oracle-ads 2.12.0__py3-none-any.whl → 2.12.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -224,6 +224,7 @@ class UIConfig(Serializable):
224
224
 
225
225
  class Config:
226
226
  extra = "ignore"
227
+ protected_namespaces = ()
227
228
 
228
229
 
229
230
  class EvaluationServiceConfig(Serializable):
@@ -13,7 +13,6 @@ from ads.aqua.common.utils import get_hf_model_info, list_hf_models
13
13
  from ads.aqua.extension.base_handler import AquaAPIhandler
14
14
  from ads.aqua.extension.errors import Errors
15
15
  from ads.aqua.model import AquaModelApp
16
- from ads.aqua.model.constants import ModelTask
17
16
  from ads.aqua.model.entities import AquaModelSummary, HFModelSummary
18
17
  from ads.aqua.ui import ModelFormat
19
18
 
@@ -68,7 +67,7 @@ class AquaModelHandler(AquaAPIhandler):
68
67
  return self.finish(AquaModelApp().get(model_id))
69
68
 
70
69
  @handle_exceptions
71
- def delete(self):
70
+ def delete(self, id=""):
72
71
  """Handles DELETE request for clearing cache"""
73
72
  url_parse = urlparse(self.request.path)
74
73
  paths = url_parse.path.strip("/")
@@ -177,10 +176,8 @@ class AquaHuggingFaceHandler(AquaAPIhandler):
177
176
 
178
177
  return None
179
178
 
180
-
181
-
182
179
  @handle_exceptions
183
- def get(self,*args, **kwargs):
180
+ def get(self, *args, **kwargs):
184
181
  """
185
182
  Finds a list of matching models from hugging face based on query string provided from users.
186
183
 
@@ -194,13 +191,11 @@ class AquaHuggingFaceHandler(AquaAPIhandler):
194
191
  Returns the matching model ids string
195
192
  """
196
193
 
197
- query=self.get_argument("query",default=None)
194
+ query = self.get_argument("query", default=None)
198
195
  if not query:
199
- raise HTTPError(400,Errors.MISSING_REQUIRED_PARAMETER.format("query"))
200
- models=list_hf_models(query)
201
- return self.finish({"models":models})
202
-
203
-
196
+ raise HTTPError(400, Errors.MISSING_REQUIRED_PARAMETER.format("query"))
197
+ models = list_hf_models(query)
198
+ return self.finish({"models": models})
204
199
 
205
200
  @handle_exceptions
206
201
  def post(self, *args, **kwargs):
@@ -234,16 +229,17 @@ class AquaHuggingFaceHandler(AquaAPIhandler):
234
229
  "Please verify the model's status on the Hugging Face Model Hub or select a different model."
235
230
  )
236
231
 
237
- # Check pipeline_tag, it should be `text-generation`
238
- if (
239
- not hf_model_info.pipeline_tag
240
- or hf_model_info.pipeline_tag.lower() != ModelTask.TEXT_GENERATION
241
- ):
242
- raise AquaRuntimeError(
243
- f"Unsupported pipeline tag for the chosen model: '{hf_model_info.pipeline_tag}'. "
244
- f"AQUA currently supports the following tasks only: {', '.join(ModelTask.values())}. "
245
- "Please select a model with a compatible pipeline tag."
246
- )
232
+ # Commented the validation below to let users to register any model type.
233
+ # # Check pipeline_tag, it should be `text-generation`
234
+ # if not (
235
+ # hf_model_info.pipeline_tag
236
+ # and hf_model_info.pipeline_tag.lower() in ModelTask
237
+ # ):
238
+ # raise AquaRuntimeError(
239
+ # f"Unsupported pipeline tag for the chosen model: '{hf_model_info.pipeline_tag}'. "
240
+ # f"AQUA currently supports the following tasks only: {', '.join(ModelTask.values())}. "
241
+ # "Please select a model with a compatible pipeline tag."
242
+ # )
247
243
 
248
244
  # Check if it is a service/verified model
249
245
  aqua_model_info: AquaModelSummary = self._find_matching_aqua_model(
@@ -1,5 +1,4 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*-
3
2
  # Copyright (c) 2024 Oracle and/or its affiliates.
4
3
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
5
4
 
@@ -9,6 +8,7 @@ aqua.model.constants
9
8
 
10
9
  This module contains constants/enums used in Aqua Model.
11
10
  """
11
+
12
12
  from ads.common.extended_enum import ExtendedEnumMeta
13
13
 
14
14
 
@@ -21,6 +21,8 @@ class ModelCustomMetadataFields(str, metaclass=ExtendedEnumMeta):
21
21
 
22
22
  class ModelTask(str, metaclass=ExtendedEnumMeta):
23
23
  TEXT_GENERATION = "text-generation"
24
+ IMAGE_TEXT_TO_TEXT = "image-text-to-text"
25
+ IMAGE_TO_TEXT = "image-to-text"
24
26
 
25
27
 
26
28
  class FineTuningMetricCategories(str, metaclass=ExtendedEnumMeta):
@@ -11,10 +11,15 @@ from ads.opctl.operator.lowcode.common.const import DataColumns
11
11
  class SupportedModels(str, metaclass=ExtendedEnumMeta):
12
12
  """Supported anomaly models."""
13
13
 
14
- AutoMLX = "automlx"
15
14
  AutoTS = "autots"
16
15
  Auto = "auto"
17
- # TODS = "tods"
16
+ IQR = "iqr"
17
+ LOF = "lof"
18
+ ZSCORE = "zscore"
19
+ ROLLING_ZSCORE = "rolling_zscore"
20
+ MAD = "mad"
21
+ EE = "ee"
22
+ ISOLATIONFOREST = "isolationforest"
18
23
 
19
24
  class NonTimeADSupportedModels(str, metaclass=ExtendedEnumMeta):
20
25
  """Supported non time-based anomaly detection models."""
@@ -4,50 +4,51 @@
4
4
  # Copyright (c) 2023, 2024 Oracle and/or its affiliates.
5
5
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
6
 
7
- import pandas as pd
8
-
9
7
  from ads.common.decorator.runtime_dependency import runtime_dependency
10
-
11
- from .base_model import AnomalyOperatorBaseModel
12
- from .anomaly_dataset import AnomalyOutput
13
8
  from ads.opctl.operator.lowcode.anomaly.const import OutputColumns
9
+ from .anomaly_dataset import AnomalyOutput
10
+ from .base_model import AnomalyOperatorBaseModel
11
+ from ..const import SupportedModels
12
+ from ads.opctl import logger
14
13
 
15
14
 
16
15
  class AutoTSOperatorModel(AnomalyOperatorBaseModel):
17
16
  """Class representing AutoTS Anomaly Detection operator model."""
17
+ model_mapping = {
18
+ "isolationforest": "IsolationForest",
19
+ "lof": "LOF",
20
+ "ee": "EE",
21
+ "zscore": "zscore",
22
+ "rolling_zscore": "rolling_zscore",
23
+ "mad": "mad",
24
+ "minmax": "minmax",
25
+ "iqr": "IQR"
26
+ }
18
27
 
19
28
  @runtime_dependency(
20
29
  module="autots",
21
30
  err_msg=(
22
- "Please run `pip3 install autots` to "
23
- "install the required dependencies for AutoTS."
31
+ "Please run `pip3 install autots` to "
32
+ "install the required dependencies for AutoTS."
24
33
  ),
25
34
  )
26
35
  def _build_model(self) -> AnomalyOutput:
27
36
  from autots.evaluator.anomaly_detector import AnomalyDetector
28
37
 
29
- method = self.spec.model_kwargs.get("method")
30
- transform_dict = self.spec.model_kwargs.get("transform_dict", {})
31
-
32
- if method == "random" or method == "deep" or method == "fast":
33
- new_params = AnomalyDetector.get_new_params(method=method)
34
- transform_dict = new_params.pop("transform_dict")
35
-
36
- for key, value in new_params.items():
37
- self.spec.model_kwargs[key] = value
38
-
39
- if self.spec.model_kwargs.get("output") is None:
40
- self.spec.model_kwargs["output"] = "univariate"
41
-
42
- if "transform_dict" not in self.spec.model_kwargs:
43
- self.spec.model_kwargs["transform_dict"] = transform_dict
44
-
45
- if self.spec.contamination != 0.1: # TODO: remove hard-coding
46
- self.spec.model_kwargs.get("method_params", {})[
47
- "contamination"
48
- ] = self.spec.contamination
49
-
50
- model = AnomalyDetector(**self.spec.model_kwargs)
38
+ method = SupportedModels.ISOLATIONFOREST if self.spec.model == SupportedModels.AutoTS else self.spec.model
39
+ model_params = {"method": self.model_mapping[method],
40
+ "transform_dict": self.spec.model_kwargs.get("transform_dict", {}),
41
+ "output": self.spec.model_kwargs.get("output", "univariate"), "method_params": {}}
42
+ # Supported methods with contamination param
43
+ if method in [SupportedModels.ISOLATIONFOREST, SupportedModels.LOF, SupportedModels.EE]:
44
+ model_params["method_params"][
45
+ "contamination"] = self.spec.contamination if self.spec.contamination else 0.01
46
+ else:
47
+ if self.spec.contamination:
48
+ raise ValueError(f"The contamination parameter is not supported for the selected model \"{method}\"")
49
+ logger.info(f"model params: {model_params}")
50
+
51
+ model = AnomalyDetector(**model_params)
51
52
 
52
53
  date_column = self.spec.datetime_column.name
53
54
 
@@ -55,9 +56,7 @@ class AutoTSOperatorModel(AnomalyOperatorBaseModel):
55
56
 
56
57
  for target, df in self.datasets.full_data_dict.items():
57
58
  data = df.set_index(date_column)
58
-
59
59
  (anomaly, score) = model.detect(data)
60
-
61
60
  if len(anomaly.columns) == 1:
62
61
  score.rename(
63
62
  columns={score.columns.values[0]: OutputColumns.SCORE_COL},
@@ -65,19 +64,15 @@ class AutoTSOperatorModel(AnomalyOperatorBaseModel):
65
64
  )
66
65
  score = 1 - score
67
66
  score = score.reset_index(drop=False)
68
-
69
67
  col = anomaly.columns.values[0]
70
68
  anomaly[col] = anomaly[col].replace({1: 0, -1: 1})
71
69
  anomaly.rename(columns={col: OutputColumns.ANOMALY_COL}, inplace=True)
72
70
  anomaly = anomaly.reset_index(drop=False)
73
-
74
71
  anomaly_output.add_output(target, anomaly, score)
75
-
76
72
  else:
77
73
  raise NotImplementedError(
78
74
  "Multi-Output Anomaly Detection is not yet supported in autots"
79
75
  )
80
-
81
76
  return anomaly_output
82
77
 
83
78
  def _generate_report(self):
@@ -4,18 +4,14 @@
4
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
5
5
 
6
6
  from ads.opctl.operator.lowcode.anomaly.utils import select_auto_model
7
-
8
- from ..const import NonTimeADSupportedModels, SupportedModels
9
- from ..operator_config import AnomalyOperatorConfig
10
7
  from .anomaly_dataset import AnomalyDatasets
11
- from .automlx import AutoMLXOperatorModel
12
8
  from .autots import AutoTSOperatorModel
13
-
14
- # from .tods import TODSOperatorModel
15
9
  from .base_model import AnomalyOperatorBaseModel
16
10
  from .isolationforest import IsolationForestOperatorModel
17
11
  from .oneclasssvm import OneClassSVMOperatorModel
18
12
  from .randomcutforest import RandomCutForestOperatorModel
13
+ from ..const import NonTimeADSupportedModels, SupportedModels
14
+ from ..operator_config import AnomalyOperatorConfig
19
15
 
20
16
 
21
17
  class UnSupportedModelError(Exception):
@@ -45,9 +41,14 @@ class AnomalyOperatorModelFactory:
45
41
  """
46
42
 
47
43
  _MAP = {
48
- SupportedModels.AutoMLX: AutoMLXOperatorModel,
49
- # SupportedModels.TODS: TODSOperatorModel,
50
44
  SupportedModels.AutoTS: AutoTSOperatorModel,
45
+ SupportedModels.IQR: AutoTSOperatorModel,
46
+ SupportedModels.LOF: AutoTSOperatorModel,
47
+ SupportedModels.ISOLATIONFOREST: AutoTSOperatorModel,
48
+ SupportedModels.ZSCORE: AutoTSOperatorModel,
49
+ SupportedModels.ROLLING_ZSCORE: AutoTSOperatorModel,
50
+ SupportedModels.EE: AutoTSOperatorModel,
51
+ SupportedModels.MAD: AutoTSOperatorModel
51
52
  }
52
53
 
53
54
  _NonTime_MAP = {
@@ -364,15 +364,21 @@ spec:
364
364
  - oneclasssvm
365
365
  - isolationforest
366
366
  - randomcutforest
367
+ - iqr
368
+ - lof
369
+ - zscore
370
+ - rolling_zscore
371
+ - mad
372
+ - ee
367
373
  meta:
368
374
  description: "The model to be used for anomaly detection"
369
375
 
370
376
  contamination:
371
377
  required: false
372
- default: 0.1
378
+ default: 0.01
373
379
  type: float
374
380
  meta:
375
- description: "Fraction of training dataset corresponding to anomalies (between 0.0 and 0.5)"
381
+ description: "The proportion of outliers in the data set. The contamination should be in the range (0, 0.5]"
376
382
 
377
383
  model_kwargs:
378
384
  type: dict
@@ -2,12 +2,12 @@ type: forecast
2
2
  version: v1
3
3
  name: Forecasting Operator
4
4
  conda_type: service
5
- conda: forecast_p38_cpu_v1
5
+ conda: forecast_p310_cpu_x86_64_v4
6
6
  gpu: no
7
7
  jobs_default_params:
8
8
  shape_name: VM.Standard.E4.Flex
9
- ocpus: 32
10
- memory_in_gbs: 512
9
+ ocpus: 16
10
+ memory_in_gbs: 256
11
11
  block_storage_size_in_GBs: 512
12
12
  keywords:
13
13
  - Prophet
@@ -49,7 +49,7 @@ class AutoMLXOperatorModel(ForecastOperatorBaseModel):
49
49
  time_budget = model_kwargs_cleaned.pop("time_budget", -1)
50
50
  model_kwargs_cleaned[
51
51
  "preprocessing"
52
- ] = self.spec.preprocessing or model_kwargs_cleaned.get("preprocessing", True)
52
+ ] = self.spec.preprocessing.enabled or model_kwargs_cleaned.get("preprocessing", True)
53
53
  return model_kwargs_cleaned, time_budget
54
54
 
55
55
  def preprocess(self, data, series_id=None): # TODO: re-use self.le for explanations
@@ -68,7 +68,7 @@ class AdditionalData(AbstractData):
68
68
  add_dates.sort()
69
69
  if historical_data.get_max_time() > add_dates[-spec.horizon]:
70
70
  raise DataMismatchError(
71
- f"The Historical Data ends on {historical_data.get_max_time()}. The additional data horizon starts on {add_dates[-spec.horizon]}. The horizon should have exactly {spec.horizon} dates after the Hisotrical at a frequency of {historical_data.freq}"
71
+ f"The Historical Data ends on {historical_data.get_max_time()}. The additional data horizon starts on {add_dates[-spec.horizon]}. The horizon should have exactly {spec.horizon} dates after the Historical at a frequency of {historical_data.freq}"
72
72
  )
73
73
  elif historical_data.get_max_time() != add_dates[-(spec.horizon + 1)]:
74
74
  raise DataMismatchError(
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oracle_ads
3
- Version: 2.12.0
3
+ Version: 2.12.1
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -18,7 +18,7 @@ ads/aqua/config/config.py,sha256=YIbd_9yP5kZd3G2q4q0TM6hzMdJSQ8BHPRAFE_5Xk3s,154
18
18
  ads/aqua/config/deployment_config_defaults.json,sha256=1fzb8EZOcFMjwktes40qgetKvdmUtEGCl4Jp4eb8tJg,665
19
19
  ads/aqua/config/resource_limit_names.json,sha256=0ecGLCLxll9qt3E7fVZPtzpurqe1PGdTk0Rjn_cWh8k,235
20
20
  ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
21
- ads/aqua/config/evaluation/evaluation_service_config.py,sha256=JAaK_2dSVyoGv22PkjGgzMbt9WLBaZAOlk02yY3590k,8735
21
+ ads/aqua/config/evaluation/evaluation_service_config.py,sha256=i3yRcCiwCwVp-7YGWBWO7pPg2iWlN9Pz0upCSYOVVj4,8769
22
22
  ads/aqua/config/evaluation/evaluation_service_model_config.py,sha256=ITs_RBCynWuygjNdcUD7e2BLbPyPP3UozryEWlnju9s,280
23
23
  ads/aqua/config/utils/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
24
24
  ads/aqua/config/utils/serializer.py,sha256=RTyeFw2fDxmcTsERRd8AJDuyOuRQckL9dDLk8HFdxxc,11347
@@ -42,7 +42,7 @@ ads/aqua/extension/errors.py,sha256=i37EnRzxGgvxzUNoyEORzHYmB296DGOUb6pm7VwEyTU,
42
42
  ads/aqua/extension/evaluation_handler.py,sha256=RT2W7WDtxNIT0uirLfTcDlmTPYCuMuWRhiDxYZYliZs,4542
43
43
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
44
44
  ads/aqua/extension/finetune_handler.py,sha256=ZCdXoEYzfViZfJsk0solCB6HQkg0skG1jFfqq1zF-vw,3312
45
- ads/aqua/extension/model_handler.py,sha256=usiyLPaJJLAjtDhyFCNseaT3AQelZkBkLwoCno4Uo1o,9079
45
+ ads/aqua/extension/model_handler.py,sha256=lsa8cRblUbITOtn2K9HuPWrl_CVGV2GXHq2aiGh4K5U,9130
46
46
  ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
47
47
  ads/aqua/extension/ui_handler.py,sha256=IYhtyL4oE8zlxe-kfbvWSmFsayyXaZZZButDdxM3hcA,9850
48
48
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
@@ -54,7 +54,7 @@ ads/aqua/finetuning/constants.py,sha256=7LGF-rbbp-3IS8APjM9ABVHvm0EsaoC9A7XvxTgn
54
54
  ads/aqua/finetuning/entities.py,sha256=ZGFqewDV_YIGgmJqIXjrprSZE0yFZQF_tdbmQlvhTrQ,4045
55
55
  ads/aqua/finetuning/finetuning.py,sha256=5GXya26dmerhwlCxQ4TZJWZh5pr0h-TnkZ6WahJITvY,24497
56
56
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
57
- ads/aqua/model/constants.py,sha256=eUVl3FK8SRpfnDc1jNF09CkbWXyxmfTgW6Nqvus8lx0,1476
57
+ ads/aqua/model/constants.py,sha256=b2nszavi2fNGiMpfpqT5xPWpab_yTJUN_sEdC8gOG2M,1535
58
58
  ads/aqua/model/entities.py,sha256=5S2WFvDDt2XaQKYkWFAgs3P_g-VPpt74rpNQRM6-ssY,9580
59
59
  ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
60
60
  ads/aqua/model/model.py,sha256=gMoELf_HjuUYYcW05XfNRghXk3IhBP0PPaQDgP_-QUA,54277
@@ -639,17 +639,17 @@ ads/opctl/operator/lowcode/anomaly/README.md,sha256=E3vpyc5iKvIq8iuvGj8ZvLq3i_Q5
639
639
  ads/opctl/operator/lowcode/anomaly/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
640
640
  ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9ndF86RPd7KJ_kanltjM,3328
641
641
  ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
642
- ads/opctl/operator/lowcode/anomaly/const.py,sha256=nNZqjH-YNB2GVsk890v3B88pml15xrSOPjvfW2P5M1o,2930
642
+ ads/opctl/operator/lowcode/anomaly/const.py,sha256=XKJkWFkXy6BYPn68L0bopYOUUKbzOI_AyxBDEiGWgaM,3048
643
643
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
644
644
  ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
645
- ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=jMSoCqb58Dz4_LeB55LO9_NRQ8TKPeVdl5VkGZHlqYs,9200
645
+ ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=j2JvCyCStZ3owDxAm7b_v0E5Hrx7gE6DbYv1hSjOxD4,9314
646
646
  ads/opctl/operator/lowcode/anomaly/utils.py,sha256=Uj98FO5oM-sLjoqsOnoBmgSMF7iJiL0XX-gvphw9yiU,2746
647
647
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
648
648
  ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
649
649
  ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=Zn4ySrGfLbaKW0KIduwdnY0-YK8XAprCcMhElA4g-Vc,3401
650
- ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=WlA39DA3GeQfW5HYiBLCArVQBXGzIVQH3D09cZYGjtg,3689
650
+ ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Q9FjVIOjnyctGDvYWCMB_rtusbl5IK1wCzkVze_MKxw,3984
651
651
  ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=bq2VgRxLIRFov8pEoYCPGw3AXUmTJktA2nszQN8La2c,15365
652
- ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=XEh5bdnWDjIEBswrOb36CeTmRcWQ2uUGDrC3e3iJVxY,3264
652
+ ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=uRVD44_VCJVJzr3s3Cy_fPpYyP45JwKRmmN7uE2lw3I,3450
653
653
  ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=Kjsuio7cM-dKv63p58B9Jj0XPly6Z0hqfghs5nnXepA,2671
654
654
  ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eQpNyax1hnufLHhL8Rbzee28comD2fF7TLn3TpzMrs8,2583
655
655
  ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=HUyWQOFjfLkIWsnmhfEn9354slKStlv6jIwQi5xzVj0,4270
@@ -674,7 +674,7 @@ ads/opctl/operator/lowcode/feature_store_marketplace/models/apigw_config.py,sha2
674
674
  ads/opctl/operator/lowcode/feature_store_marketplace/models/db_config.py,sha256=ush-EZ9TUSg00g0Px-4SJa83KNLlV3BgQl9PNkVQC7M,1249
675
675
  ads/opctl/operator/lowcode/feature_store_marketplace/models/mysql_config.py,sha256=wLifggnPo6d10SxkgVbGHB5L-EdV4QaO_BvBzpeTZGQ,3268
676
676
  ads/opctl/operator/lowcode/feature_store_marketplace/models/serializable_yaml_model.py,sha256=Fd5K1q30mIyCbU6WDH8nDXyCJFlo_kSAEKxqr4dQSSc,1135
677
- ads/opctl/operator/lowcode/forecast/MLoperator,sha256=i0H5hvZsYYFf8pP9997ulcU4gD5q8K2yeyUSicJOHsk,5973
677
+ ads/opctl/operator/lowcode/forecast/MLoperator,sha256=xM8yBUQObjG_6Mg36f3Vv8b9N3L8_5RUZJE2riOjXuw,5981
678
678
  ads/opctl/operator/lowcode/forecast/README.md,sha256=kbCCEdo-0pwKlZp9ctnWUK6Z31n69IsnG0i26b202Zg,9768
679
679
  ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
680
680
  ads/opctl/operator/lowcode/forecast/__main__.py,sha256=5Vh-kClwxTsvZLEuECyQBvbZFfH37HQW2G09RwX11Kw,2503
@@ -688,11 +688,11 @@ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=Zfhh_wfWxNeTtN4bqAe623Vf0
688
688
  ads/opctl/operator/lowcode/forecast/utils.py,sha256=oc6eBH9naYg4BB14KS2HL0uFdZHMgKsxx9vG28dJrXA,14347
689
689
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
690
690
  ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=6ZXtzXcqoEMVF9DChzX0cnTJ-9tXKdbPiiSPQq4a9oM,10914
691
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=nMqljeHnhuYGMmRa8e0PkDtx-ClSclQeJVowBIkq0Sk,14848
691
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=D7U-y-sTdkiqynk_l86z1HNSjn9c58DJTU7l8T33BJk,14856
692
692
  ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=QxU24eZeaRpnC5rTqBFe6-5ylMorPN0sCamHUiNQVaE,13162
693
693
  ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s4_lvasasCqvrj49ubD0H_2wA9pvh16_f5BiivqvL20,30876
694
694
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=NV_m2sEgj3byHHqLs9Vbth7d5yfvFuXj8QI3-y9x2Po,3488
695
- ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=d9rDmrIAbKTStOVroIKZkTEP1FP2AP0dq9XDEWt6w2c,16968
695
+ ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=02gOA-0KKtD0VYj87SsgRMq4EP2VSnhfuxoH1suAIO0,16968
696
696
  ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=EOFZR5wjZcpKACW3ZNnxd31Okz_ehOSaO5_dKL-Ktgw,9558
697
697
  ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=pRmhLHjP027gmPbkgqzR2SZYKvj1rG9Heev2P8mSZ_k,19347
698
698
  ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=0OBnyVP9bFpo1zSAqA5qtobZxICRTLVT9mwPOlHb3sM,14554
@@ -813,8 +813,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
813
813
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
814
814
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
815
815
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
816
- oracle_ads-2.12.0.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
817
- oracle_ads-2.12.0.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
818
- oracle_ads-2.12.0.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
819
- oracle_ads-2.12.0.dist-info/METADATA,sha256=-Dmo877fdCzqL0LMAxE0UASxtvPRZ6S_vzvDa--vIsY,16150
820
- oracle_ads-2.12.0.dist-info/RECORD,,
816
+ oracle_ads-2.12.1.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
817
+ oracle_ads-2.12.1.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
818
+ oracle_ads-2.12.1.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
819
+ oracle_ads-2.12.1.dist-info/METADATA,sha256=5I5Ky6jb3u3gyBOYwjEu4ov9lwZAme6eaE7A_wcotMo,16150
820
+ oracle_ads-2.12.1.dist-info/RECORD,,