oracle-ads 2.11.6__py3-none-any.whl → 2.11.7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. ads/catalog/model.py +3 -3
  2. ads/catalog/notebook.py +3 -3
  3. ads/catalog/project.py +2 -2
  4. ads/catalog/summary.py +2 -4
  5. ads/cli.py +2 -1
  6. ads/common/serializer.py +1 -1
  7. ads/data_labeling/metadata.py +2 -2
  8. ads/dataset/dataset.py +3 -5
  9. ads/dataset/factory.py +2 -3
  10. ads/dataset/label_encoder.py +1 -1
  11. ads/dataset/sampled_dataset.py +3 -5
  12. ads/jobs/ads_job.py +26 -2
  13. ads/jobs/builders/infrastructure/dsc_job.py +20 -7
  14. ads/model/model_artifact_boilerplate/artifact_introspection_test/model_artifact_validate.py +1 -1
  15. ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py +8 -15
  16. ads/opctl/operator/lowcode/anomaly/model/automlx.py +2 -1
  17. ads/opctl/operator/lowcode/anomaly/model/base_model.py +2 -2
  18. ads/opctl/operator/lowcode/anomaly/operator_config.py +18 -1
  19. ads/opctl/operator/lowcode/anomaly/schema.yaml +16 -4
  20. ads/opctl/operator/lowcode/common/data.py +16 -2
  21. ads/opctl/operator/lowcode/common/transformations.py +48 -14
  22. ads/opctl/operator/lowcode/forecast/environment.yaml +1 -0
  23. ads/opctl/operator/lowcode/forecast/model/arima.py +21 -12
  24. ads/opctl/operator/lowcode/forecast/model/automlx.py +79 -72
  25. ads/opctl/operator/lowcode/forecast/model/autots.py +182 -164
  26. ads/opctl/operator/lowcode/forecast/model/base_model.py +59 -41
  27. ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +47 -47
  28. ads/opctl/operator/lowcode/forecast/model/prophet.py +48 -48
  29. ads/opctl/operator/lowcode/forecast/operator_config.py +18 -2
  30. ads/opctl/operator/lowcode/forecast/schema.yaml +20 -4
  31. ads/opctl/operator/lowcode/forecast/utils.py +4 -0
  32. ads/pipeline/ads_pipeline_step.py +11 -12
  33. {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/METADATA +4 -3
  34. {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/RECORD +37 -37
  35. {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/LICENSE.txt +0 -0
  36. {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/WHEEL +0 -0
  37. {oracle_ads-2.11.6.dist-info → oracle_ads-2.11.7.dist-info}/entry_points.txt +0 -0
@@ -82,7 +82,7 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
82
82
 
83
83
  data = self.preprocess(df, series_id)
84
84
  data_i = self.drop_horizon(data)
85
- if self.loaded_models is not None:
85
+ if self.loaded_models is not None and series_id in self.loaded_models:
86
86
  model = self.loaded_models[series_id]
87
87
  else:
88
88
  if self.perform_tuning:
@@ -133,8 +133,6 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
133
133
  }
134
134
 
135
135
  def _build_model(self) -> pd.DataFrame:
136
- from prophet import Prophet
137
- from prophet.diagnostics import cross_validation, performance_metrics
138
136
 
139
137
  full_data_dict = self.datasets.get_data_by_series()
140
138
  self.models = dict()
@@ -160,6 +158,8 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
160
158
  return self.forecast_output.get_forecast_long()
161
159
 
162
160
  def run_tuning(self, data_i, model_kwargs_i):
161
+ from prophet import Prophet
162
+ from prophet.diagnostics import cross_validation, performance_metrics
163
163
  def objective(trial):
164
164
  params = {
165
165
  "seasonality_mode": trial.suggest_categorical(
@@ -245,54 +245,54 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
245
245
  def _generate_report(self):
246
246
  import datapane as dp
247
247
  from prophet.plot import add_changepoints_to_plot
248
+ series_ids = self.models.keys()
249
+ all_sections = []
250
+ if len(series_ids) > 0:
251
+ sec1_text = dp.Text(
252
+ "## Forecast Overview \n"
253
+ "These plots show your forecast in the context of historical data."
254
+ )
255
+ sec1 = _select_plot_list(
256
+ lambda s_id: self.models[s_id].plot(
257
+ self.outputs[s_id], include_legend=True
258
+ ),
259
+ series_ids=series_ids,
260
+ )
248
261
 
249
- series_ids = self.datasets.list_series_ids()
250
-
251
- sec1_text = dp.Text(
252
- "## Forecast Overview \n"
253
- "These plots show your forecast in the context of historical data."
254
- )
255
- sec1 = _select_plot_list(
256
- lambda s_id: self.models[s_id].plot(
257
- self.outputs[s_id], include_legend=True
258
- ),
259
- series_ids=series_ids,
260
- )
261
-
262
- sec2_text = dp.Text(f"## Forecast Broken Down by Trend Component")
263
- sec2 = _select_plot_list(
264
- lambda s_id: self.models[s_id].plot_components(self.outputs[s_id]),
265
- series_ids=series_ids,
266
- )
267
-
268
- sec3_text = dp.Text(f"## Forecast Changepoints")
269
- sec3_figs = {
270
- s_id: self.models[s_id].plot(self.outputs[s_id]) for s_id in series_ids
271
- }
272
- for s_id in series_ids:
273
- add_changepoints_to_plot(
274
- sec3_figs[s_id].gca(), self.models[s_id], self.outputs[s_id]
262
+ sec2_text = dp.Text(f"## Forecast Broken Down by Trend Component")
263
+ sec2 = _select_plot_list(
264
+ lambda s_id: self.models[s_id].plot_components(self.outputs[s_id]),
265
+ series_ids=series_ids,
275
266
  )
276
- sec3 = _select_plot_list(lambda s_id: sec3_figs[s_id], series_ids=series_ids)
277
-
278
- all_sections = [sec1_text, sec1, sec2_text, sec2, sec3_text, sec3]
279
-
280
- sec5_text = dp.Text(f"## Prophet Model Seasonality Components")
281
- model_states = []
282
- for s_id in series_ids:
283
- m = self.models[s_id]
284
- model_states.append(
285
- pd.Series(
286
- m.seasonalities,
287
- index=pd.Index(m.seasonalities.keys(), dtype="object"),
288
- name=s_id,
289
- dtype="object",
267
+
268
+ sec3_text = dp.Text(f"## Forecast Changepoints")
269
+ sec3_figs = {
270
+ s_id: self.models[s_id].plot(self.outputs[s_id]) for s_id in series_ids
271
+ }
272
+ for s_id in series_ids:
273
+ add_changepoints_to_plot(
274
+ sec3_figs[s_id].gca(), self.models[s_id], self.outputs[s_id]
290
275
  )
291
- )
292
- all_model_states = pd.concat(model_states, axis=1)
293
- if not all_model_states.empty:
294
- sec5 = dp.DataTable(all_model_states)
295
- all_sections = all_sections + [sec5_text, sec5]
276
+ sec3 = _select_plot_list(lambda s_id: sec3_figs[s_id], series_ids=series_ids)
277
+
278
+ all_sections = [sec1_text, sec1, sec2_text, sec2, sec3_text, sec3]
279
+
280
+ sec5_text = dp.Text(f"## Prophet Model Seasonality Components")
281
+ model_states = []
282
+ for s_id in series_ids:
283
+ m = self.models[s_id]
284
+ model_states.append(
285
+ pd.Series(
286
+ m.seasonalities,
287
+ index=pd.Index(m.seasonalities.keys(), dtype="object"),
288
+ name=s_id,
289
+ dtype="object",
290
+ )
291
+ )
292
+ all_model_states = pd.concat(model_states, axis=1)
293
+ if not all_model_states.empty:
294
+ sec5 = dp.DataTable(all_model_states)
295
+ all_sections = all_sections + [sec5_text, sec5]
296
296
 
297
297
  if self.spec.generate_explanations:
298
298
  try:
@@ -29,6 +29,22 @@ class DateTimeColumn(DataClassSerializable):
29
29
  format: str = None
30
30
 
31
31
 
32
+ @dataclass(repr=True)
33
+ class PreprocessingSteps(DataClassSerializable):
34
+ """Class representing preprocessing steps for operator."""
35
+
36
+ missing_value_imputation: bool = True
37
+ outlier_treatment: bool = True
38
+
39
+
40
+ @dataclass(repr=True)
41
+ class DataPreprocessor(DataClassSerializable):
42
+ """Class representing operator specification preprocessing details."""
43
+
44
+ enabled: bool = True
45
+ steps: PreprocessingSteps = field(default_factory=PreprocessingSteps)
46
+
47
+
32
48
  @dataclass(repr=True)
33
49
  class Tuning(DataClassSerializable):
34
50
  """Class representing operator specification tuning details."""
@@ -54,7 +70,7 @@ class ForecastOperatorSpec(DataClassSerializable):
54
70
  global_explanation_filename: str = None
55
71
  local_explanation_filename: str = None
56
72
  target_column: str = None
57
- preprocessing: bool = None
73
+ preprocessing: DataPreprocessor = field(default_factory=DataPreprocessor)
58
74
  datetime_column: DateTimeColumn = field(default_factory=DateTimeColumn)
59
75
  target_category_columns: List[str] = field(default_factory=list)
60
76
  generate_report: bool = None
@@ -79,7 +95,7 @@ class ForecastOperatorSpec(DataClassSerializable):
79
95
  self.confidence_interval_width = self.confidence_interval_width or 0.80
80
96
  self.report_filename = self.report_filename or "report.html"
81
97
  self.preprocessing = (
82
- self.preprocessing if self.preprocessing is not None else True
98
+ self.preprocessing if self.preprocessing is not None else DataPreprocessor(enabled=True)
83
99
  )
84
100
  # For Report Generation. When user doesn't specify defaults to True
85
101
  self.generate_report = (
@@ -286,11 +286,27 @@ spec:
286
286
  default: target
287
287
 
288
288
  preprocessing:
289
- type: boolean
289
+ type: dict
290
290
  required: false
291
- default: true
292
- meta:
293
- description: "preprocessing and feature engineering can be disabled using this flag, Defaults to true"
291
+ schema:
292
+ enabled:
293
+ type: boolean
294
+ required: false
295
+ default: true
296
+ meta:
297
+ description: "preprocessing and feature engineering can be disabled using this flag, Defaults to true"
298
+ steps:
299
+ type: dict
300
+ required: false
301
+ schema:
302
+ missing_value_imputation:
303
+ type: boolean
304
+ required: false
305
+ default: true
306
+ outlier_treatment:
307
+ type: boolean
308
+ required: false
309
+ default: true
294
310
 
295
311
  generate_explanations:
296
312
  type: boolean
@@ -51,7 +51,11 @@ def _inverse_transform_dataframe(le, df):
51
51
  def smape(actual, predicted) -> float:
52
52
  if not all([isinstance(actual, np.ndarray), isinstance(predicted, np.ndarray)]):
53
53
  actual, predicted = (np.array(actual), np.array(predicted))
54
+ zero_mask = np.logical_and(actual == 0, predicted == 0)
55
+
54
56
  denominator = np.abs(actual) + np.abs(predicted)
57
+ denominator[zero_mask] = 1
58
+
55
59
  numerator = np.abs(actual - predicted)
56
60
  default_output = np.ones_like(numerator) * np.inf
57
61
 
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding: utf-8; -*-
3
3
 
4
- # Copyright (c) 2022 Oracle and/or its affiliates.
4
+ # Copyright (c) 2022, 2024 Oracle and/or its affiliates.
5
5
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
6
  import copy
7
7
  from typing import List
@@ -9,6 +9,7 @@ from typing import List
9
9
  from ads.jobs import Job
10
10
  from ads.jobs.builders.infrastructure.dsc_job import DataScienceJob
11
11
  from ads.jobs.builders.runtimes.base import Runtime
12
+ from ads.common.utils import get_random_name_for_resource
12
13
 
13
14
  PIPELINE_STEP_KIND_TO_OCI_MAP = {
14
15
  "dataScienceJob": "ML_JOB",
@@ -43,7 +44,7 @@ class PipelineStep(Job):
43
44
 
44
45
  def __init__(
45
46
  self,
46
- name: str,
47
+ name: str = None,
47
48
  job_id: str = None,
48
49
  infrastructure=None,
49
50
  runtime=None,
@@ -174,7 +175,7 @@ class PipelineStep(Job):
174
175
 
175
176
  super().__init__()
176
177
  if not name:
177
- raise ValueError("PipelineStep name must be specified.")
178
+ name = get_random_name_for_resource()
178
179
  elif any(char in PIPELINE_STEP_RESTRICTED_CHAR_SET for char in name):
179
180
  raise ValueError(
180
181
  "PipelineStep name can not include any of the "
@@ -521,17 +522,15 @@ class PipelineStep(Job):
521
522
  dict_details["spec"][self.CONST_DESCRIPTION] = self.description
522
523
  if self.kind == "ML_JOB":
523
524
  if self.environment_variable:
524
- dict_details["spec"][self.CONST_ENVIRONMENT_VARIABLES] = (
525
- self.environment_variable
526
- )
525
+ dict_details["spec"][
526
+ self.CONST_ENVIRONMENT_VARIABLES
527
+ ] = self.environment_variable
527
528
  if self.argument:
528
- dict_details["spec"][self.CONST_COMMAND_LINE_ARGUMENTS] = (
529
- self.argument
530
- )
529
+ dict_details["spec"][self.CONST_COMMAND_LINE_ARGUMENTS] = self.argument
531
530
  if self.maximum_runtime_in_minutes:
532
- dict_details["spec"][self.CONST_MAXIMUM_RUNTIME_IN_MINUTES] = (
533
- self.maximum_runtime_in_minutes
534
- )
531
+ dict_details["spec"][
532
+ self.CONST_MAXIMUM_RUNTIME_IN_MINUTES
533
+ ] = self.maximum_runtime_in_minutes
535
534
 
536
535
  dict_details["spec"].pop(self.CONST_DEPENDS_ON, None)
537
536
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oracle_ads
3
- Version: 2.11.6
3
+ Version: 2.11.7
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -80,7 +80,8 @@ Requires-Dist: oracledb ; extra == "forecast"
80
80
  Requires-Dist: geopandas ; extra == "geo"
81
81
  Requires-Dist: oracle_ads[viz] ; extra == "geo"
82
82
  Requires-Dist: transformers ; extra == "huggingface"
83
- Requires-Dist: langchain>=0.1.10 ; extra == "llm"
83
+ Requires-Dist: langchain-community<0.0.32 ; extra == "llm"
84
+ Requires-Dist: langchain>=0.1.10,<0.1.14 ; extra == "llm"
84
85
  Requires-Dist: evaluate>=0.4.0 ; extra == "llm"
85
86
  Requires-Dist: ipython>=7.23.1, <8.0 ; extra == "notebook"
86
87
  Requires-Dist: ipywidgets~=7.6.3 ; extra == "notebook"
@@ -357,5 +358,5 @@ Consult the security guide [SECURITY.md](https://github.com/oracle/accelerated-d
357
358
 
358
359
  ## License
359
360
 
360
- Copyright (c) 2020, 2022 Oracle and/or its affiliates. Licensed under the [Universal Permissive License v1.0](https://oss.oracle.com/licenses/upl/)
361
+ Copyright (c) 2020, 2024 Oracle and/or its affiliates. Licensed under the [Universal Permissive License v1.0](https://oss.oracle.com/licenses/upl/)
361
362
 
@@ -1,5 +1,5 @@
1
1
  ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
- ads/cli.py,sha256=GVJOtlkeLYIyMEH_sqZ93aGb3j0XIcS4aiCyOVkf6So,2044
2
+ ads/cli.py,sha256=ckDvHYAzMRVwW4jKlhozOKW0uHDUSU8PJ4io8ICxTGg,2053
3
3
  ads/config.py,sha256=wbJTlAMYyKf92vqYb2je7R6ydK4Hl_YV0bSJHW1Tfvc,7809
4
4
  ads/aqua/__init__.py,sha256=ttZSrmvF4PSI-0WrgwFmkmYR6CbRfKVE3mSsYKurKpw,899
5
5
  ads/aqua/base.py,sha256=xxLdZPirDALBXSkSR6_amWNhnsDTpJcooF-pNS3rDic,11137
@@ -39,10 +39,10 @@ ads/bds/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
39
39
  ads/bds/auth.py,sha256=DoAAshoye6AcqB9v0jByvHVrBXWR6yEq63254UiAdHM,3867
40
40
  ads/bds/big_data_service.py,sha256=Fq9xNR1DA8yhOd7MvgUhWocAb_weLGZnFJnF1ZVUKiw,7714
41
41
  ads/catalog/__init__.py,sha256=BHXBKHEch1Wa5KBXwBHZ-c3DcaawaLY2T8aBceUZ7Zk,459
42
- ads/catalog/model.py,sha256=IuXq3bQ2CgckgkhxhkpDK-yIwBS0ReD3OFUwQZIaOI8,60048
43
- ads/catalog/notebook.py,sha256=1p1a9nQDzrTpOH4rQTzlOGKKXVpF7bJlY9G12ioslEE,16462
44
- ads/catalog/project.py,sha256=ZMSBNxsuZqWVZoQogvzxNf7uXntl3Pb9CW1ou1jUTVk,16091
45
- ads/catalog/summary.py,sha256=qiagyWPBI4lHhHMzF-m8Ec1_MkvxBfpvyZw9ku4Etgg,5791
42
+ ads/catalog/model.py,sha256=O7ImZAd_w1C2x_rrXtlAKqnGxbsjFzgYLaj32CpMDtk,60050
43
+ ads/catalog/notebook.py,sha256=YzLANLas8a1o_JQPj9MwvmP43dtoxtj43AUOL6TkclY,16464
44
+ ads/catalog/project.py,sha256=eiCBOu9bHyQUH9SquSi880PDQftyRy3dONO_Qxtdeyk,16092
45
+ ads/catalog/summary.py,sha256=Zy_koBb5FTsP64zyNbqmQZJEWqtoV0lOvI-ZRCQSXa4,5790
46
46
  ads/common/__init__.py,sha256=NBFa_nDAtft8NSiHIfDh5yfxbcJnXISamVH6DrJR_50,293
47
47
  ads/common/analyzer.py,sha256=MrFxBNJwFJwv_kbuJheqvOTz537z7ITE3Il244l3eZU,1893
48
48
  ads/common/auth.py,sha256=3Jw-O_aC06B9XS4-crvt17a4i8lrIw8Cz4f_SxO6lls,45733
@@ -64,7 +64,7 @@ ads/common/oci_datascience.py,sha256=biBgm-udtSYRL46XYfBFJjpkPFcw2ew-xvp3rbbpwmI
64
64
  ads/common/oci_logging.py,sha256=OCb4Sc56mCZkwe3lIetNLUcZ5N_yEIqCrTbhlTbwoyk,41813
65
65
  ads/common/oci_mixin.py,sha256=mhja5UomrhXH43uB0jT-u2KaT37op9tM-snxvtGfc40,34548
66
66
  ads/common/oci_resource.py,sha256=zRa4z5yh5GoOW_6ZE57nhMmK2d94WUqyFqvaNvje9Co,4484
67
- ads/common/serializer.py,sha256=g9sslDT8z5ZKIOlIYe0Kvdkrw_P29R63fadI_Xbx8Vw,18828
67
+ ads/common/serializer.py,sha256=2xF9gUxXXdgubnVu5C_5ttC-tCoxxeLsJoyxx9KJ9ew,18809
68
68
  ads/common/utils.py,sha256=VKgM2Z2cRvOgs77Z2iIQzdVtDEiFo9aagHX442LE4rc,52099
69
69
  ads/common/word_lists.py,sha256=luyfSHWZtwAYKuRsSmUYd1VskKYR_8jG_Y26D3j2Vc8,22306
70
70
  ads/common/work_request.py,sha256=z7OGroZNKs9FnOVCi89QnrxOh4PEWEdTsyXWUUydKwM,6591
@@ -83,7 +83,7 @@ ads/data_labeling/__init__.py,sha256=gIONt2jlHNUU5qpHVcqi3YYxFAi1mxo0oe0JaNT7H2E
83
83
  ads/data_labeling/boundingbox.py,sha256=tB3dN8gcSrHEv-1_3WVtbUpkLrrEaR4hD5-MOD7Y4B4,8530
84
84
  ads/data_labeling/constants.py,sha256=8ZJiwX-aCaHTYYY1n__AngorfVzpAcHOM4KoFKKD9to,1131
85
85
  ads/data_labeling/data_labeling_service.py,sha256=KwRcVmBTKsPBoq33zI7i2HBgheEp8SsEGR_1QnBpYjc,9558
86
- ads/data_labeling/metadata.py,sha256=Ut9x84NzSPLyvV0qdRAuPDMZcWFNJQlj0m-HQnjDKP4,3446
86
+ ads/data_labeling/metadata.py,sha256=ZRYX_0fygLjXSEXPXnxHwOmNEdKFJ7gSIhgHJXCkbbM,3447
87
87
  ads/data_labeling/ner.py,sha256=P3JcdjlWgtZ9XiK9zgCGAolySgCEy3xESiaEksN_3yg,3489
88
88
  ads/data_labeling/record.py,sha256=wYoOvlAYwsmOvrajrTdr6DUqpeh4urn373N8asIbLY0,1396
89
89
  ads/data_labeling/interface/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
@@ -117,23 +117,23 @@ ads/dataset/correlation.py,sha256=OKdUO-bhZTQnZ3flrju1se6ToB8v6yod_uYeFPRLHfU,80
117
117
  ads/dataset/correlation_plot.py,sha256=LLGy9ZzkQ-V9yPo58T2Jjj6qdBeqwJcave5yUgBOYK4,17266
118
118
  ads/dataset/dask_series.py,sha256=2BhjLDyKL4-dHq7tBgipd8-2VxR0kJdzImu3sxjdNOg,5427
119
119
  ads/dataset/dataframe_transformer.py,sha256=xPBG8nvYh35hfXcwutj8FDrO1DnSM4_NgW6EMRQWW7s,3592
120
- ads/dataset/dataset.py,sha256=ivKmZ9De7W_pztZvoHE3tb9WoW3fC7qE_F82emKh0pM,73481
120
+ ads/dataset/dataset.py,sha256=nXNUBEBxX8D5OJNyn8AgvYYQFNMTdRD4R-6-UaxavQs,73481
121
121
  ads/dataset/dataset_browser.py,sha256=E-Cx0lJPAHicDUi6nIDWBCd_M_LM7EXpdT1S80l7EPE,11879
122
122
  ads/dataset/dataset_with_target.py,sha256=n11qv3bPaZU_XXwZYBtzZYVmX2sn_wuc422HFBXoE_8,38574
123
123
  ads/dataset/exception.py,sha256=Z96xkd9hzbn0NrMsmubcrXLGIU6nP2-0M02T9C0Xwg0,602
124
- ads/dataset/factory.py,sha256=SVpU5a0s6N0PEHg9yx6KkFZkRAo7hpmWqfbIVpXZVkU,37594
124
+ ads/dataset/factory.py,sha256=bD2T-fYuKTo9Wk8OscZeAjYpzym54eMfU_eYWvBl4Fk,37594
125
125
  ads/dataset/feature_engineering_transformer.py,sha256=IbR-V7YW-WgGRpNUvFyO_rpmWqeyL4WqlZcJO4gy0v8,1140
126
126
  ads/dataset/feature_selection.py,sha256=FJLsQ0obLW9lSFibxNpmUI592SLSXnL_2hD9Y8E5BWI,4144
127
127
  ads/dataset/forecasting_dataset.py,sha256=-qNeCcFmm-1FDN_EmG7tYEs8-MSzmHyIb9PHeSCk0PM,980
128
128
  ads/dataset/helper.py,sha256=haai-dxE0NynClSUoE19aaxEoBr755HNx8BXxRtqo-o,49959
129
- ads/dataset/label_encoder.py,sha256=204LgkbBmWmVzVeLyETTCqMOSkAQjcIAqAqXZ0qNvSs,2971
129
+ ads/dataset/label_encoder.py,sha256=JEvS7zdQRrj-hyDqLCY-tXLeROYCtdibapRWoUDXy_0,2979
130
130
  ads/dataset/pipeline.py,sha256=laXu4E-ipL7UKWEeTcvJEw2ub8YYUNFUo4Taqa4eB_o,1642
131
131
  ads/dataset/plot.py,sha256=8DB7brJqBJBsTFWogOxfYPYwTykFwAHFOIjA3Q8P2NE,26056
132
132
  ads/dataset/progress.py,sha256=ulcjMurT0P0FKJk0-6tmUQF5clpv2VGpnD2shM2EIHA,2298
133
133
  ads/dataset/recommendation.py,sha256=GZQiTxAC8ucSRV6W_ioEtbN8tKUV2By930iaBgGckjA,12909
134
134
  ads/dataset/recommendation_transformer.py,sha256=ijt7EnG65vUuuMgfMH6gRE-kSVXtXoHvieFiagWg05U,22159
135
135
  ads/dataset/regression_dataset.py,sha256=KYoxzhn7kPXSUFX_QDDC4eSHP-3rAC3Y-2BHj-L28Zo,562
136
- ads/dataset/sampled_dataset.py,sha256=RQjgUVnmyP0rOOmca8frK3lRGZk7bwY_aF_naSyEzQE,39567
136
+ ads/dataset/sampled_dataset.py,sha256=rvmQagFVDXZXtmUw_ugKO1cDL4sOZfqvsG033PnxXR4,39566
137
137
  ads/dataset/target.py,sha256=ZMmd20TjryrG0lk8DDURy0JgKhpn29aJheHpAO4_5Lo,3646
138
138
  ads/dataset/timeseries.py,sha256=Ga8fpOj3jMA1Lc61461rd_szcsUFf6xX04Kp6TalmiU,522
139
139
  ads/dataset/mixin/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
@@ -378,7 +378,7 @@ ads/hpo/visualization/_optimization_history.py,sha256=c0X-1arB-CogTyP_PASve87rr_
378
378
  ads/hpo/visualization/_parallel_coordinate.py,sha256=WkWUK3Qjyk3I7kndDBowwcTxZmzhraoNjDnplt79nNE,5850
379
379
  ads/hpo/visualization/_param_importances.py,sha256=CbBpjZjQUmMWFvYt8nJonFH9QsxxBByOY7Z-98iqJHg,821
380
380
  ads/jobs/__init__.py,sha256=66xMpjdvpIlFu0uK8J7FuemN7Ou8D60TWwiAk8h6Vj0,1517
381
- ads/jobs/ads_job.py,sha256=XVNelljnIpGebrz53h7P-oJ0Fj02ju9r-6DNe0xE7KA,20897
381
+ ads/jobs/ads_job.py,sha256=5N8Z_F4xajRvERuI7BOIMjbESauaCGFrOg7dmhOKVqM,21778
382
382
  ads/jobs/cli.py,sha256=Q8UMFUh3g2uVxeLjwjswpSHDgqTAsEnL-QTxcq1aw98,3168
383
383
  ads/jobs/env_var_parser.py,sha256=eB1ufufG2tvZq0-juBOATF4uSPkaJfxqZT0aE3b__Ds,4643
384
384
  ads/jobs/extension.py,sha256=2rsxHrdvbZv0_LdgyuooaqB14eDVpvuGDENhz4IZj2Q,5748
@@ -389,7 +389,7 @@ ads/jobs/builders/base.py,sha256=o_njFwWQpGY755KbYwpYhvup7UGdcDnN06RdVtAbOkM,483
389
389
  ads/jobs/builders/infrastructure/__init__.py,sha256=SgpGnF6ppE6LneSPWysGVdBrYMvVd-jYZD8oQfqtR34,246
390
390
  ads/jobs/builders/infrastructure/base.py,sha256=cm4QXdQ-3Qk3Jz-oVzmeKqLaWW06HgSpc4Q9P3vIHFQ,4405
391
391
  ads/jobs/builders/infrastructure/dataflow.py,sha256=XTuDhcz96vqskE5dFXWqzic1YcYcD5qPlKGhP4J82J0,39281
392
- ads/jobs/builders/infrastructure/dsc_job.py,sha256=GJTxEyZ78tIIZwWKm0WNVDrBENU3eOsXrSMMDOYcods,61579
392
+ ads/jobs/builders/infrastructure/dsc_job.py,sha256=UJ8CtXejcZR4n9lmBmYZ1xbzNFNi3sm1uQJI90JY8k0,62137
393
393
  ads/jobs/builders/infrastructure/dsc_job_runtime.py,sha256=l7xfmYO63ali8GZx3Iu80L5fttt-OMNxlebDH5od69g,45101
394
394
  ads/jobs/builders/infrastructure/utils.py,sha256=SfGvKiIUsbnMnYFxmMnRtmCDkaiJR0_CuRenP94iQyI,1623
395
395
  ads/jobs/builders/runtimes/__init__.py,sha256=-aGtuFul2fJIMa7xNoOKNFaBAQeBNcZk71hf6dVSohA,204
@@ -481,7 +481,7 @@ ads/model/model_artifact_boilerplate/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1Yn
481
481
  ads/model/model_artifact_boilerplate/runtime.yaml,sha256=7VulvHFZza8f5Brta5SleT8wBlE09jfIRs_ZZloLvb8,291
482
482
  ads/model/model_artifact_boilerplate/score.py,sha256=vUxO8wx3NHOyisIm0mKFK-WJ27fhQVvwheOUNxwQ8O0,1802
483
483
  ads/model/model_artifact_boilerplate/artifact_introspection_test/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
484
- ads/model/model_artifact_boilerplate/artifact_introspection_test/model_artifact_validate.py,sha256=a_UyYG8aRzYG5wsUeCyvSflt3SSkuDRWpYmdYclNf3M,17237
484
+ ads/model/model_artifact_boilerplate/artifact_introspection_test/model_artifact_validate.py,sha256=uM0dS3ogbuvjL4h96wEYhgaUlgTe3d2OXY7W1cE0jXc,17246
485
485
  ads/model/model_artifact_boilerplate/artifact_introspection_test/requirements.txt,sha256=fCQ3KBM1isek1GV6LotSqZP-2p1dF3KR41A650kaIlU,16
486
486
  ads/model/runtime/__init__.py,sha256=yBa9sP_49XF0GDWWG-u1Q5ry-vXfmO61oUjNp7mdN74,204
487
487
  ads/model/runtime/env_info.py,sha256=DONzXa4lrYsJHroGMXt8AKW7xyxneV2ziOPHyvz8wa0,9584
@@ -605,21 +605,21 @@ ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=r8IRmQQU30H9nETRkbl8U4tFxN
605
605
  ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
606
606
  ads/opctl/operator/lowcode/anomaly/const.py,sha256=HpgW5buux97on-J5q1WUUcLCAQ-PurAX8b6DiDCHN0g,2611
607
607
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=RFnAAn1A-FpaBGM-XqCAtr5NWp5XzfcuWzVoJaZ9VME,221
608
- ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=Th2_dxNq5EWcTcImrOUTrvYMUPeOkV0S3sfAf9DoUxc,3495
609
- ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=dc3bxypfS2w3dEyph86MuUnMsqemDsPcndqOdMAEArM,8447
608
+ ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=YFeTnOS0JNE9d80dxl4eLmzrEo_Zl43359HwIZUr448,4096
609
+ ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=iM4Vv0Lzpya9wRlDXd6QkbqWVeXGGoIDGIhBMVynmnI,8741
610
610
  ads/opctl/operator/lowcode/anomaly/utils.py,sha256=2dg5-FGFdKd_X3Z-BeenVobBqw-w5iNuaTCSKNNZggM,2651
611
611
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
612
- ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=NSPGqZRnkxYNnCDr1JcGr-FSZjTXo0WeV_Xj_udpSwk,5347
613
- ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=KERbJuVhjNjsAMErG808dvH8sFi38yx0LyDinP7w9Ng,3318
612
+ ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=P28uwlr3ZsGPiZ4pz8d3HRm4pCqx3qhmxsNW6tbBrEI,5114
613
+ ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=LxsF2a0JO41vd6p0as9Czn2JiOSypsnReYDJDXABsvI,3368
614
614
  ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=bZ98zS9iPvAkEXy5HackFb-SvoeDlpggsnwhg9lNYLA,3722
615
- ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=ZChN0VlCd149ypWzGLvrdgc4rpngSsQ50cU8vmIGjlI,13434
615
+ ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=66OS9xem54daHQZlFDuBpHuuRvVGOGGz0lS1UswGe84,13424
616
616
  ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=Z4fRpX69ONuD_N9R1JPT5e-5mtVqLd1Do4neW-qoVRM,2121
617
617
  ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=VJqxRZcaxLFseyMpM2a3GHZ-o-uPYr2-C2q_vgScrdY,4163
618
618
  ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
619
619
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
620
- ads/opctl/operator/lowcode/common/data.py,sha256=KwqJFvYY3-MvcjzsAbxQ1zG_2QWpWcsKPcqWztXoy4k,3347
620
+ ads/opctl/operator/lowcode/common/data.py,sha256=BSo2TC9rWNiY7WqG7a9zB1USZNKL_s6ILwYdFySiKvo,4078
621
621
  ads/opctl/operator/lowcode/common/errors.py,sha256=4pHYq2v66BPUFvDK1V9rLIXB8u-jUlgqswtP787CdWs,1389
622
- ads/opctl/operator/lowcode/common/transformations.py,sha256=dbzPBnHc2p7C8O39ZlfTsL9DeQNv4QMwqJOxUIcrwko,7151
622
+ ads/opctl/operator/lowcode/common/transformations.py,sha256=aTGxVSYOC5P982BI-ky2lPup7zSEn6K33hUxFp3C_58,8747
623
623
  ads/opctl/operator/lowcode/common/utils.py,sha256=u-5hwi1KWNE_jmXx8iNE8UL21_-vdWaPwFZEcaWJWsA,7871
624
624
  ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
625
625
  ads/opctl/operator/lowcode/feature_store_marketplace/README.md,sha256=fN9ROzOPdEZdRgSP_uYvAmD5bD983NC7Irfe_D-mvrw,1356
@@ -641,20 +641,20 @@ ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSk
641
641
  ads/opctl/operator/lowcode/forecast/__main__.py,sha256=NeG4J4aXSPSN9-EwjTBcmcqSVWqS7VuwsaZdkHWEL9U,3056
642
642
  ads/opctl/operator/lowcode/forecast/cmd.py,sha256=Q-R3yfK7aPfE4-0zIqzLFSjnz1tVMxJ1bbvrCirVZHQ,1246
643
643
  ads/opctl/operator/lowcode/forecast/const.py,sha256=SJRFaQtB2dtuc2WJJghGYynJ9jal7d7sK442cOHLdHU,2558
644
- ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=RvjEvVdy6TXLyMEJukuerWI5dxKmz73b_BoaeLt83bU,374
644
+ ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=1Fngnbdf5thxWujl5CorMmlQ_cwtYVze9TZBxVBhnJ8,387
645
645
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
646
- ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=KsADuKr3YxhRxvovf2hCmNqRRcr5vcgV2GQZK4JBQik,5671
647
- ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=gfsNQrdVGpY3cqdgMoRd83XBqypUHV1PTPLVYGmXrKY,9407
648
- ads/opctl/operator/lowcode/forecast/utils.py,sha256=DICoSFLMrtc7zHrn1l5fpXM55xhK5iCZBvxOj-3ZRcM,14980
646
+ ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=KxCDpPR-rNjAkLrMKs-XpZ8xVGIwrOJxi-lpc3-6jyU,6204
647
+ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=CGFoCE4sqLYar2bclH90_G8HYfmYUuf4t4R6WY6oYOM,9818
648
+ ads/opctl/operator/lowcode/forecast/utils.py,sha256=x46RjL1zz0x4c4iPhRIuhCltgCMPHzGNuBr9ZBGLgQM,15073
649
649
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
650
- ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=x59X3PtAi7XDu5Oq1rxLXYOdic0hkP5aVeVpL8AowDE,10268
651
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=nSXAKNxO1hvi0TlqVUQcX7RM81ulUL21E2_y9ztPMFo,14295
652
- ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=y-aE7BMdPG_nCbvTAx5CYoTlndF3mn_s_5L0v95Rddw,11473
653
- ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=ZKnZOGTAzuOnLeUNGnPG2r0LPx4q5W3v9Bj9AgKXljk,28919
650
+ ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=wSerwzhWgW-kG04fqMcIorOTNnxcE88H5PFrxtEvaIE,10822
651
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=43KqimnvUmNCnOCkWnRJZD1wLUJu3hVWQKpAVlLjt8U,14797
652
+ ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=XKyCHqp1R_j24r3Bt2oFvwDRWx7eH9tj1qPTk2EMlXg,12668
653
+ ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=q88vqVLyupOsBeOshDdf5fYVGhPUPul5X2Js1wOOHWw,29952
654
654
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=beOWnIXZ9DL333CRaTGltmMcywNKXxmMmEZ5P7hh0IE,2307
655
655
  ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=TLVr8e2P9Yj2lbvbI_dC5pf_dJN3RqC5L1f2Zj7gdM0,16335
656
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=4Ty6eWBs3wqq7ihj6CFxp7sogUaMn-ZmqWjuRzUeSvc,18438
657
- ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=VPAL5pa3_FAPustG136AXtk5JbBsbevDfUjmdo3rwmY,14121
656
+ ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=S3jaOZtHpddIL6Vk2kjr8ZV9v4tVq1qnYEsXuerOmNQ,18681
657
+ ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=CvcfmfY54f9eX511uoxVzXNxFYkXInSGYK8QbMDlmGU,14364
658
658
  ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
659
659
  ads/opctl/operator/lowcode/pii/README.md,sha256=qx1oY0oMBDH-qX0xGCK-jp3HQcn1BAANxOxpHOWZa4I,9231
660
660
  ads/opctl/operator/lowcode/pii/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
@@ -693,7 +693,7 @@ ads/oracledb/oracle_db.py,sha256=_8Z8DL45RrWdaVZA464ICDtgm8tBoPGoX_wQTozDPHE,128
693
693
  ads/pipeline/__init__.py,sha256=AAxC4BtaiTO4fj5odxTPWBToqxSKfKzQzRHW_9ozIOY,1268
694
694
  ads/pipeline/ads_pipeline.py,sha256=NkeryW1guYghFkbOlPdN-Kh_LlyZMwJV3c6eAC56V28,84882
695
695
  ads/pipeline/ads_pipeline_run.py,sha256=ea7yKc183g5wrmuFSJp5T3--7NywWHWBanxPh0TOCUY,28006
696
- ads/pipeline/ads_pipeline_step.py,sha256=Gh80qV--QfpcRlS1ed0OMQvBF11x72Eh2IFe3nFk9KQ,20259
696
+ ads/pipeline/ads_pipeline_step.py,sha256=Wo0SYmin2aY2Nqm_DRMoTZ2nGUcpPLA791goic9K14A,20267
697
697
  ads/pipeline/cli.py,sha256=H_Z5vRSZmdW1iFIbbjKPnHa8pp4YS55M95HP9Naqi0Y,3480
698
698
  ads/pipeline/extension.py,sha256=l8U0R4t7v9BHONXF4GW_f5W1HoYK7Ik9y8KBK66RWdE,9067
699
699
  ads/pipeline/builders/__init__.py,sha256=osdnB6y0So4ezGNJWz46B5nwmyV1dP_x1KmAG6IR5Pg,205
@@ -758,8 +758,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
758
758
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
759
759
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
760
760
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
761
- oracle_ads-2.11.6.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
762
- oracle_ads-2.11.6.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
763
- oracle_ads-2.11.6.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
764
- oracle_ads-2.11.6.dist-info/METADATA,sha256=VX1zD8CaPUOAwXrOxNaS28lEHrC677uvlr_K-ifmVPc,15876
765
- oracle_ads-2.11.6.dist-info/RECORD,,
761
+ oracle_ads-2.11.7.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
762
+ oracle_ads-2.11.7.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
763
+ oracle_ads-2.11.7.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
764
+ oracle_ads-2.11.7.dist-info/METADATA,sha256=Mdwc0-HnJFFaHDWw3I4GETGYj1UsCZEPhWfYpYJcYSs,15943
765
+ oracle_ads-2.11.7.dist-info/RECORD,,