|
"isolationforest": "IsolationForest",
|
19
21
|
"lof": "LOF",
|
@@ -22,30 +24,43 @@ class AutoTSOperatorModel(AnomalyOperatorBaseModel):
|
|
22
24
|
"rolling_zscore": "rolling_zscore",
|
23
25
|
"mad": "mad",
|
24
26
|
"minmax": "minmax",
|
25
|
-
"iqr": "IQR"
|
27
|
+
"iqr": "IQR",
|
26
28
|
}
|
27
29
|
|
28
30
|
@runtime_dependency(
|
29
31
|
module="autots",
|
30
32
|
err_msg=(
|
31
|
-
|
32
|
-
|
33
|
+
"Please run `pip3 install autots` to "
|
34
|
+
"install the required dependencies for AutoTS."
|
33
35
|
),
|
34
36
|
)
|
35
37
|
def _build_model(self) -> AnomalyOutput:
|
36
38
|
from autots.evaluator.anomaly_detector import AnomalyDetector
|
37
39
|
|
38
|
-
method =
|
39
|
-
|
40
|
-
|
41
|
-
|
40
|
+
method = (
|
41
|
+
SupportedModels.ISOLATIONFOREST
|
42
|
+
if self.spec.model == SupportedModels.AutoTS
|
43
|
+
else self.spec.model
|
44
|
+
)
|
45
|
+
model_params = {
|
46
|
+
"method": self.model_mapping[method],
|
47
|
+
"transform_dict": self.spec.model_kwargs.get("transform_dict", {}),
|
48
|
+
"output": self.spec.model_kwargs.get("output", "univariate"),
|
49
|
+
"method_params": {},
|
50
|
+
}
|
42
51
|
# Supported methods with contamination param
|
43
|
-
if method in [
|
44
|
-
|
45
|
-
|
46
|
-
|
47
|
-
|
48
|
-
|
52
|
+
if method in [
|
53
|
+
SupportedModels.ISOLATIONFOREST,
|
54
|
+
SupportedModels.LOF,
|
55
|
+
SupportedModels.EE,
|
56
|
+
]:
|
57
|
+
model_params["method_params"]["contamination"] = (
|
58
|
+
self.spec.contamination if self.spec.contamination else 0.01
|
59
|
+
)
|
60
|
+
elif self.spec.contamination:
|
61
|
+
raise ValueError(
|
62
|
+
f'The contamination parameter is not supported for the selected model "{method}"'
|
63
|
+
)
|
49
64
|
logger.info(f"model params: {model_params}")
|
50
65
|
|
51
66
|
model = AnomalyDetector(**model_params)
|
@@ -4,14 +4,16 @@
|
|
4
4
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
5
5
|
|
6
6
|
from ads.opctl.operator.lowcode.anomaly.utils import select_auto_model
|
7
|
+
|
8
|
+
from ..const import NonTimeADSupportedModels, SupportedModels
|
9
|
+
from ..operator_config import AnomalyOperatorConfig
|
7
10
|
from .anomaly_dataset import AnomalyDatasets
|
11
|
+
from .anomaly_merlion import AnomalyMerlionOperatorModel
|
8
12
|
from .autots import AutoTSOperatorModel
|
9
13
|
from .base_model import AnomalyOperatorBaseModel
|
10
14
|
from .isolationforest import IsolationForestOperatorModel
|
11
15
|
from .oneclasssvm import OneClassSVMOperatorModel
|
12
16
|
from .randomcutforest import RandomCutForestOperatorModel
|
13
|
-
from ..const import NonTimeADSupportedModels, SupportedModels
|
14
|
-
from ..operator_config import AnomalyOperatorConfig
|
15
17
|
|
16
18
|
|
17
19
|
class UnSupportedModelError(Exception):
|
@@ -48,7 +50,17 @@ class AnomalyOperatorModelFactory:
|
|
48
50
|
SupportedModels.ZSCORE: AutoTSOperatorModel,
|
49
51
|
SupportedModels.ROLLING_ZSCORE: AutoTSOperatorModel,
|
50
52
|
SupportedModels.EE: AutoTSOperatorModel,
|
51
|
-
SupportedModels.MAD: AutoTSOperatorModel
|
53
|
+
SupportedModels.MAD: AutoTSOperatorModel,
|
54
|
+
SupportedModels.DAGMM: AnomalyMerlionOperatorModel,
|
55
|
+
SupportedModels.DEEP_POINT_ANOMALY_DETECTOR: AnomalyMerlionOperatorModel,
|
56
|
+
SupportedModels.LSTM_ED: AnomalyMerlionOperatorModel,
|
57
|
+
SupportedModels.SPECTRAL_RESIDUAL: AnomalyMerlionOperatorModel,
|
58
|
+
SupportedModels.VAE: AnomalyMerlionOperatorModel,
|
59
|
+
SupportedModels.ARIMA: AnomalyMerlionOperatorModel,
|
60
|
+
SupportedModels.ETS: AnomalyMerlionOperatorModel,
|
61
|
+
SupportedModels.PROPHET: AnomalyMerlionOperatorModel,
|
62
|
+
SupportedModels.SARIMA: AnomalyMerlionOperatorModel,
|
63
|
+
SupportedModels.BOCPD: AnomalyMerlionOperatorModel,
|
52
64
|
}
|
53
65
|
|
54
66
|
_NonTime_MAP = {
|
@@ -36,7 +36,7 @@ class RandomCutForestOperatorModel(AnomalyOperatorBaseModel):
|
|
36
36
|
# Set tree parameters
|
37
37
|
num_trees = model_kwargs.get("num_trees", 200)
|
38
38
|
shingle_size = model_kwargs.get("shingle_size", None)
|
39
|
-
anomaly_threshold = model_kwargs.get("
|
39
|
+
anomaly_threshold = model_kwargs.get("anomaly_threshold", 95)
|
40
40
|
|
41
41
|
for target, df in self.datasets.full_data_dict.items():
|
42
42
|
try:
|
@@ -370,6 +370,16 @@ spec:
|
|
370
370
|
- rolling_zscore
|
371
371
|
- mad
|
372
372
|
- ee
|
373
|
+
- dagmm
|
374
|
+
- deep_point_anomaly_detector
|
375
|
+
- lstm_ed
|
376
|
+
- spectral_residual
|
377
|
+
- vae
|
378
|
+
- arima
|
379
|
+
- ets
|
380
|
+
- sarima
|
381
|
+
- bocpd
|
382
|
+
- prophet
|
373
383
|
meta:
|
374
384
|
description: "The model to be used for anomaly detection"
|
375
385
|
|
@@ -5,6 +5,7 @@
|
|
5
5
|
|
6
6
|
import os
|
7
7
|
|
8
|
+
import numpy as np
|
8
9
|
import pandas as pd
|
9
10
|
|
10
11
|
from ads.opctl import logger
|
@@ -27,6 +28,8 @@ def _build_metrics_df(y_true, y_pred, column_name):
|
|
27
28
|
)
|
28
29
|
|
29
30
|
metrics = {}
|
31
|
+
np.nan_to_num(y_true, copy=False)
|
32
|
+
np.nan_to_num(y_pred, copy=False)
|
30
33
|
metrics[SupportedMetrics.RECALL] = recall_score(y_true, y_pred)
|
31
34
|
metrics[SupportedMetrics.PRECISION] = precision_score(y_true, y_pred)
|
32
35
|
metrics[SupportedMetrics.ACCURACY] = accuracy_score(y_true, y_pred)
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: oracle_ads
|
3
|
-
Version: 2.12.
|
3
|
+
Version: 2.12.3
|
4
4
|
Summary: Oracle Accelerated Data Science SDK
|
5
5
|
Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
|
6
6
|
Author: Oracle Data Science
|
@@ -40,6 +40,7 @@ Requires-Dist: oracledb ; extra == "anomaly"
|
|
40
40
|
Requires-Dist: report-creator==1.0.9 ; extra == "anomaly"
|
41
41
|
Requires-Dist: rrcf==0.4.4 ; extra == "anomaly"
|
42
42
|
Requires-Dist: scikit-learn ; extra == "anomaly"
|
43
|
+
Requires-Dist: salesforce-merlion[all]==2.0.4 ; extra == "anomaly"
|
43
44
|
Requires-Dist: jupyter_server ; extra == "aqua"
|
44
45
|
Requires-Dist: hdfs[kerberos] ; extra == "bds"
|
45
46
|
Requires-Dist: ibis-framework[impala] ; extra == "bds"
|
@@ -1,22 +1,20 @@
|
|
1
1
|
ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
|
2
2
|
ads/cli.py,sha256=hjRcQfXFzkh37fbyUBg95I3R0brslZLf9IQU8nSCxio,3933
|
3
|
-
ads/config.py,sha256=
|
3
|
+
ads/config.py,sha256=WGFgS5-dxqC9_iRJKakn-mh9545gHJpWB_Y0hT5O3ec,8016
|
4
4
|
ads/aqua/__init__.py,sha256=IUKZAsxUGVicsyeSwsGwK6rAUJ1vIUW9ywduA3U22xc,1015
|
5
5
|
ads/aqua/app.py,sha256=BQuQ9RERU0rKmn3N3xicKzYaXOd7xBwX1aVuVLNgw98,11993
|
6
6
|
ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
|
7
|
-
ads/aqua/constants.py,sha256=
|
7
|
+
ads/aqua/constants.py,sha256=UAfB1aQXMDJ4OQ98IeZb4l5TYhmCsnwXbS4Uylgnfro,2947
|
8
8
|
ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
|
9
|
-
ads/aqua/ui.py,sha256=
|
9
|
+
ads/aqua/ui.py,sha256=hGl4btUsMImkpzZ-Ae_WVVaRqfpdG_gUeHKD9E1nKbE,26195
|
10
10
|
ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
|
11
11
|
ads/aqua/common/decorator.py,sha256=XFS7tYGkN4dVzmB1wTYiJk1XqJ-VLhvzfZjExiQClgc,3640
|
12
12
|
ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
|
13
|
-
ads/aqua/common/enums.py,sha256=
|
13
|
+
ads/aqua/common/enums.py,sha256=HnaraHfkYmuqC5mEF7gyvQmqbOc6r_9EI2MF-cieb5o,2991
|
14
14
|
ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
|
15
|
-
ads/aqua/common/utils.py,sha256=
|
15
|
+
ads/aqua/common/utils.py,sha256=n8Da5PO-28xj9WG7w8zSQDoLCRs_kQRIrk_yXW-W85o,37310
|
16
16
|
ads/aqua/config/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
|
17
|
-
ads/aqua/config/config.py,sha256=
|
18
|
-
ads/aqua/config/deployment_config_defaults.json,sha256=1fzb8EZOcFMjwktes40qgetKvdmUtEGCl4Jp4eb8tJg,665
|
19
|
-
ads/aqua/config/resource_limit_names.json,sha256=0ecGLCLxll9qt3E7fVZPtzpurqe1PGdTk0Rjn_cWh8k,235
|
17
|
+
ads/aqua/config/config.py,sha256=MNY4ttccaQdhxUyS1o367YIDl-U_AiSLVlgvzSd7JE4,944
|
20
18
|
ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
|
21
19
|
ads/aqua/config/evaluation/evaluation_service_config.py,sha256=i3yRcCiwCwVp-7YGWBWO7pPg2iWlN9Pz0upCSYOVVj4,8769
|
22
20
|
ads/aqua/config/evaluation/evaluation_service_model_config.py,sha256=ITs_RBCynWuygjNdcUD7e2BLbPyPP3UozryEWlnju9s,280
|
@@ -36,32 +34,32 @@ ads/aqua/extension/aqua_ws_msg_handler.py,sha256=PcRhBqGpq5aOPP0ibhaKfmkA8ajimld
|
|
36
34
|
ads/aqua/extension/base_handler.py,sha256=MuVxsJG66NdatL-Hh99UD3VQOQw1ir-q2YBajwh9cJk,5132
|
37
35
|
ads/aqua/extension/common_handler.py,sha256=Oz3riHDy5pFfbArLge5iaaRoK8PEAnkBvhqqVGbUsvE,4196
|
38
36
|
ads/aqua/extension/common_ws_msg_handler.py,sha256=pMX79tmJKTKog684o6vuwZkAD47l8SxtRx5TNn8se7k,2230
|
39
|
-
ads/aqua/extension/deployment_handler.py,sha256=
|
37
|
+
ads/aqua/extension/deployment_handler.py,sha256=UOhtlYNEHSXOG2oCQ9pLNZzOkcY0mbm7EeMhRc_TuKg,9600
|
40
38
|
ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
|
41
39
|
ads/aqua/extension/errors.py,sha256=i37EnRzxGgvxzUNoyEORzHYmB296DGOUb6pm7VwEyTU,451
|
42
40
|
ads/aqua/extension/evaluation_handler.py,sha256=RT2W7WDtxNIT0uirLfTcDlmTPYCuMuWRhiDxYZYliZs,4542
|
43
41
|
ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
|
44
|
-
ads/aqua/extension/finetune_handler.py,sha256=
|
42
|
+
ads/aqua/extension/finetune_handler.py,sha256=abiDXNhkhtoV9hrYhCzwhDjdQKlqQ_KSqxKWntkvh3E,3288
|
45
43
|
ads/aqua/extension/model_handler.py,sha256=lsa8cRblUbITOtn2K9HuPWrl_CVGV2GXHq2aiGh4K5U,9130
|
46
44
|
ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
|
47
|
-
ads/aqua/extension/ui_handler.py,sha256=
|
45
|
+
ads/aqua/extension/ui_handler.py,sha256=3TibTMeqcsSWfPsorspFrhIV0PRh8_4FoWpudycT80g,10664
|
48
46
|
ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
|
49
47
|
ads/aqua/extension/utils.py,sha256=UKafTX6tN6ObOkWCLy6c3y_cNmUHfD64PtIaR5B7Sl0,1476
|
50
48
|
ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
51
49
|
ads/aqua/extension/models/ws_models.py,sha256=-m6IJRS-4I6AMLDwgu19XdrvHyOStuBx9t4B0LgS07g,3348
|
52
50
|
ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
|
53
51
|
ads/aqua/finetuning/constants.py,sha256=7LGF-rbbp-3IS8APjM9ABVHvm0EsaoC9A7XvxTgnRz4,743
|
54
|
-
ads/aqua/finetuning/entities.py,sha256=
|
55
|
-
ads/aqua/finetuning/finetuning.py,sha256=
|
52
|
+
ads/aqua/finetuning/entities.py,sha256=S7Ll_0WyWGh23my-6ow3vwHLDZqTel8CMCoE9oLowOY,4126
|
53
|
+
ads/aqua/finetuning/finetuning.py,sha256=CKJflhDAt964weaMavwyCNa3pcbBbs_j7CeO8o-eDUs,24699
|
56
54
|
ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
|
57
|
-
ads/aqua/model/constants.py,sha256=
|
58
|
-
ads/aqua/model/entities.py,sha256=
|
55
|
+
ads/aqua/model/constants.py,sha256=H239zDu3koa3UTdw-uQveXHX2NDwidclVcS4QIrCTJo,1593
|
56
|
+
ads/aqua/model/entities.py,sha256=9SsdJfoBH7fDKGXQYs8pKLiZ-SqFnXaZrJod4FWU3mI,9670
|
59
57
|
ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
|
60
|
-
ads/aqua/model/model.py,sha256=
|
58
|
+
ads/aqua/model/model.py,sha256=Vkm1oszD6Lw1rl8Yxf2azuWI1zF4jl-QE5Sk5SEDKWM,57414
|
61
59
|
ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
|
62
60
|
ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
|
63
|
-
ads/aqua/modeldeployment/deployment.py,sha256=
|
64
|
-
ads/aqua/modeldeployment/entities.py,sha256=
|
61
|
+
ads/aqua/modeldeployment/deployment.py,sha256=OE_jpPCGNxC6-p88kk7Xx1yQ1rKALgALRgcOnfLZb0A,29970
|
62
|
+
ads/aqua/modeldeployment/entities.py,sha256=7aoE2HemsFEvkQynAI4PCfZBcfPJrvbyZeEYvc7OIAA,5111
|
65
63
|
ads/aqua/modeldeployment/inference.py,sha256=JPqzbHJoM-PpIU_Ft9lHudO9_1vFr7OPQ2GHjPoAufU,2142
|
66
64
|
ads/aqua/training/__init__.py,sha256=w2DNWltXtASQgbrHyvKo0gMs5_chZoG-CSDMI4qe7i0,202
|
67
65
|
ads/aqua/training/exceptions.py,sha256=S5gHUeUiiPErxuwqG0TB1Yf11mhsAGNYb9o3zd1L1dI,13627
|
@@ -449,22 +447,22 @@ ads/jobs/templates/oci_metrics.py,sha256=3l4h17W_dheSK34thp95pMvG0iqBufoXck3I8_4
|
|
449
447
|
ads/llm/__init__.py,sha256=t5yoDsD5huaEp38qdI5iTtkfXmJQ-5XDSrvcHM_XnHU,830
|
450
448
|
ads/llm/chain.py,sha256=KuQcZGQsrlcl3CjtLk8KOHtSu0XJvFRL_Wv0Gz2RdF4,9526
|
451
449
|
ads/llm/chat_template.py,sha256=t2QRfLLR_c_cq3JqABghWqiCSWjjuVc_mfEN-yVYG10,934
|
452
|
-
ads/llm/deploy.py,sha256=
|
450
|
+
ads/llm/deploy.py,sha256=5oZipFWU6q_9dCyt3WE4ic-n5rNZgQsYU_3lS_Vp_nY,2275
|
453
451
|
ads/llm/requirements.txt,sha256=vaVwhWCteqmo0fRsEk6M8S1LQMjULU_Bt_syBAa2G-s,55
|
454
452
|
ads/llm/serialize.py,sha256=WjQNMPACyR8nIh1dB7BLFUmqUrumld6vt91lg1DWzWI,7281
|
455
453
|
ads/llm/guardrails/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
456
|
-
ads/llm/guardrails/base.py,sha256=
|
454
|
+
ads/llm/guardrails/base.py,sha256=scli_YSqDbArIJW5sA5PLjCd6G8_-dNUcpTybvQvZnk,16468
|
457
455
|
ads/llm/guardrails/huggingface.py,sha256=4DFanCYb3R1SKYSFdcEyGH2ywQgf2yFDDZGJtOcoph0,1304
|
458
456
|
ads/llm/langchain/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
459
457
|
ads/llm/langchain/plugins/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
460
458
|
ads/llm/langchain/plugins/chat_models/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
461
|
-
ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=
|
459
|
+
ads/llm/langchain/plugins/chat_models/oci_data_science.py,sha256=wWVH7nuN6umNfsHD07NnkuoaAGhFy6IKGgx_v9QgYG0,35405
|
462
460
|
ads/llm/langchain/plugins/llms/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
463
|
-
ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=
|
461
|
+
ads/llm/langchain/plugins/llms/oci_data_science_model_deployment_endpoint.py,sha256=0QGNpDuV_QorZw9i62PEkTqRxOLs4d2aPrg_lXq0akQ,32466
|
464
462
|
ads/llm/serializers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
465
463
|
ads/llm/serializers/retrieval_qa.py,sha256=VQ4rFRrDHOpAcMYNvRbT19LcDGwRrE1lczerLQYKxwU,5133
|
466
464
|
ads/llm/serializers/runnable_parallel.py,sha256=USCVhMNi67AiCmu-s_mmOvc0sK7v4yKVwBTJm60x7wE,835
|
467
|
-
ads/llm/templates/score_chain.jinja2,sha256=
|
465
|
+
ads/llm/templates/score_chain.jinja2,sha256=RVB7RImjGifDbzaZPtfsmANqIiLx3yRJbH2thk_VHWE,4831
|
468
466
|
ads/llm/templates/tool_chat_template_hermes.jinja,sha256=nQgWGwZludNFmUO7V8emgPQud828l9T4e5QmsDyLq4k,5226
|
469
467
|
ads/llm/templates/tool_chat_template_mistral_parallel.jinja,sha256=xkZLgw50a3wPiw9I5HmDlZiEAXPg9wtwnrkhaAiI_1o,4773
|
470
468
|
ads/model/__init__.py,sha256=r4U2NvroKMUa-tqNnXBtND9cA6b1Yefmdj6lgdoKlDk,1900
|
@@ -472,21 +470,21 @@ ads/model/artifact.py,sha256=ONKyjZKO5wmAYI-GT63z8yLm_QsmIGXcob9KrnwtF5k,20503
|
|
472
470
|
ads/model/artifact_downloader.py,sha256=-9IYkjZ0LaMWf5foz5HUGTZCEm67f-3LbDsigNlzEPg,9751
|
473
471
|
ads/model/artifact_uploader.py,sha256=jdkpmncczceOc28LyMkv4u6f845HJ1vVCoI-hLBT-RM,11305
|
474
472
|
ads/model/base_properties.py,sha256=YeVyjCync4fzqqruMc9UfZKR4PnscU31n0mf4CJv3R8,7885
|
475
|
-
ads/model/datascience_model.py,sha256=
|
476
|
-
ads/model/generic_model.py,sha256=
|
473
|
+
ads/model/datascience_model.py,sha256=pKjoVmYWZBXC7wYQVhCJe_ii_aE7FakrjaTWpBRWXLA,82022
|
474
|
+
ads/model/generic_model.py,sha256=jjRn0U6X9eVAo_1VMhJoZ6aVKa7J_PNN4tr02XbAYCk,146988
|
477
475
|
ads/model/model_file_description_schema.json,sha256=NZw_U4CvKf9oOdxCKr1eUxq8FHwjR_g0GSDk0Hz3SnE,1402
|
478
476
|
ads/model/model_introspect.py,sha256=z9pJul9dwT9w8flvRguhu0ZKoEkbm2Tvdutw_SHYTeg,9745
|
479
477
|
ads/model/model_metadata.py,sha256=TkE2XU_Gafyct_c7_Fs-eNBD6q-Kpe8v9wYff1UDEaY,54566
|
480
478
|
ads/model/model_metadata_mixin.py,sha256=XJc7GmK0pk8AqBMBPa9jYqm4BgRLkiX08bZhooQcJRw,16898
|
481
|
-
ads/model/model_properties.py,sha256=
|
479
|
+
ads/model/model_properties.py,sha256=OHK2CK3DXcnWtgVm7QNuX7hdHNN8U_y5DZmJfcbTVrE,2190
|
482
480
|
ads/model/model_version_set.py,sha256=Jfj3KS9AfaXTIPu4MMtnhyRoWSu9jxiQGvG4cPfTqB0,22782
|
483
481
|
ads/model/common/.model-ignore,sha256=f4iI4uwnmkV8_zWz36VinQ2N4tnc9eEEbk-03EGuWEU,898
|
484
482
|
ads/model/common/__init__.py,sha256=bAvA1JbCOuOzSs0qK0jJ8hMU2M0FA4wv1QsMFIj3sPM,207
|
485
483
|
ads/model/common/utils.py,sha256=SE4BzCejJ8nj3m8DoRGU7kjpojJAeLVDbbo-I35F26E,4066
|
486
484
|
ads/model/deployment/__init__.py,sha256=4EbCijBURociCrp8d7y3f7-XfqaFKcMOej5ai3zZgdQ,665
|
487
485
|
ads/model/deployment/model_deployer.py,sha256=SARlidE868gbwmVHxjchp6F6x7zPUt_FhaKx4hQHRbw,17672
|
488
|
-
ads/model/deployment/model_deployment.py,sha256=
|
489
|
-
ads/model/deployment/model_deployment_infrastructure.py,sha256=
|
486
|
+
ads/model/deployment/model_deployment.py,sha256=Z-ab1j0C0KkIgXzh3Cv6r02LDeewY-7Di7btay430C4,66665
|
487
|
+
ads/model/deployment/model_deployment_infrastructure.py,sha256=ykLYuhU281P8VwK7rL_-UZtoqfabc0BKxjKXjENOsS4,21366
|
490
488
|
ads/model/deployment/model_deployment_properties.py,sha256=tTK5-W8Zq3PeA6LWrGEIxpRL06cV37HyT8H9DyCkatw,18205
|
491
489
|
ads/model/deployment/model_deployment_runtime.py,sha256=J5IiByj3u8X5_L0gJo6FgNdCCPqwnDkflbSlK6uXbgA,26555
|
492
490
|
ads/model/deployment/common/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
|
@@ -533,7 +531,7 @@ ads/model/serde/common.py,sha256=cDtblusT8fZ04mbBASg7EC62oaB9Sp7X_NPPhPiDnJk,112
|
|
533
531
|
ads/model/serde/model_input.py,sha256=MB6Uf4H_UzlAUTRIRqHTW4ZiyQKw0yerGtUE-WFSw-g,18577
|
534
532
|
ads/model/serde/model_serializer.py,sha256=2vi4MoUHZV-V-4r1OWD5YJzwARFqIBv7-oyGeXGhrK4,43197
|
535
533
|
ads/model/service/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
|
536
|
-
ads/model/service/oci_datascience_model.py,sha256=
|
534
|
+
ads/model/service/oci_datascience_model.py,sha256=aecUIn5RhgUOGiVa9n811p0uZ1pE9HbDLD1litwvB4A,21054
|
537
535
|
ads/model/service/oci_datascience_model_deployment.py,sha256=ONiogPK_wN7omxdnTMAcJhcvDEZQwI_XqmT84Q1xoj0,18472
|
538
536
|
ads/model/service/oci_datascience_model_version_set.py,sha256=lYw9BauH4BNZk2Jdf8mRjFO3MorQDSMPAxkP-inlwiM,5690
|
539
537
|
ads/model/transformer/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
|
@@ -633,26 +631,28 @@ ads/opctl/operator/common/operator_loader.py,sha256=fpdrqDyOF9h4lsnGOsdDQsZl1xbd
|
|
633
631
|
ads/opctl/operator/common/operator_schema.yaml,sha256=kIXKI9GCkwGhkby6THJR2zY6YK0waIgPfPxw85I7aG4,3046
|
634
632
|
ads/opctl/operator/common/operator_yaml_generator.py,sha256=hH6wYj7oDYeAsE1grcIF4K1EE_RhguLXltxPbmB65iQ,5108
|
635
633
|
ads/opctl/operator/common/utils.py,sha256=KQMTVimdm2A1igbE4r-u_aT_EQw7DkVQvDNFouYLmME,4971
|
634
|
+
ads/opctl/operator/common/data/synthetic.csv,sha256=zAxZ7NsWn0CKRWTW6IUKWWwdJs2OY_-yO1Nme_peFY4,769681
|
636
635
|
ads/opctl/operator/lowcode/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
637
|
-
ads/opctl/operator/lowcode/anomaly/MLoperator,sha256=
|
636
|
+
ads/opctl/operator/lowcode/anomaly/MLoperator,sha256=mkf13TlGl64AZtgeNy4PVi81Z-0XEvntW2y7ME8wikw,509
|
638
637
|
ads/opctl/operator/lowcode/anomaly/README.md,sha256=E3vpyc5iKvIq8iuvGj8ZvLq3i_Q5q7n78KfTKHFfb2s,10123
|
639
638
|
ads/opctl/operator/lowcode/anomaly/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
640
639
|
ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9ndF86RPd7KJ_kanltjM,3328
|
641
640
|
ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
|
642
|
-
ads/opctl/operator/lowcode/anomaly/const.py,sha256=
|
641
|
+
ads/opctl/operator/lowcode/anomaly/const.py,sha256=Ib7OmvXI0BFzziCz9wHS8ZLX0wbwJILndMRsd2kG7qI,4843
|
643
642
|
ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
|
644
643
|
ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
|
645
|
-
ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=
|
646
|
-
ads/opctl/operator/lowcode/anomaly/utils.py,sha256=
|
644
|
+
ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=CrqXpSgGPwv4NVL5gEZNHChdVCFilm4k9OGDbY9UnGw,9509
|
645
|
+
ads/opctl/operator/lowcode/anomaly/utils.py,sha256=edOuq7lbZ4Iz_T9FXtFv21ePBElaCGutfWE1QOhvxsg,2841
|
647
646
|
ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
648
647
|
ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
|
648
|
+
ads/opctl/operator/lowcode/anomaly/model/anomaly_merlion.py,sha256=ifcIDHsQLlUOEpP_nzu_DFOOaL7Gos7YkaZTMvenw2k,5839
|
649
649
|
ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=Zn4ySrGfLbaKW0KIduwdnY0-YK8XAprCcMhElA4g-Vc,3401
|
650
|
-
ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=
|
650
|
+
ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=KfbW5ffJj7oDIOfbrSPd5pzOYR8jO_9vmPt2S7uzQRc,4108
|
651
651
|
ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=bq2VgRxLIRFov8pEoYCPGw3AXUmTJktA2nszQN8La2c,15365
|
652
|
-
ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=
|
652
|
+
ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=yld9CI-ZZJO2dDB24aOm6SLXbibNMeK1NQEZHpGNdfY,4144
|
653
653
|
ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=Kjsuio7cM-dKv63p58B9Jj0XPly6Z0hqfghs5nnXepA,2671
|
654
654
|
ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eQpNyax1hnufLHhL8Rbzee28comD2fF7TLn3TpzMrs8,2583
|
655
|
-
ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=
|
655
|
+
ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=bl50nulatim34tqlNsuJASSPlILSx_aCypdHr4wouoM,4270
|
656
656
|
ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=_v0KkdTKD3nqzOu3P5tE7bSV63Jy91h6Hr88Eequ0RU,4175
|
657
657
|
ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
|
658
658
|
ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
|
@@ -813,8 +813,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
|
|
813
813
|
ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
|
814
814
|
ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
|
815
815
|
ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
|
816
|
-
oracle_ads-2.12.
|
817
|
-
oracle_ads-2.12.
|
818
|
-
oracle_ads-2.12.
|
819
|
-
oracle_ads-2.12.
|
820
|
-
oracle_ads-2.12.
|
816
|
+
oracle_ads-2.12.3.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
|
817
|
+
oracle_ads-2.12.3.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
|
818
|
+
oracle_ads-2.12.3.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
819
|
+
oracle_ads-2.12.3.dist-info/METADATA,sha256=y5hVMbLVQSS4QuN-cS9TW6TfE8Z8ntnDvgNMMs0-wbw,16217
|
820
|
+
oracle_ads-2.12.3.dist-info/RECORD,,
|