oracle-ads 2.12.0__py3-none-any.whl → 2.12.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ads/aqua/config/evaluation/evaluation_service_config.py +1 -0
- ads/aqua/extension/model_handler.py +17 -21
- ads/aqua/model/constants.py +3 -1
- ads/opctl/operator/lowcode/anomaly/const.py +7 -2
- ads/opctl/operator/lowcode/anomaly/model/autots.py +30 -35
- ads/opctl/operator/lowcode/anomaly/model/factory.py +9 -8
- ads/opctl/operator/lowcode/anomaly/schema.yaml +8 -2
- ads/opctl/operator/lowcode/forecast/MLoperator +3 -3
- ads/opctl/operator/lowcode/forecast/model/automlx.py +1 -1
- ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py +1 -1
- {oracle_ads-2.12.0.dist-info → oracle_ads-2.12.1.dist-info}/METADATA +1 -1
- {oracle_ads-2.12.0.dist-info → oracle_ads-2.12.1.dist-info}/RECORD +15 -15
- {oracle_ads-2.12.0.dist-info → oracle_ads-2.12.1.dist-info}/LICENSE.txt +0 -0
- {oracle_ads-2.12.0.dist-info → oracle_ads-2.12.1.dist-info}/WHEEL +0 -0
- {oracle_ads-2.12.0.dist-info → oracle_ads-2.12.1.dist-info}/entry_points.txt +0 -0
@@ -13,7 +13,6 @@ from ads.aqua.common.utils import get_hf_model_info, list_hf_models
|
|
13
13
|
from ads.aqua.extension.base_handler import AquaAPIhandler
|
14
14
|
from ads.aqua.extension.errors import Errors
|
15
15
|
from ads.aqua.model import AquaModelApp
|
16
|
-
from ads.aqua.model.constants import ModelTask
|
17
16
|
from ads.aqua.model.entities import AquaModelSummary, HFModelSummary
|
18
17
|
from ads.aqua.ui import ModelFormat
|
19
18
|
|
@@ -68,7 +67,7 @@ class AquaModelHandler(AquaAPIhandler):
|
|
68
67
|
return self.finish(AquaModelApp().get(model_id))
|
69
68
|
|
70
69
|
@handle_exceptions
|
71
|
-
def delete(self):
|
70
|
+
def delete(self, id=""):
|
72
71
|
"""Handles DELETE request for clearing cache"""
|
73
72
|
url_parse = urlparse(self.request.path)
|
74
73
|
paths = url_parse.path.strip("/")
|
@@ -177,10 +176,8 @@ class AquaHuggingFaceHandler(AquaAPIhandler):
|
|
177
176
|
|
178
177
|
return None
|
179
178
|
|
180
|
-
|
181
|
-
|
182
179
|
@handle_exceptions
|
183
|
-
def get(self
|
180
|
+
def get(self, *args, **kwargs):
|
184
181
|
"""
|
185
182
|
Finds a list of matching models from hugging face based on query string provided from users.
|
186
183
|
|
@@ -194,13 +191,11 @@ class AquaHuggingFaceHandler(AquaAPIhandler):
|
|
194
191
|
Returns the matching model ids string
|
195
192
|
"""
|
196
193
|
|
197
|
-
query=self.get_argument("query",default=None)
|
194
|
+
query = self.get_argument("query", default=None)
|
198
195
|
if not query:
|
199
|
-
raise HTTPError(400,Errors.MISSING_REQUIRED_PARAMETER.format("query"))
|
200
|
-
models=list_hf_models(query)
|
201
|
-
return self.finish({"models":models})
|
202
|
-
|
203
|
-
|
196
|
+
raise HTTPError(400, Errors.MISSING_REQUIRED_PARAMETER.format("query"))
|
197
|
+
models = list_hf_models(query)
|
198
|
+
return self.finish({"models": models})
|
204
199
|
|
205
200
|
@handle_exceptions
|
206
201
|
def post(self, *args, **kwargs):
|
@@ -234,16 +229,17 @@ class AquaHuggingFaceHandler(AquaAPIhandler):
|
|
234
229
|
"Please verify the model's status on the Hugging Face Model Hub or select a different model."
|
235
230
|
)
|
236
231
|
|
237
|
-
#
|
238
|
-
|
239
|
-
|
240
|
-
|
241
|
-
)
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
232
|
+
# Commented the validation below to let users to register any model type.
|
233
|
+
# # Check pipeline_tag, it should be `text-generation`
|
234
|
+
# if not (
|
235
|
+
# hf_model_info.pipeline_tag
|
236
|
+
# and hf_model_info.pipeline_tag.lower() in ModelTask
|
237
|
+
# ):
|
238
|
+
# raise AquaRuntimeError(
|
239
|
+
# f"Unsupported pipeline tag for the chosen model: '{hf_model_info.pipeline_tag}'. "
|
240
|
+
# f"AQUA currently supports the following tasks only: {', '.join(ModelTask.values())}. "
|
241
|
+
# "Please select a model with a compatible pipeline tag."
|
242
|
+
# )
|
247
243
|
|
248
244
|
# Check if it is a service/verified model
|
249
245
|
aqua_model_info: AquaModelSummary = self._find_matching_aqua_model(
|
ads/aqua/model/constants.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1
1
|
#!/usr/bin/env python
|
2
|
-
# -*- coding: utf-8 -*-
|
3
2
|
# Copyright (c) 2024 Oracle and/or its affiliates.
|
4
3
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
5
4
|
|
@@ -9,6 +8,7 @@ aqua.model.constants
|
|
9
8
|
|
10
9
|
This module contains constants/enums used in Aqua Model.
|
11
10
|
"""
|
11
|
+
|
12
12
|
from ads.common.extended_enum import ExtendedEnumMeta
|
13
13
|
|
14
14
|
|
@@ -21,6 +21,8 @@ class ModelCustomMetadataFields(str, metaclass=ExtendedEnumMeta):
|
|
21
21
|
|
22
22
|
class ModelTask(str, metaclass=ExtendedEnumMeta):
|
23
23
|
TEXT_GENERATION = "text-generation"
|
24
|
+
IMAGE_TEXT_TO_TEXT = "image-text-to-text"
|
25
|
+
IMAGE_TO_TEXT = "image-to-text"
|
24
26
|
|
25
27
|
|
26
28
|
class FineTuningMetricCategories(str, metaclass=ExtendedEnumMeta):
|
@@ -11,10 +11,15 @@ from ads.opctl.operator.lowcode.common.const import DataColumns
|
|
11
11
|
class SupportedModels(str, metaclass=ExtendedEnumMeta):
|
12
12
|
"""Supported anomaly models."""
|
13
13
|
|
14
|
-
AutoMLX = "automlx"
|
15
14
|
AutoTS = "autots"
|
16
15
|
Auto = "auto"
|
17
|
-
|
16
|
+
IQR = "iqr"
|
17
|
+
LOF = "lof"
|
18
|
+
ZSCORE = "zscore"
|
19
|
+
ROLLING_ZSCORE = "rolling_zscore"
|
20
|
+
MAD = "mad"
|
21
|
+
EE = "ee"
|
22
|
+
ISOLATIONFOREST = "isolationforest"
|
18
23
|
|
19
24
|
class NonTimeADSupportedModels(str, metaclass=ExtendedEnumMeta):
|
20
25
|
"""Supported non time-based anomaly detection models."""
|
@@ -4,50 +4,51 @@
|
|
4
4
|
# Copyright (c) 2023, 2024 Oracle and/or its affiliates.
|
5
5
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
6
6
|
|
7
|
-
import pandas as pd
|
8
|
-
|
9
7
|
from ads.common.decorator.runtime_dependency import runtime_dependency
|
10
|
-
|
11
|
-
from .base_model import AnomalyOperatorBaseModel
|
12
|
-
from .anomaly_dataset import AnomalyOutput
|
13
8
|
from ads.opctl.operator.lowcode.anomaly.const import OutputColumns
|
9
|
+
from .anomaly_dataset import AnomalyOutput
|
10
|
+
from .base_model import AnomalyOperatorBaseModel
|
11
|
+
from ..const import SupportedModels
|
12
|
+
from ads.opctl import logger
|
14
13
|
|
15
14
|
|
16
15
|
class AutoTSOperatorModel(AnomalyOperatorBaseModel):
|
17
16
|
"""Class representing AutoTS Anomaly Detection operator model."""
|
17
|
+
model_mapping = {
|
18
|
+
"isolationforest": "IsolationForest",
|
19
|
+
"lof": "LOF",
|
20
|
+
"ee": "EE",
|
21
|
+
"zscore": "zscore",
|
22
|
+
"rolling_zscore": "rolling_zscore",
|
23
|
+
"mad": "mad",
|
24
|
+
"minmax": "minmax",
|
25
|
+
"iqr": "IQR"
|
26
|
+
}
|
18
27
|
|
19
28
|
@runtime_dependency(
|
20
29
|
module="autots",
|
21
30
|
err_msg=(
|
22
|
-
|
23
|
-
|
31
|
+
"Please run `pip3 install autots` to "
|
32
|
+
"install the required dependencies for AutoTS."
|
24
33
|
),
|
25
34
|
)
|
26
35
|
def _build_model(self) -> AnomalyOutput:
|
27
36
|
from autots.evaluator.anomaly_detector import AnomalyDetector
|
28
37
|
|
29
|
-
method = self.spec.
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
self.spec.model_kwargs["transform_dict"] = transform_dict
|
44
|
-
|
45
|
-
if self.spec.contamination != 0.1: # TODO: remove hard-coding
|
46
|
-
self.spec.model_kwargs.get("method_params", {})[
|
47
|
-
"contamination"
|
48
|
-
] = self.spec.contamination
|
49
|
-
|
50
|
-
model = AnomalyDetector(**self.spec.model_kwargs)
|
38
|
+
method = SupportedModels.ISOLATIONFOREST if self.spec.model == SupportedModels.AutoTS else self.spec.model
|
39
|
+
model_params = {"method": self.model_mapping[method],
|
40
|
+
"transform_dict": self.spec.model_kwargs.get("transform_dict", {}),
|
41
|
+
"output": self.spec.model_kwargs.get("output", "univariate"), "method_params": {}}
|
42
|
+
# Supported methods with contamination param
|
43
|
+
if method in [SupportedModels.ISOLATIONFOREST, SupportedModels.LOF, SupportedModels.EE]:
|
44
|
+
model_params["method_params"][
|
45
|
+
"contamination"] = self.spec.contamination if self.spec.contamination else 0.01
|
46
|
+
else:
|
47
|
+
if self.spec.contamination:
|
48
|
+
raise ValueError(f"The contamination parameter is not supported for the selected model \"{method}\"")
|
49
|
+
logger.info(f"model params: {model_params}")
|
50
|
+
|
51
|
+
model = AnomalyDetector(**model_params)
|
51
52
|
|
52
53
|
date_column = self.spec.datetime_column.name
|
53
54
|
|
@@ -55,9 +56,7 @@ class AutoTSOperatorModel(AnomalyOperatorBaseModel):
|
|
55
56
|
|
56
57
|
for target, df in self.datasets.full_data_dict.items():
|
57
58
|
data = df.set_index(date_column)
|
58
|
-
|
59
59
|
(anomaly, score) = model.detect(data)
|
60
|
-
|
61
60
|
if len(anomaly.columns) == 1:
|
62
61
|
score.rename(
|
63
62
|
columns={score.columns.values[0]: OutputColumns.SCORE_COL},
|
@@ -65,19 +64,15 @@ class AutoTSOperatorModel(AnomalyOperatorBaseModel):
|
|
65
64
|
)
|
66
65
|
score = 1 - score
|
67
66
|
score = score.reset_index(drop=False)
|
68
|
-
|
69
67
|
col = anomaly.columns.values[0]
|
70
68
|
anomaly[col] = anomaly[col].replace({1: 0, -1: 1})
|
71
69
|
anomaly.rename(columns={col: OutputColumns.ANOMALY_COL}, inplace=True)
|
72
70
|
anomaly = anomaly.reset_index(drop=False)
|
73
|
-
|
74
71
|
anomaly_output.add_output(target, anomaly, score)
|
75
|
-
|
76
72
|
else:
|
77
73
|
raise NotImplementedError(
|
78
74
|
"Multi-Output Anomaly Detection is not yet supported in autots"
|
79
75
|
)
|
80
|
-
|
81
76
|
return anomaly_output
|
82
77
|
|
83
78
|
def _generate_report(self):
|
@@ -4,18 +4,14 @@
|
|
4
4
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
5
5
|
|
6
6
|
from ads.opctl.operator.lowcode.anomaly.utils import select_auto_model
|
7
|
-
|
8
|
-
from ..const import NonTimeADSupportedModels, SupportedModels
|
9
|
-
from ..operator_config import AnomalyOperatorConfig
|
10
7
|
from .anomaly_dataset import AnomalyDatasets
|
11
|
-
from .automlx import AutoMLXOperatorModel
|
12
8
|
from .autots import AutoTSOperatorModel
|
13
|
-
|
14
|
-
# from .tods import TODSOperatorModel
|
15
9
|
from .base_model import AnomalyOperatorBaseModel
|
16
10
|
from .isolationforest import IsolationForestOperatorModel
|
17
11
|
from .oneclasssvm import OneClassSVMOperatorModel
|
18
12
|
from .randomcutforest import RandomCutForestOperatorModel
|
13
|
+
from ..const import NonTimeADSupportedModels, SupportedModels
|
14
|
+
from ..operator_config import AnomalyOperatorConfig
|
19
15
|
|
20
16
|
|
21
17
|
class UnSupportedModelError(Exception):
|
@@ -45,9 +41,14 @@ class AnomalyOperatorModelFactory:
|
|
45
41
|
"""
|
46
42
|
|
47
43
|
_MAP = {
|
48
|
-
SupportedModels.AutoMLX: AutoMLXOperatorModel,
|
49
|
-
# SupportedModels.TODS: TODSOperatorModel,
|
50
44
|
SupportedModels.AutoTS: AutoTSOperatorModel,
|
45
|
+
SupportedModels.IQR: AutoTSOperatorModel,
|
46
|
+
SupportedModels.LOF: AutoTSOperatorModel,
|
47
|
+
SupportedModels.ISOLATIONFOREST: AutoTSOperatorModel,
|
48
|
+
SupportedModels.ZSCORE: AutoTSOperatorModel,
|
49
|
+
SupportedModels.ROLLING_ZSCORE: AutoTSOperatorModel,
|
50
|
+
SupportedModels.EE: AutoTSOperatorModel,
|
51
|
+
SupportedModels.MAD: AutoTSOperatorModel
|
51
52
|
}
|
52
53
|
|
53
54
|
_NonTime_MAP = {
|
@@ -364,15 +364,21 @@ spec:
|
|
364
364
|
- oneclasssvm
|
365
365
|
- isolationforest
|
366
366
|
- randomcutforest
|
367
|
+
- iqr
|
368
|
+
- lof
|
369
|
+
- zscore
|
370
|
+
- rolling_zscore
|
371
|
+
- mad
|
372
|
+
- ee
|
367
373
|
meta:
|
368
374
|
description: "The model to be used for anomaly detection"
|
369
375
|
|
370
376
|
contamination:
|
371
377
|
required: false
|
372
|
-
default: 0.
|
378
|
+
default: 0.01
|
373
379
|
type: float
|
374
380
|
meta:
|
375
|
-
description: "
|
381
|
+
description: "The proportion of outliers in the data set. The contamination should be in the range (0, 0.5]"
|
376
382
|
|
377
383
|
model_kwargs:
|
378
384
|
type: dict
|
@@ -2,12 +2,12 @@ type: forecast
|
|
2
2
|
version: v1
|
3
3
|
name: Forecasting Operator
|
4
4
|
conda_type: service
|
5
|
-
conda:
|
5
|
+
conda: forecast_p310_cpu_x86_64_v4
|
6
6
|
gpu: no
|
7
7
|
jobs_default_params:
|
8
8
|
shape_name: VM.Standard.E4.Flex
|
9
|
-
ocpus:
|
10
|
-
memory_in_gbs:
|
9
|
+
ocpus: 16
|
10
|
+
memory_in_gbs: 256
|
11
11
|
block_storage_size_in_GBs: 512
|
12
12
|
keywords:
|
13
13
|
- Prophet
|
@@ -49,7 +49,7 @@ class AutoMLXOperatorModel(ForecastOperatorBaseModel):
|
|
49
49
|
time_budget = model_kwargs_cleaned.pop("time_budget", -1)
|
50
50
|
model_kwargs_cleaned[
|
51
51
|
"preprocessing"
|
52
|
-
] = self.spec.preprocessing or model_kwargs_cleaned.get("preprocessing", True)
|
52
|
+
] = self.spec.preprocessing.enabled or model_kwargs_cleaned.get("preprocessing", True)
|
53
53
|
return model_kwargs_cleaned, time_budget
|
54
54
|
|
55
55
|
def preprocess(self, data, series_id=None): # TODO: re-use self.le for explanations
|
@@ -68,7 +68,7 @@ class AdditionalData(AbstractData):
|
|
68
68
|
add_dates.sort()
|
69
69
|
if historical_data.get_max_time() > add_dates[-spec.horizon]:
|
70
70
|
raise DataMismatchError(
|
71
|
-
f"The Historical Data ends on {historical_data.get_max_time()}. The additional data horizon starts on {add_dates[-spec.horizon]}. The horizon should have exactly {spec.horizon} dates after the
|
71
|
+
f"The Historical Data ends on {historical_data.get_max_time()}. The additional data horizon starts on {add_dates[-spec.horizon]}. The horizon should have exactly {spec.horizon} dates after the Historical at a frequency of {historical_data.freq}"
|
72
72
|
)
|
73
73
|
elif historical_data.get_max_time() != add_dates[-(spec.horizon + 1)]:
|
74
74
|
raise DataMismatchError(
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: oracle_ads
|
3
|
-
Version: 2.12.
|
3
|
+
Version: 2.12.1
|
4
4
|
Summary: Oracle Accelerated Data Science SDK
|
5
5
|
Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
|
6
6
|
Author: Oracle Data Science
|
@@ -18,7 +18,7 @@ ads/aqua/config/config.py,sha256=YIbd_9yP5kZd3G2q4q0TM6hzMdJSQ8BHPRAFE_5Xk3s,154
|
|
18
18
|
ads/aqua/config/deployment_config_defaults.json,sha256=1fzb8EZOcFMjwktes40qgetKvdmUtEGCl4Jp4eb8tJg,665
|
19
19
|
ads/aqua/config/resource_limit_names.json,sha256=0ecGLCLxll9qt3E7fVZPtzpurqe1PGdTk0Rjn_cWh8k,235
|
20
20
|
ads/aqua/config/evaluation/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
|
21
|
-
ads/aqua/config/evaluation/evaluation_service_config.py,sha256=
|
21
|
+
ads/aqua/config/evaluation/evaluation_service_config.py,sha256=i3yRcCiwCwVp-7YGWBWO7pPg2iWlN9Pz0upCSYOVVj4,8769
|
22
22
|
ads/aqua/config/evaluation/evaluation_service_model_config.py,sha256=ITs_RBCynWuygjNdcUD7e2BLbPyPP3UozryEWlnju9s,280
|
23
23
|
ads/aqua/config/utils/__init__.py,sha256=2a_1LI4jWtJpbic5_v4EoOUTXCAH7cmsy9BW5prDHjU,179
|
24
24
|
ads/aqua/config/utils/serializer.py,sha256=RTyeFw2fDxmcTsERRd8AJDuyOuRQckL9dDLk8HFdxxc,11347
|
@@ -42,7 +42,7 @@ ads/aqua/extension/errors.py,sha256=i37EnRzxGgvxzUNoyEORzHYmB296DGOUb6pm7VwEyTU,
|
|
42
42
|
ads/aqua/extension/evaluation_handler.py,sha256=RT2W7WDtxNIT0uirLfTcDlmTPYCuMuWRhiDxYZYliZs,4542
|
43
43
|
ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
|
44
44
|
ads/aqua/extension/finetune_handler.py,sha256=ZCdXoEYzfViZfJsk0solCB6HQkg0skG1jFfqq1zF-vw,3312
|
45
|
-
ads/aqua/extension/model_handler.py,sha256=
|
45
|
+
ads/aqua/extension/model_handler.py,sha256=lsa8cRblUbITOtn2K9HuPWrl_CVGV2GXHq2aiGh4K5U,9130
|
46
46
|
ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
|
47
47
|
ads/aqua/extension/ui_handler.py,sha256=IYhtyL4oE8zlxe-kfbvWSmFsayyXaZZZButDdxM3hcA,9850
|
48
48
|
ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
|
@@ -54,7 +54,7 @@ ads/aqua/finetuning/constants.py,sha256=7LGF-rbbp-3IS8APjM9ABVHvm0EsaoC9A7XvxTgn
|
|
54
54
|
ads/aqua/finetuning/entities.py,sha256=ZGFqewDV_YIGgmJqIXjrprSZE0yFZQF_tdbmQlvhTrQ,4045
|
55
55
|
ads/aqua/finetuning/finetuning.py,sha256=5GXya26dmerhwlCxQ4TZJWZh5pr0h-TnkZ6WahJITvY,24497
|
56
56
|
ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
|
57
|
-
ads/aqua/model/constants.py,sha256=
|
57
|
+
ads/aqua/model/constants.py,sha256=b2nszavi2fNGiMpfpqT5xPWpab_yTJUN_sEdC8gOG2M,1535
|
58
58
|
ads/aqua/model/entities.py,sha256=5S2WFvDDt2XaQKYkWFAgs3P_g-VPpt74rpNQRM6-ssY,9580
|
59
59
|
ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
|
60
60
|
ads/aqua/model/model.py,sha256=gMoELf_HjuUYYcW05XfNRghXk3IhBP0PPaQDgP_-QUA,54277
|
@@ -639,17 +639,17 @@ ads/opctl/operator/lowcode/anomaly/README.md,sha256=E3vpyc5iKvIq8iuvGj8ZvLq3i_Q5
|
|
639
639
|
ads/opctl/operator/lowcode/anomaly/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
640
640
|
ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9ndF86RPd7KJ_kanltjM,3328
|
641
641
|
ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
|
642
|
-
ads/opctl/operator/lowcode/anomaly/const.py,sha256=
|
642
|
+
ads/opctl/operator/lowcode/anomaly/const.py,sha256=XKJkWFkXy6BYPn68L0bopYOUUKbzOI_AyxBDEiGWgaM,3048
|
643
643
|
ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
|
644
644
|
ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
|
645
|
-
ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=
|
645
|
+
ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=j2JvCyCStZ3owDxAm7b_v0E5Hrx7gE6DbYv1hSjOxD4,9314
|
646
646
|
ads/opctl/operator/lowcode/anomaly/utils.py,sha256=Uj98FO5oM-sLjoqsOnoBmgSMF7iJiL0XX-gvphw9yiU,2746
|
647
647
|
ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
648
648
|
ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
|
649
649
|
ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=Zn4ySrGfLbaKW0KIduwdnY0-YK8XAprCcMhElA4g-Vc,3401
|
650
|
-
ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=
|
650
|
+
ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=Q9FjVIOjnyctGDvYWCMB_rtusbl5IK1wCzkVze_MKxw,3984
|
651
651
|
ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=bq2VgRxLIRFov8pEoYCPGw3AXUmTJktA2nszQN8La2c,15365
|
652
|
-
ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=
|
652
|
+
ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=uRVD44_VCJVJzr3s3Cy_fPpYyP45JwKRmmN7uE2lw3I,3450
|
653
653
|
ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=Kjsuio7cM-dKv63p58B9Jj0XPly6Z0hqfghs5nnXepA,2671
|
654
654
|
ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eQpNyax1hnufLHhL8Rbzee28comD2fF7TLn3TpzMrs8,2583
|
655
655
|
ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=HUyWQOFjfLkIWsnmhfEn9354slKStlv6jIwQi5xzVj0,4270
|
@@ -674,7 +674,7 @@ ads/opctl/operator/lowcode/feature_store_marketplace/models/apigw_config.py,sha2
|
|
674
674
|
ads/opctl/operator/lowcode/feature_store_marketplace/models/db_config.py,sha256=ush-EZ9TUSg00g0Px-4SJa83KNLlV3BgQl9PNkVQC7M,1249
|
675
675
|
ads/opctl/operator/lowcode/feature_store_marketplace/models/mysql_config.py,sha256=wLifggnPo6d10SxkgVbGHB5L-EdV4QaO_BvBzpeTZGQ,3268
|
676
676
|
ads/opctl/operator/lowcode/feature_store_marketplace/models/serializable_yaml_model.py,sha256=Fd5K1q30mIyCbU6WDH8nDXyCJFlo_kSAEKxqr4dQSSc,1135
|
677
|
-
ads/opctl/operator/lowcode/forecast/MLoperator,sha256=
|
677
|
+
ads/opctl/operator/lowcode/forecast/MLoperator,sha256=xM8yBUQObjG_6Mg36f3Vv8b9N3L8_5RUZJE2riOjXuw,5981
|
678
678
|
ads/opctl/operator/lowcode/forecast/README.md,sha256=kbCCEdo-0pwKlZp9ctnWUK6Z31n69IsnG0i26b202Zg,9768
|
679
679
|
ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
680
680
|
ads/opctl/operator/lowcode/forecast/__main__.py,sha256=5Vh-kClwxTsvZLEuECyQBvbZFfH37HQW2G09RwX11Kw,2503
|
@@ -688,11 +688,11 @@ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=Zfhh_wfWxNeTtN4bqAe623Vf0
|
|
688
688
|
ads/opctl/operator/lowcode/forecast/utils.py,sha256=oc6eBH9naYg4BB14KS2HL0uFdZHMgKsxx9vG28dJrXA,14347
|
689
689
|
ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
690
690
|
ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=6ZXtzXcqoEMVF9DChzX0cnTJ-9tXKdbPiiSPQq4a9oM,10914
|
691
|
-
ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=
|
691
|
+
ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=D7U-y-sTdkiqynk_l86z1HNSjn9c58DJTU7l8T33BJk,14856
|
692
692
|
ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=QxU24eZeaRpnC5rTqBFe6-5ylMorPN0sCamHUiNQVaE,13162
|
693
693
|
ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s4_lvasasCqvrj49ubD0H_2wA9pvh16_f5BiivqvL20,30876
|
694
694
|
ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=NV_m2sEgj3byHHqLs9Vbth7d5yfvFuXj8QI3-y9x2Po,3488
|
695
|
-
ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=
|
695
|
+
ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=02gOA-0KKtD0VYj87SsgRMq4EP2VSnhfuxoH1suAIO0,16968
|
696
696
|
ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=EOFZR5wjZcpKACW3ZNnxd31Okz_ehOSaO5_dKL-Ktgw,9558
|
697
697
|
ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=pRmhLHjP027gmPbkgqzR2SZYKvj1rG9Heev2P8mSZ_k,19347
|
698
698
|
ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=0OBnyVP9bFpo1zSAqA5qtobZxICRTLVT9mwPOlHb3sM,14554
|
@@ -813,8 +813,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
|
|
813
813
|
ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
|
814
814
|
ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
|
815
815
|
ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
|
816
|
-
oracle_ads-2.12.
|
817
|
-
oracle_ads-2.12.
|
818
|
-
oracle_ads-2.12.
|
819
|
-
oracle_ads-2.12.
|
820
|
-
oracle_ads-2.12.
|
816
|
+
oracle_ads-2.12.1.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
|
817
|
+
oracle_ads-2.12.1.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
|
818
|
+
oracle_ads-2.12.1.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
819
|
+
oracle_ads-2.12.1.dist-info/METADATA,sha256=5I5Ky6jb3u3gyBOYwjEu4ov9lwZAme6eaE7A_wcotMo,16150
|
820
|
+
oracle_ads-2.12.1.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|