oracle-ads 2.11.6__py3-none-any.whl → 2.11.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ads/catalog/model.py +3 -3
- ads/catalog/notebook.py +3 -3
- ads/catalog/project.py +2 -2
- ads/catalog/summary.py +2 -4
- ads/cli.py +2 -1
- ads/common/serializer.py +1 -1
- ads/data_labeling/metadata.py +2 -2
- ads/dataset/dataset.py +3 -5
- ads/dataset/factory.py +2 -3
- ads/dataset/label_encoder.py +1 -1
- ads/dataset/sampled_dataset.py +3 -5
- ads/jobs/ads_job.py +26 -2
- ads/jobs/builders/infrastructure/dsc_job.py +20 -7
- ads/model/model_artifact_boilerplate/artifact_introspection_test/model_artifact_validate.py +1 -1
- ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py +8 -15
- ads/opctl/operator/lowcode/anomaly/model/automlx.py +2 -1
- ads/opctl/operator/lowcode/anomaly/model/base_model.py +2 -2
- ads/opctl/operator/lowcode/anomaly/operator_config.py +18 -1
- ads/opctl/operator/lowcode/anomaly/schema.yaml +16 -4
- ads/opctl/operator/lowcode/common/data.py +16 -2
- ads/opctl/operator/lowcode/common/transformations.py +48 -14
- ads/opctl/operator/lowcode/forecast/environment.yaml +1 -0
- ads/opctl/operator/lowcode/forecast/model/arima.py +21 -12
- ads/opctl/operator/lowcode/forecast/model/automlx.py +79 -72
- ads/opctl/operator/lowcode/forecast/model/autots.py +182 -164
- ads/opctl/operator/lowcode/forecast/model/base_model.py +59 -41
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +47 -47
- ads/opctl/operator/lowcode/forecast/model/prophet.py +48 -48
- ads/opctl/operator/lowcode/forecast/operator_config.py +18 -2
- ads/opctl/operator/lowcode/forecast/schema.yaml +20 -4
- ads/opctl/operator/lowcode/forecast/utils.py +4 -0
- ads/pipeline/ads_pipeline_step.py +11 -12
- {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/METADATA +4 -3
- {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/RECORD +37 -37
- {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/LICENSE.txt +0 -0
- {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/WHEEL +0 -0
- {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/entry_points.txt +0 -0
@@ -82,7 +82,7 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
|
|
82
82
|
|
83
83
|
data = self.preprocess(df, series_id)
|
84
84
|
data_i = self.drop_horizon(data)
|
85
|
-
if self.loaded_models is not None:
|
85
|
+
if self.loaded_models is not None and series_id in self.loaded_models:
|
86
86
|
model = self.loaded_models[series_id]
|
87
87
|
else:
|
88
88
|
if self.perform_tuning:
|
@@ -133,8 +133,6 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
|
|
133
133
|
}
|
134
134
|
|
135
135
|
def _build_model(self) -> pd.DataFrame:
|
136
|
-
from prophet import Prophet
|
137
|
-
from prophet.diagnostics import cross_validation, performance_metrics
|
138
136
|
|
139
137
|
full_data_dict = self.datasets.get_data_by_series()
|
140
138
|
self.models = dict()
|
@@ -160,6 +158,8 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
|
|
160
158
|
return self.forecast_output.get_forecast_long()
|
161
159
|
|
162
160
|
def run_tuning(self, data_i, model_kwargs_i):
|
161
|
+
from prophet import Prophet
|
162
|
+
from prophet.diagnostics import cross_validation, performance_metrics
|
163
163
|
def objective(trial):
|
164
164
|
params = {
|
165
165
|
"seasonality_mode": trial.suggest_categorical(
|
@@ -245,54 +245,54 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
|
|
245
245
|
def _generate_report(self):
|
246
246
|
import datapane as dp
|
247
247
|
from prophet.plot import add_changepoints_to_plot
|
248
|
+
series_ids = self.models.keys()
|
249
|
+
all_sections = []
|
250
|
+
if len(series_ids) > 0:
|
251
|
+
sec1_text = dp.Text(
|
252
|
+
"## Forecast Overview \n"
|
253
|
+
"These plots show your forecast in the context of historical data."
|
254
|
+
)
|
255
|
+
sec1 = _select_plot_list(
|
256
|
+
lambda s_id: self.models[s_id].plot(
|
257
|
+
self.outputs[s_id], include_legend=True
|
258
|
+
),
|
259
|
+
series_ids=series_ids,
|
260
|
+
)
|
248
261
|
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
"These plots show your forecast in the context of historical data."
|
254
|
-
)
|
255
|
-
sec1 = _select_plot_list(
|
256
|
-
lambda s_id: self.models[s_id].plot(
|
257
|
-
self.outputs[s_id], include_legend=True
|
258
|
-
),
|
259
|
-
series_ids=series_ids,
|
260
|
-
)
|
261
|
-
|
262
|
-
sec2_text = dp.Text(f"## Forecast Broken Down by Trend Component")
|
263
|
-
sec2 = _select_plot_list(
|
264
|
-
lambda s_id: self.models[s_id].plot_components(self.outputs[s_id]),
|
265
|
-
series_ids=series_ids,
|
266
|
-
)
|
267
|
-
|
268
|
-
sec3_text = dp.Text(f"## Forecast Changepoints")
|
269
|
-
sec3_figs = {
|
270
|
-
s_id: self.models[s_id].plot(self.outputs[s_id]) for s_id in series_ids
|
271
|
-
}
|
272
|
-
for s_id in series_ids:
|
273
|
-
add_changepoints_to_plot(
|
274
|
-
sec3_figs[s_id].gca(), self.models[s_id], self.outputs[s_id]
|
262
|
+
sec2_text = dp.Text(f"## Forecast Broken Down by Trend Component")
|
263
|
+
sec2 = _select_plot_list(
|
264
|
+
lambda s_id: self.models[s_id].plot_components(self.outputs[s_id]),
|
265
|
+
series_ids=series_ids,
|
275
266
|
)
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
model_states.append(
|
285
|
-
pd.Series(
|
286
|
-
m.seasonalities,
|
287
|
-
index=pd.Index(m.seasonalities.keys(), dtype="object"),
|
288
|
-
name=s_id,
|
289
|
-
dtype="object",
|
267
|
+
|
268
|
+
sec3_text = dp.Text(f"## Forecast Changepoints")
|
269
|
+
sec3_figs = {
|
270
|
+
s_id: self.models[s_id].plot(self.outputs[s_id]) for s_id in series_ids
|
271
|
+
}
|
272
|
+
for s_id in series_ids:
|
273
|
+
add_changepoints_to_plot(
|
274
|
+
sec3_figs[s_id].gca(), self.models[s_id], self.outputs[s_id]
|
290
275
|
)
|
291
|
-
)
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
276
|
+
sec3 = _select_plot_list(lambda s_id: sec3_figs[s_id], series_ids=series_ids)
|
277
|
+
|
278
|
+
all_sections = [sec1_text, sec1, sec2_text, sec2, sec3_text, sec3]
|
279
|
+
|
280
|
+
sec5_text = dp.Text(f"## Prophet Model Seasonality Components")
|
281
|
+
model_states = []
|
282
|
+
for s_id in series_ids:
|
283
|
+
m = self.models[s_id]
|
284
|
+
model_states.append(
|
285
|
+
pd.Series(
|
286
|
+
m.seasonalities,
|
287
|
+
index=pd.Index(m.seasonalities.keys(), dtype="object"),
|
288
|
+
name=s_id,
|
289
|
+
dtype="object",
|
290
|
+
)
|
291
|
+
)
|
292
|
+
all_model_states = pd.concat(model_states, axis=1)
|
293
|
+
if not all_model_states.empty:
|
294
|
+
sec5 = dp.DataTable(all_model_states)
|
295
|
+
all_sections = all_sections + [sec5_text, sec5]
|
296
296
|
|
297
297
|
if self.spec.generate_explanations:
|
298
298
|
try:
|
@@ -29,6 +29,22 @@ class DateTimeColumn(DataClassSerializable):
|
|
29
29
|
format: str = None
|
30
30
|
|
31
31
|
|
32
|
+
@dataclass(repr=True)
|
33
|
+
class PreprocessingSteps(DataClassSerializable):
|
34
|
+
"""Class representing preprocessing steps for operator."""
|
35
|
+
|
36
|
+
missing_value_imputation: bool = True
|
37
|
+
outlier_treatment: bool = True
|
38
|
+
|
39
|
+
|
40
|
+
@dataclass(repr=True)
|
41
|
+
class DataPreprocessor(DataClassSerializable):
|
42
|
+
"""Class representing operator specification preprocessing details."""
|
43
|
+
|
44
|
+
enabled: bool = True
|
45
|
+
steps: PreprocessingSteps = field(default_factory=PreprocessingSteps)
|
46
|
+
|
47
|
+
|
32
48
|
@dataclass(repr=True)
|
33
49
|
class Tuning(DataClassSerializable):
|
34
50
|
"""Class representing operator specification tuning details."""
|
@@ -54,7 +70,7 @@ class ForecastOperatorSpec(DataClassSerializable):
|
|
54
70
|
global_explanation_filename: str = None
|
55
71
|
local_explanation_filename: str = None
|
56
72
|
target_column: str = None
|
57
|
-
preprocessing:
|
73
|
+
preprocessing: DataPreprocessor = field(default_factory=DataPreprocessor)
|
58
74
|
datetime_column: DateTimeColumn = field(default_factory=DateTimeColumn)
|
59
75
|
target_category_columns: List[str] = field(default_factory=list)
|
60
76
|
generate_report: bool = None
|
@@ -79,7 +95,7 @@ class ForecastOperatorSpec(DataClassSerializable):
|
|
79
95
|
self.confidence_interval_width = self.confidence_interval_width or 0.80
|
80
96
|
self.report_filename = self.report_filename or "report.html"
|
81
97
|
self.preprocessing = (
|
82
|
-
self.preprocessing if self.preprocessing is not None else True
|
98
|
+
self.preprocessing if self.preprocessing is not None else DataPreprocessor(enabled=True)
|
83
99
|
)
|
84
100
|
# For Report Generation. When user doesn't specify defaults to True
|
85
101
|
self.generate_report = (
|
@@ -286,11 +286,27 @@ spec:
|
|
286
286
|
default: target
|
287
287
|
|
288
288
|
preprocessing:
|
289
|
-
type:
|
289
|
+
type: dict
|
290
290
|
required: false
|
291
|
-
|
292
|
-
|
293
|
-
|
291
|
+
schema:
|
292
|
+
enabled:
|
293
|
+
type: boolean
|
294
|
+
required: false
|
295
|
+
default: true
|
296
|
+
meta:
|
297
|
+
description: "preprocessing and feature engineering can be disabled using this flag, Defaults to true"
|
298
|
+
steps:
|
299
|
+
type: dict
|
300
|
+
required: false
|
301
|
+
schema:
|
302
|
+
missing_value_imputation:
|
303
|
+
type: boolean
|
304
|
+
required: false
|
305
|
+
default: true
|
306
|
+
outlier_treatment:
|
307
|
+
type: boolean
|
308
|
+
required: false
|
309
|
+
default: true
|
294
310
|
|
295
311
|
generate_explanations:
|
296
312
|
type: boolean
|
@@ -51,7 +51,11 @@ def _inverse_transform_dataframe(le, df):
|
|
51
51
|
def smape(actual, predicted) -> float:
|
52
52
|
if not all([isinstance(actual, np.ndarray), isinstance(predicted, np.ndarray)]):
|
53
53
|
actual, predicted = (np.array(actual), np.array(predicted))
|
54
|
+
zero_mask = np.logical_and(actual == 0, predicted == 0)
|
55
|
+
|
54
56
|
denominator = np.abs(actual) + np.abs(predicted)
|
57
|
+
denominator[zero_mask] = 1
|
58
|
+
|
55
59
|
numerator = np.abs(actual - predicted)
|
56
60
|
default_output = np.ones_like(numerator) * np.inf
|
57
61
|
|
@@ -1,7 +1,7 @@
|
|
1
1
|
#!/usr/bin/env python
|
2
2
|
# -*- coding: utf-8; -*-
|
3
3
|
|
4
|
-
# Copyright (c) 2022 Oracle and/or its affiliates.
|
4
|
+
# Copyright (c) 2022, 2024 Oracle and/or its affiliates.
|
5
5
|
# Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
|
6
6
|
import copy
|
7
7
|
from typing import List
|
@@ -9,6 +9,7 @@ from typing import List
|
|
9
9
|
from ads.jobs import Job
|
10
10
|
from ads.jobs.builders.infrastructure.dsc_job import DataScienceJob
|
11
11
|
from ads.jobs.builders.runtimes.base import Runtime
|
12
|
+
from ads.common.utils import get_random_name_for_resource
|
12
13
|
|
13
14
|
PIPELINE_STEP_KIND_TO_OCI_MAP = {
|
14
15
|
"dataScienceJob": "ML_JOB",
|
@@ -43,7 +44,7 @@ class PipelineStep(Job):
|
|
43
44
|
|
44
45
|
def __init__(
|
45
46
|
self,
|
46
|
-
name: str,
|
47
|
+
name: str = None,
|
47
48
|
job_id: str = None,
|
48
49
|
infrastructure=None,
|
49
50
|
runtime=None,
|
@@ -174,7 +175,7 @@ class PipelineStep(Job):
|
|
174
175
|
|
175
176
|
super().__init__()
|
176
177
|
if not name:
|
177
|
-
|
178
|
+
name = get_random_name_for_resource()
|
178
179
|
elif any(char in PIPELINE_STEP_RESTRICTED_CHAR_SET for char in name):
|
179
180
|
raise ValueError(
|
180
181
|
"PipelineStep name can not include any of the "
|
@@ -521,17 +522,15 @@ class PipelineStep(Job):
|
|
521
522
|
dict_details["spec"][self.CONST_DESCRIPTION] = self.description
|
522
523
|
if self.kind == "ML_JOB":
|
523
524
|
if self.environment_variable:
|
524
|
-
dict_details["spec"][
|
525
|
-
self.
|
526
|
-
|
525
|
+
dict_details["spec"][
|
526
|
+
self.CONST_ENVIRONMENT_VARIABLES
|
527
|
+
] = self.environment_variable
|
527
528
|
if self.argument:
|
528
|
-
dict_details["spec"][self.CONST_COMMAND_LINE_ARGUMENTS] =
|
529
|
-
self.argument
|
530
|
-
)
|
529
|
+
dict_details["spec"][self.CONST_COMMAND_LINE_ARGUMENTS] = self.argument
|
531
530
|
if self.maximum_runtime_in_minutes:
|
532
|
-
dict_details["spec"][
|
533
|
-
self.
|
534
|
-
|
531
|
+
dict_details["spec"][
|
532
|
+
self.CONST_MAXIMUM_RUNTIME_IN_MINUTES
|
533
|
+
] = self.maximum_runtime_in_minutes
|
535
534
|
|
536
535
|
dict_details["spec"].pop(self.CONST_DEPENDS_ON, None)
|
537
536
|
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.1
|
2
2
|
Name: oracle_ads
|
3
|
-
Version: 2.11.
|
3
|
+
Version: 2.11.7
|
4
4
|
Summary: Oracle Accelerated Data Science SDK
|
5
5
|
Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
|
6
6
|
Author: Oracle Data Science
|
@@ -80,7 +80,8 @@ Requires-Dist: oracledb ; extra == "forecast"
|
|
80
80
|
Requires-Dist: geopandas ; extra == "geo"
|
81
81
|
Requires-Dist: oracle_ads[viz] ; extra == "geo"
|
82
82
|
Requires-Dist: transformers ; extra == "huggingface"
|
83
|
-
Requires-Dist: langchain
|
83
|
+
Requires-Dist: langchain-community<0.0.32 ; extra == "llm"
|
84
|
+
Requires-Dist: langchain>=0.1.10,<0.1.14 ; extra == "llm"
|
84
85
|
Requires-Dist: evaluate>=0.4.0 ; extra == "llm"
|
85
86
|
Requires-Dist: ipython>=7.23.1, <8.0 ; extra == "notebook"
|
86
87
|
Requires-Dist: ipywidgets~=7.6.3 ; extra == "notebook"
|
@@ -357,5 +358,5 @@ Consult the security guide [SECURITY.md](https://github.com/oracle/accelerated-d
|
|
357
358
|
|
358
359
|
## License
|
359
360
|
|
360
|
-
Copyright (c) 2020,
|
361
|
+
Copyright (c) 2020, 2024 Oracle and/or its affiliates. Licensed under the [Universal Permissive License v1.0](https://oss.oracle.com/licenses/upl/)
|
361
362
|
|
@@ -1,5 +1,5 @@
|
|
1
1
|
ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
|
2
|
-
ads/cli.py,sha256=
|
2
|
+
ads/cli.py,sha256=ckDvHYAzMRVwW4jKlhozOKW0uHDUSU8PJ4io8ICxTGg,2053
|
3
3
|
ads/config.py,sha256=wbJTlAMYyKf92vqYb2je7R6ydK4Hl_YV0bSJHW1Tfvc,7809
|
4
4
|
ads/aqua/__init__.py,sha256=ttZSrmvF4PSI-0WrgwFmkmYR6CbRfKVE3mSsYKurKpw,899
|
5
5
|
ads/aqua/base.py,sha256=xxLdZPirDALBXSkSR6_amWNhnsDTpJcooF-pNS3rDic,11137
|
@@ -39,10 +39,10 @@ ads/bds/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
|
|
39
39
|
ads/bds/auth.py,sha256=DoAAshoye6AcqB9v0jByvHVrBXWR6yEq63254UiAdHM,3867
|
40
40
|
ads/bds/big_data_service.py,sha256=Fq9xNR1DA8yhOd7MvgUhWocAb_weLGZnFJnF1ZVUKiw,7714
|
41
41
|
ads/catalog/__init__.py,sha256=BHXBKHEch1Wa5KBXwBHZ-c3DcaawaLY2T8aBceUZ7Zk,459
|
42
|
-
ads/catalog/model.py,sha256=
|
43
|
-
ads/catalog/notebook.py,sha256=
|
44
|
-
ads/catalog/project.py,sha256=
|
45
|
-
ads/catalog/summary.py,sha256=
|
42
|
+
ads/catalog/model.py,sha256=O7ImZAd_w1C2x_rrXtlAKqnGxbsjFzgYLaj32CpMDtk,60050
|
43
|
+
ads/catalog/notebook.py,sha256=YzLANLas8a1o_JQPj9MwvmP43dtoxtj43AUOL6TkclY,16464
|
44
|
+
ads/catalog/project.py,sha256=eiCBOu9bHyQUH9SquSi880PDQftyRy3dONO_Qxtdeyk,16092
|
45
|
+
ads/catalog/summary.py,sha256=Zy_koBb5FTsP64zyNbqmQZJEWqtoV0lOvI-ZRCQSXa4,5790
|
46
46
|
ads/common/__init__.py,sha256=NBFa_nDAtft8NSiHIfDh5yfxbcJnXISamVH6DrJR_50,293
|
47
47
|
ads/common/analyzer.py,sha256=MrFxBNJwFJwv_kbuJheqvOTz537z7ITE3Il244l3eZU,1893
|
48
48
|
ads/common/auth.py,sha256=3Jw-O_aC06B9XS4-crvt17a4i8lrIw8Cz4f_SxO6lls,45733
|
@@ -64,7 +64,7 @@ ads/common/oci_datascience.py,sha256=biBgm-udtSYRL46XYfBFJjpkPFcw2ew-xvp3rbbpwmI
|
|
64
64
|
ads/common/oci_logging.py,sha256=OCb4Sc56mCZkwe3lIetNLUcZ5N_yEIqCrTbhlTbwoyk,41813
|
65
65
|
ads/common/oci_mixin.py,sha256=mhja5UomrhXH43uB0jT-u2KaT37op9tM-snxvtGfc40,34548
|
66
66
|
ads/common/oci_resource.py,sha256=zRa4z5yh5GoOW_6ZE57nhMmK2d94WUqyFqvaNvje9Co,4484
|
67
|
-
ads/common/serializer.py,sha256=
|
67
|
+
ads/common/serializer.py,sha256=2xF9gUxXXdgubnVu5C_5ttC-tCoxxeLsJoyxx9KJ9ew,18809
|
68
68
|
ads/common/utils.py,sha256=VKgM2Z2cRvOgs77Z2iIQzdVtDEiFo9aagHX442LE4rc,52099
|
69
69
|
ads/common/word_lists.py,sha256=luyfSHWZtwAYKuRsSmUYd1VskKYR_8jG_Y26D3j2Vc8,22306
|
70
70
|
ads/common/work_request.py,sha256=z7OGroZNKs9FnOVCi89QnrxOh4PEWEdTsyXWUUydKwM,6591
|
@@ -83,7 +83,7 @@ ads/data_labeling/__init__.py,sha256=gIONt2jlHNUU5qpHVcqi3YYxFAi1mxo0oe0JaNT7H2E
|
|
83
83
|
ads/data_labeling/boundingbox.py,sha256=tB3dN8gcSrHEv-1_3WVtbUpkLrrEaR4hD5-MOD7Y4B4,8530
|
84
84
|
ads/data_labeling/constants.py,sha256=8ZJiwX-aCaHTYYY1n__AngorfVzpAcHOM4KoFKKD9to,1131
|
85
85
|
ads/data_labeling/data_labeling_service.py,sha256=KwRcVmBTKsPBoq33zI7i2HBgheEp8SsEGR_1QnBpYjc,9558
|
86
|
-
ads/data_labeling/metadata.py,sha256=
|
86
|
+
ads/data_labeling/metadata.py,sha256=ZRYX_0fygLjXSEXPXnxHwOmNEdKFJ7gSIhgHJXCkbbM,3447
|
87
87
|
ads/data_labeling/ner.py,sha256=P3JcdjlWgtZ9XiK9zgCGAolySgCEy3xESiaEksN_3yg,3489
|
88
88
|
ads/data_labeling/record.py,sha256=wYoOvlAYwsmOvrajrTdr6DUqpeh4urn373N8asIbLY0,1396
|
89
89
|
ads/data_labeling/interface/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
|
@@ -117,23 +117,23 @@ ads/dataset/correlation.py,sha256=OKdUO-bhZTQnZ3flrju1se6ToB8v6yod_uYeFPRLHfU,80
|
|
117
117
|
ads/dataset/correlation_plot.py,sha256=LLGy9ZzkQ-V9yPo58T2Jjj6qdBeqwJcave5yUgBOYK4,17266
|
118
118
|
ads/dataset/dask_series.py,sha256=2BhjLDyKL4-dHq7tBgipd8-2VxR0kJdzImu3sxjdNOg,5427
|
119
119
|
ads/dataset/dataframe_transformer.py,sha256=xPBG8nvYh35hfXcwutj8FDrO1DnSM4_NgW6EMRQWW7s,3592
|
120
|
-
ads/dataset/dataset.py,sha256=
|
120
|
+
ads/dataset/dataset.py,sha256=nXNUBEBxX8D5OJNyn8AgvYYQFNMTdRD4R-6-UaxavQs,73481
|
121
121
|
ads/dataset/dataset_browser.py,sha256=E-Cx0lJPAHicDUi6nIDWBCd_M_LM7EXpdT1S80l7EPE,11879
|
122
122
|
ads/dataset/dataset_with_target.py,sha256=n11qv3bPaZU_XXwZYBtzZYVmX2sn_wuc422HFBXoE_8,38574
|
123
123
|
ads/dataset/exception.py,sha256=Z96xkd9hzbn0NrMsmubcrXLGIU6nP2-0M02T9C0Xwg0,602
|
124
|
-
ads/dataset/factory.py,sha256=
|
124
|
+
ads/dataset/factory.py,sha256=bD2T-fYuKTo9Wk8OscZeAjYpzym54eMfU_eYWvBl4Fk,37594
|
125
125
|
ads/dataset/feature_engineering_transformer.py,sha256=IbR-V7YW-WgGRpNUvFyO_rpmWqeyL4WqlZcJO4gy0v8,1140
|
126
126
|
ads/dataset/feature_selection.py,sha256=FJLsQ0obLW9lSFibxNpmUI592SLSXnL_2hD9Y8E5BWI,4144
|
127
127
|
ads/dataset/forecasting_dataset.py,sha256=-qNeCcFmm-1FDN_EmG7tYEs8-MSzmHyIb9PHeSCk0PM,980
|
128
128
|
ads/dataset/helper.py,sha256=haai-dxE0NynClSUoE19aaxEoBr755HNx8BXxRtqo-o,49959
|
129
|
-
ads/dataset/label_encoder.py,sha256=
|
129
|
+
ads/dataset/label_encoder.py,sha256=JEvS7zdQRrj-hyDqLCY-tXLeROYCtdibapRWoUDXy_0,2979
|
130
130
|
ads/dataset/pipeline.py,sha256=laXu4E-ipL7UKWEeTcvJEw2ub8YYUNFUo4Taqa4eB_o,1642
|
131
131
|
ads/dataset/plot.py,sha256=8DB7brJqBJBsTFWogOxfYPYwTykFwAHFOIjA3Q8P2NE,26056
|
132
132
|
ads/dataset/progress.py,sha256=ulcjMurT0P0FKJk0-6tmUQF5clpv2VGpnD2shM2EIHA,2298
|
133
133
|
ads/dataset/recommendation.py,sha256=GZQiTxAC8ucSRV6W_ioEtbN8tKUV2By930iaBgGckjA,12909
|
134
134
|
ads/dataset/recommendation_transformer.py,sha256=ijt7EnG65vUuuMgfMH6gRE-kSVXtXoHvieFiagWg05U,22159
|
135
135
|
ads/dataset/regression_dataset.py,sha256=KYoxzhn7kPXSUFX_QDDC4eSHP-3rAC3Y-2BHj-L28Zo,562
|
136
|
-
ads/dataset/sampled_dataset.py,sha256=
|
136
|
+
ads/dataset/sampled_dataset.py,sha256=rvmQagFVDXZXtmUw_ugKO1cDL4sOZfqvsG033PnxXR4,39566
|
137
137
|
ads/dataset/target.py,sha256=ZMmd20TjryrG0lk8DDURy0JgKhpn29aJheHpAO4_5Lo,3646
|
138
138
|
ads/dataset/timeseries.py,sha256=Ga8fpOj3jMA1Lc61461rd_szcsUFf6xX04Kp6TalmiU,522
|
139
139
|
ads/dataset/mixin/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
@@ -378,7 +378,7 @@ ads/hpo/visualization/_optimization_history.py,sha256=c0X-1arB-CogTyP_PASve87rr_
|
|
378
378
|
ads/hpo/visualization/_parallel_coordinate.py,sha256=WkWUK3Qjyk3I7kndDBowwcTxZmzhraoNjDnplt79nNE,5850
|
379
379
|
ads/hpo/visualization/_param_importances.py,sha256=CbBpjZjQUmMWFvYt8nJonFH9QsxxBByOY7Z-98iqJHg,821
|
380
380
|
ads/jobs/__init__.py,sha256=66xMpjdvpIlFu0uK8J7FuemN7Ou8D60TWwiAk8h6Vj0,1517
|
381
|
-
ads/jobs/ads_job.py,sha256=
|
381
|
+
ads/jobs/ads_job.py,sha256=5N8Z_F4xajRvERuI7BOIMjbESauaCGFrOg7dmhOKVqM,21778
|
382
382
|
ads/jobs/cli.py,sha256=Q8UMFUh3g2uVxeLjwjswpSHDgqTAsEnL-QTxcq1aw98,3168
|
383
383
|
ads/jobs/env_var_parser.py,sha256=eB1ufufG2tvZq0-juBOATF4uSPkaJfxqZT0aE3b__Ds,4643
|
384
384
|
ads/jobs/extension.py,sha256=2rsxHrdvbZv0_LdgyuooaqB14eDVpvuGDENhz4IZj2Q,5748
|
@@ -389,7 +389,7 @@ ads/jobs/builders/base.py,sha256=o_njFwWQpGY755KbYwpYhvup7UGdcDnN06RdVtAbOkM,483
|
|
389
389
|
ads/jobs/builders/infrastructure/__init__.py,sha256=SgpGnF6ppE6LneSPWysGVdBrYMvVd-jYZD8oQfqtR34,246
|
390
390
|
ads/jobs/builders/infrastructure/base.py,sha256=cm4QXdQ-3Qk3Jz-oVzmeKqLaWW06HgSpc4Q9P3vIHFQ,4405
|
391
391
|
ads/jobs/builders/infrastructure/dataflow.py,sha256=XTuDhcz96vqskE5dFXWqzic1YcYcD5qPlKGhP4J82J0,39281
|
392
|
-
ads/jobs/builders/infrastructure/dsc_job.py,sha256=
|
392
|
+
ads/jobs/builders/infrastructure/dsc_job.py,sha256=UJ8CtXejcZR4n9lmBmYZ1xbzNFNi3sm1uQJI90JY8k0,62137
|
393
393
|
ads/jobs/builders/infrastructure/dsc_job_runtime.py,sha256=l7xfmYO63ali8GZx3Iu80L5fttt-OMNxlebDH5od69g,45101
|
394
394
|
ads/jobs/builders/infrastructure/utils.py,sha256=SfGvKiIUsbnMnYFxmMnRtmCDkaiJR0_CuRenP94iQyI,1623
|
395
395
|
ads/jobs/builders/runtimes/__init__.py,sha256=-aGtuFul2fJIMa7xNoOKNFaBAQeBNcZk71hf6dVSohA,204
|
@@ -481,7 +481,7 @@ ads/model/model_artifact_boilerplate/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1Yn
|
|
481
481
|
ads/model/model_artifact_boilerplate/runtime.yaml,sha256=7VulvHFZza8f5Brta5SleT8wBlE09jfIRs_ZZloLvb8,291
|
482
482
|
ads/model/model_artifact_boilerplate/score.py,sha256=vUxO8wx3NHOyisIm0mKFK-WJ27fhQVvwheOUNxwQ8O0,1802
|
483
483
|
ads/model/model_artifact_boilerplate/artifact_introspection_test/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
|
484
|
-
ads/model/model_artifact_boilerplate/artifact_introspection_test/model_artifact_validate.py,sha256=
|
484
|
+
ads/model/model_artifact_boilerplate/artifact_introspection_test/model_artifact_validate.py,sha256=uM0dS3ogbuvjL4h96wEYhgaUlgTe3d2OXY7W1cE0jXc,17246
|
485
485
|
ads/model/model_artifact_boilerplate/artifact_introspection_test/requirements.txt,sha256=fCQ3KBM1isek1GV6LotSqZP-2p1dF3KR41A650kaIlU,16
|
486
486
|
ads/model/runtime/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
|
487
487
|
ads/model/runtime/env_info.py,sha256=DONzXa4lrYsJHroGMXt8AKW7xyxneV2ziOPHyvz8wa0,9584
|
@@ -605,21 +605,21 @@ ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=r8IRmQQU30H9nETRkbl8U4tFxN
|
|
605
605
|
ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
|
606
606
|
ads/opctl/operator/lowcode/anomaly/const.py,sha256=HpgW5buux97on-J5q1WUUcLCAQ-PurAX8b6DiDCHN0g,2611
|
607
607
|
ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=RFnAAn1A-FpaBGM-XqCAtr5NWp5XzfcuWzVoJaZ9VME,221
|
608
|
-
ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=
|
609
|
-
ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=
|
608
|
+
ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=YFeTnOS0JNE9d80dxl4eLmzrEo_Zl43359HwIZUr448,4096
|
609
|
+
ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=iM4Vv0Lzpya9wRlDXd6QkbqWVeXGGoIDGIhBMVynmnI,8741
|
610
610
|
ads/opctl/operator/lowcode/anomaly/utils.py,sha256=2dg5-FGFdKd_X3Z-BeenVobBqw-w5iNuaTCSKNNZggM,2651
|
611
611
|
ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
612
|
-
ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=
|
613
|
-
ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=
|
612
|
+
ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=P28uwlr3ZsGPiZ4pz8d3HRm4pCqx3qhmxsNW6tbBrEI,5114
|
613
|
+
ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=LxsF2a0JO41vd6p0as9Czn2JiOSypsnReYDJDXABsvI,3368
|
614
614
|
ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=bZ98zS9iPvAkEXy5HackFb-SvoeDlpggsnwhg9lNYLA,3722
|
615
|
-
ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=
|
615
|
+
ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=66OS9xem54daHQZlFDuBpHuuRvVGOGGz0lS1UswGe84,13424
|
616
616
|
ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=Z4fRpX69ONuD_N9R1JPT5e-5mtVqLd1Do4neW-qoVRM,2121
|
617
617
|
ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=VJqxRZcaxLFseyMpM2a3GHZ-o-uPYr2-C2q_vgScrdY,4163
|
618
618
|
ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
|
619
619
|
ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
|
620
|
-
ads/opctl/operator/lowcode/common/data.py,sha256=
|
620
|
+
ads/opctl/operator/lowcode/common/data.py,sha256=BSo2TC9rWNiY7WqG7a9zB1USZNKL_s6ILwYdFySiKvo,4078
|
621
621
|
ads/opctl/operator/lowcode/common/errors.py,sha256=4pHYq2v66BPUFvDK1V9rLIXB8u-jUlgqswtP787CdWs,1389
|
622
|
-
ads/opctl/operator/lowcode/common/transformations.py,sha256=
|
622
|
+
ads/opctl/operator/lowcode/common/transformations.py,sha256=aTGxVSYOC5P982BI-ky2lPup7zSEn6K33hUxFp3C_58,8747
|
623
623
|
ads/opctl/operator/lowcode/common/utils.py,sha256=u-5hwi1KWNE_jmXx8iNE8UL21_-vdWaPwFZEcaWJWsA,7871
|
624
624
|
ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
|
625
625
|
ads/opctl/operator/lowcode/feature_store_marketplace/README.md,sha256=fN9ROzOPdEZdRgSP_uYvAmD5bD983NC7Irfe_D-mvrw,1356
|
@@ -641,20 +641,20 @@ ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSk
|
|
641
641
|
ads/opctl/operator/lowcode/forecast/__main__.py,sha256=NeG4J4aXSPSN9-EwjTBcmcqSVWqS7VuwsaZdkHWEL9U,3056
|
642
642
|
ads/opctl/operator/lowcode/forecast/cmd.py,sha256=Q-R3yfK7aPfE4-0zIqzLFSjnz1tVMxJ1bbvrCirVZHQ,1246
|
643
643
|
ads/opctl/operator/lowcode/forecast/const.py,sha256=SJRFaQtB2dtuc2WJJghGYynJ9jal7d7sK442cOHLdHU,2558
|
644
|
-
ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=
|
644
|
+
ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=1Fngnbdf5thxWujl5CorMmlQ_cwtYVze9TZBxVBhnJ8,387
|
645
645
|
ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
|
646
|
-
ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=
|
647
|
-
ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=
|
648
|
-
ads/opctl/operator/lowcode/forecast/utils.py,sha256=
|
646
|
+
ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=KxCDpPR-rNjAkLrMKs-XpZ8xVGIwrOJxi-lpc3-6jyU,6204
|
647
|
+
ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=CGFoCE4sqLYar2bclH90_G8HYfmYUuf4t4R6WY6oYOM,9818
|
648
|
+
ads/opctl/operator/lowcode/forecast/utils.py,sha256=x46RjL1zz0x4c4iPhRIuhCltgCMPHzGNuBr9ZBGLgQM,15073
|
649
649
|
ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
650
|
-
ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=
|
651
|
-
ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=
|
652
|
-
ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=
|
653
|
-
ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=
|
650
|
+
ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=wSerwzhWgW-kG04fqMcIorOTNnxcE88H5PFrxtEvaIE,10822
|
651
|
+
ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=43KqimnvUmNCnOCkWnRJZD1wLUJu3hVWQKpAVlLjt8U,14797
|
652
|
+
ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=XKyCHqp1R_j24r3Bt2oFvwDRWx7eH9tj1qPTk2EMlXg,12668
|
653
|
+
ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=q88vqVLyupOsBeOshDdf5fYVGhPUPul5X2Js1wOOHWw,29952
|
654
654
|
ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=beOWnIXZ9DL333CRaTGltmMcywNKXxmMmEZ5P7hh0IE,2307
|
655
655
|
ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=TLVr8e2P9Yj2lbvbI_dC5pf_dJN3RqC5L1f2Zj7gdM0,16335
|
656
|
-
ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=
|
657
|
-
ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=
|
656
|
+
ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=S3jaOZtHpddIL6Vk2kjr8ZV9v4tVq1qnYEsXuerOmNQ,18681
|
657
|
+
ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=CvcfmfY54f9eX511uoxVzXNxFYkXInSGYK8QbMDlmGU,14364
|
658
658
|
ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
|
659
659
|
ads/opctl/operator/lowcode/pii/README.md,sha256=qx1oY0oMBDH-qX0xGCK-jp3HQcn1BAANxOxpHOWZa4I,9231
|
660
660
|
ads/opctl/operator/lowcode/pii/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
|
@@ -693,7 +693,7 @@ ads/oracledb/oracle_db.py,sha256=_8Z8DL45RrWdaVZA464ICDtgm8tBoPGoX_wQTozDPHE,128
|
|
693
693
|
ads/pipeline/__init__.py,sha256=AAxC4BtaiTO4fj5odxTPWBToqxSKfKzQzRHW_9ozIOY,1268
|
694
694
|
ads/pipeline/ads_pipeline.py,sha256=NkeryW1guYghFkbOlPdN-Kh_LlyZMwJV3c6eAC56V28,84882
|
695
695
|
ads/pipeline/ads_pipeline_run.py,sha256=ea7yKc183g5wrmuFSJp5T3--7NywWHWBanxPh0TOCUY,28006
|
696
|
-
ads/pipeline/ads_pipeline_step.py,sha256=
|
696
|
+
ads/pipeline/ads_pipeline_step.py,sha256=Wo0SYmin2aY2Nqm_DRMoTZ2nGUcpPLA791goic9K14A,20267
|
697
697
|
ads/pipeline/cli.py,sha256=H_Z5vRSZmdW1iFIbbjKPnHa8pp4YS55M95HP9Naqi0Y,3480
|
698
698
|
ads/pipeline/extension.py,sha256=l8U0R4t7v9BHONXF4GW_f5W1HoYK7Ik9y8KBK66RWdE,9067
|
699
699
|
ads/pipeline/builders/__init__.py,sha256=osdnB6y0So4ezGNJWz46B5nwmyV1dP_x1KmAG6IR5Pg,205
|
@@ -758,8 +758,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
|
|
758
758
|
ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
|
759
759
|
ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
|
760
760
|
ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
|
761
|
-
oracle_ads-2.11.
|
762
|
-
oracle_ads-2.11.
|
763
|
-
oracle_ads-2.11.
|
764
|
-
oracle_ads-2.11.
|
765
|
-
oracle_ads-2.11.
|
761
|
+
oracle_ads-2.11.7.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
|
762
|
+
oracle_ads-2.11.7.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
|
763
|
+
oracle_ads-2.11.7.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
|
764
|
+
oracle_ads-2.11.7.dist-info/METADATA,sha256=Mdwc0-HnJFFaHDWw3I4GETGYj1UsCZEPhWfYpYJcYSs,15943
|
765
|
+
oracle_ads-2.11.7.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|