oracle-ads 2.11.16__py3-none-any.whl → 2.11.18__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (37) hide show
  1. ads/aqua/app.py +5 -6
  2. ads/aqua/common/enums.py +9 -0
  3. ads/aqua/common/utils.py +128 -1
  4. ads/aqua/constants.py +1 -0
  5. ads/aqua/evaluation/evaluation.py +1 -1
  6. ads/aqua/extension/common_handler.py +75 -5
  7. ads/aqua/extension/deployment_handler.py +2 -0
  8. ads/aqua/extension/model_handler.py +113 -12
  9. ads/aqua/model/entities.py +20 -2
  10. ads/aqua/model/model.py +417 -172
  11. ads/aqua/modeldeployment/deployment.py +69 -55
  12. ads/common/auth.py +4 -4
  13. ads/jobs/builders/infrastructure/dsc_job.py +23 -14
  14. ads/jobs/builders/infrastructure/dsc_job_runtime.py +12 -25
  15. ads/jobs/builders/runtimes/artifact.py +0 -5
  16. ads/jobs/builders/runtimes/container_runtime.py +26 -3
  17. ads/opctl/conda/cmds.py +100 -42
  18. ads/opctl/conda/pack.py +3 -2
  19. ads/opctl/operator/lowcode/anomaly/const.py +1 -0
  20. ads/opctl/operator/lowcode/anomaly/model/base_model.py +58 -37
  21. ads/opctl/operator/lowcode/anomaly/model/factory.py +2 -0
  22. ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py +116 -0
  23. ads/opctl/operator/lowcode/anomaly/schema.yaml +1 -0
  24. ads/opctl/operator/lowcode/forecast/const.py +1 -1
  25. ads/opctl/operator/lowcode/forecast/model/arima.py +9 -3
  26. ads/opctl/operator/lowcode/forecast/model/automlx.py +6 -1
  27. ads/opctl/operator/lowcode/forecast/model/autots.py +3 -1
  28. ads/opctl/operator/lowcode/forecast/model/factory.py +1 -1
  29. ads/opctl/operator/lowcode/forecast/model/ml_forecast.py +24 -15
  30. ads/opctl/operator/lowcode/forecast/model/neuralprophet.py +6 -1
  31. ads/opctl/operator/lowcode/forecast/model/prophet.py +3 -1
  32. ads/opctl/operator/lowcode/forecast/schema.yaml +1 -1
  33. {oracle_ads-2.11.16.dist-info → oracle_ads-2.11.18.dist-info}/METADATA +5 -1
  34. {oracle_ads-2.11.16.dist-info → oracle_ads-2.11.18.dist-info}/RECORD +37 -36
  35. {oracle_ads-2.11.16.dist-info → oracle_ads-2.11.18.dist-info}/LICENSE.txt +0 -0
  36. {oracle_ads-2.11.16.dist-info → oracle_ads-2.11.18.dist-info}/WHEEL +0 -0
  37. {oracle_ads-2.11.16.dist-info → oracle_ads-2.11.18.dist-info}/entry_points.txt +0 -0
@@ -1,18 +1,18 @@
1
1
  #!/usr/bin/env python
2
- # -*- coding: utf-8 -*--
3
2
 
4
3
  # Copyright (c) 2024 Oracle and/or its affiliates.
5
4
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
- import pandas as pd
7
5
  import numpy as np
6
+ import pandas as pd
8
7
 
9
- from ads.opctl import logger
10
8
  from ads.common.decorator import runtime_dependency
9
+ from ads.opctl import logger
11
10
  from ads.opctl.operator.lowcode.forecast.utils import _select_plot_list
11
+
12
+ from ..const import ForecastOutputColumns, SupportedModels
13
+ from ..operator_config import ForecastOperatorConfig
12
14
  from .base_model import ForecastOperatorBaseModel
13
15
  from .forecast_datasets import ForecastDatasets, ForecastOutput
14
- from ..operator_config import ForecastOperatorConfig
15
- from ..const import ForecastOutputColumns, SupportedModels
16
16
 
17
17
 
18
18
  class MLForecastOperatorModel(ForecastOperatorBaseModel):
@@ -58,18 +58,25 @@ class MLForecastOperatorModel(ForecastOperatorBaseModel):
58
58
  from mlforecast.target_transforms import Differences
59
59
 
60
60
  lgb_params = {
61
- "verbosity": -1,
62
- "num_leaves": 512,
61
+ "verbosity": model_kwargs.get("verbosity", -1),
62
+ "num_leaves": model_kwargs.get("num_leaves", 512),
63
63
  }
64
64
  additional_data_params = {}
65
65
  if len(self.datasets.get_additional_data_column_names()) > 0:
66
66
  additional_data_params = {
67
- "target_transforms": [Differences([12])],
67
+ "target_transforms": [
68
+ Differences([model_kwargs.get("Differences", 12)])
69
+ ],
68
70
  "lags": model_kwargs.get("lags", [1, 6, 12]),
69
71
  "lag_transforms": (
70
72
  {
71
73
  1: [ExpandingMean()],
72
- 12: [RollingMean(window_size=24)],
74
+ 12: [
75
+ RollingMean(
76
+ window_size=model_kwargs.get("RollingMean", 24),
77
+ min_samples=1,
78
+ )
79
+ ],
73
80
  }
74
81
  ),
75
82
  }
@@ -147,7 +154,7 @@ class MLForecastOperatorModel(ForecastOperatorBaseModel):
147
154
  )
148
155
 
149
156
  self.model_parameters[s_id] = {
150
- "framework": SupportedModels.MLForecast,
157
+ "framework": SupportedModels.LGBForecast,
151
158
  **lgb_params,
152
159
  }
153
160
 
@@ -157,8 +164,10 @@ class MLForecastOperatorModel(ForecastOperatorBaseModel):
157
164
  self.errors_dict[self.spec.model] = {
158
165
  "model_name": self.spec.model,
159
166
  "error": str(e),
167
+ "error_trace": traceback.format_exc()
160
168
  }
161
- logger.debug(f"Encountered Error: {e}. Skipping.")
169
+ logger.warn(f"Encountered Error: {e}. Skipping.")
170
+ logger.warn(traceback.format_exc())
162
171
  raise e
163
172
 
164
173
  def _build_model(self) -> pd.DataFrame:
@@ -204,10 +213,10 @@ class MLForecastOperatorModel(ForecastOperatorBaseModel):
204
213
  self.datasets.list_series_ids(),
205
214
  )
206
215
 
207
- # Section 2: MlForecast Model Parameters
216
+ # Section 2: LGBForecast Model Parameters
208
217
  sec2_text = rc.Block(
209
- rc.Heading("MlForecast Model Parameters", level=2),
210
- rc.Text("These are the parameters used for the MlForecast model."),
218
+ rc.Heading("LGBForecast Model Parameters", level=2),
219
+ rc.Text("These are the parameters used for the LGBForecast model."),
211
220
  )
212
221
 
213
222
  blocks = [
@@ -221,7 +230,7 @@ class MLForecastOperatorModel(ForecastOperatorBaseModel):
221
230
 
222
231
  all_sections = [sec1_text, sec_1, sec2_text, sec_2]
223
232
  model_description = rc.Text(
224
- "mlforecast is a framework to perform time series forecasting using machine learning models"
233
+ "LGBForecast uses mlforecast framework to perform time series forecasting using machine learning models"
225
234
  "with the option to scale to massive amounts of data using remote clusters."
226
235
  "Fastest implementations of feature engineering for time series forecasting in Python."
227
236
  "Support for exogenous variables and static covariates."
@@ -217,7 +217,12 @@ class NeuralProphetOperatorModel(ForecastOperatorBaseModel):
217
217
 
218
218
  logger.debug("===========Done===========")
219
219
  except Exception as e:
220
- self.errors_dict[s_id] = {"model_name": self.spec.model, "error": str(e)}
220
+ self.errors_dict[s_id] = {
221
+ "model_name": self.spec.model,
222
+ "error": str(e),
223
+ "error_trace": traceback.format_exc()
224
+ }
225
+ logger.warn(traceback.format_exc())
221
226
  raise e
222
227
 
223
228
  def _build_model(self) -> pd.DataFrame:
@@ -130,8 +130,10 @@ class ProphetOperatorModel(ForecastOperatorBaseModel):
130
130
  self.errors_dict[series_id] = {
131
131
  "model_name": self.spec.model,
132
132
  "error": str(e),
133
+ "error_trace": traceback.format_exc()
133
134
  }
134
- logger.debug(f"Encountered Error: {e}. Skipping.")
135
+ logger.warn(f"Encountered Error: {e}. Skipping.")
136
+ logger.warn(traceback.format_exc())
135
137
 
136
138
  def _build_model(self) -> pd.DataFrame:
137
139
  full_data_dict = self.datasets.get_data_by_series()
@@ -379,7 +379,7 @@ spec:
379
379
  - prophet
380
380
  - arima
381
381
  - neuralprophet
382
- - mlforecast
382
+ - lgbforecast
383
383
  - automlx
384
384
  - autots
385
385
  - auto-select
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oracle_ads
3
- Version: 2.11.16
3
+ Version: 2.11.18
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -37,6 +37,8 @@ Requires-Dist: oracle_ads[opctl] ; extra == "anomaly"
37
37
  Requires-Dist: autots ; extra == "anomaly"
38
38
  Requires-Dist: oracledb ; extra == "anomaly"
39
39
  Requires-Dist: report-creator==1.0.9 ; extra == "anomaly"
40
+ Requires-Dist: rrcf==0.4.4 ; extra == "anomaly"
41
+ Requires-Dist: scikit-learn ; extra == "anomaly"
40
42
  Requires-Dist: jupyter_server ; extra == "aqua"
41
43
  Requires-Dist: hdfs[kerberos] ; extra == "bds"
42
44
  Requires-Dist: ibis-framework[impala] ; extra == "bds"
@@ -75,6 +77,7 @@ Requires-Dist: plotly ; extra == "forecast"
75
77
  Requires-Dist: oracledb ; extra == "forecast"
76
78
  Requires-Dist: report-creator==1.0.9 ; extra == "forecast"
77
79
  Requires-Dist: geopandas<1.0.0 ; extra == "geo"
80
+ Requires-Dist: fiona<=1.9.6 ; extra == "geo"
78
81
  Requires-Dist: oracle_ads[viz] ; extra == "geo"
79
82
  Requires-Dist: transformers ; extra == "huggingface"
80
83
  Requires-Dist: tf-keras ; extra == "huggingface"
@@ -102,6 +105,7 @@ Requires-Dist: py-cpuinfo ; extra == "opctl"
102
105
  Requires-Dist: rich ; extra == "opctl"
103
106
  Requires-Dist: fire ; extra == "opctl"
104
107
  Requires-Dist: cachetools ; extra == "opctl"
108
+ Requires-Dist: huggingface_hub==0.23.4 ; extra == "opctl"
105
109
  Requires-Dist: optuna==2.9.0 ; extra == "optuna"
106
110
  Requires-Dist: oracle_ads[viz] ; extra == "optuna"
107
111
  Requires-Dist: aiohttp ; extra == "pii"
@@ -2,17 +2,17 @@ ads/__init__.py,sha256=OxHySbHbMqPgZ8sUj33Bxy-smSiNgRjtcSUV77oBL08,3787
2
2
  ads/cli.py,sha256=hjRcQfXFzkh37fbyUBg95I3R0brslZLf9IQU8nSCxio,3933
3
3
  ads/config.py,sha256=t_zDKftVYOLPP-t8IcnzEbtmMRX-6a8QKY9E_SnqA8M,8163
4
4
  ads/aqua/__init__.py,sha256=IUKZAsxUGVicsyeSwsGwK6rAUJ1vIUW9ywduA3U22xc,1015
5
- ads/aqua/app.py,sha256=wKnvSiD4nROcRUjGJ2FktRDeF4rWGTT_BjekMqHd9Nw,11994
5
+ ads/aqua/app.py,sha256=BQuQ9RERU0rKmn3N3xicKzYaXOd7xBwX1aVuVLNgw98,11993
6
6
  ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
- ads/aqua/constants.py,sha256=09pZD-wfsyDiDRRHnhPd3cBiQesrZDOHwqR8fRjElqY,2840
7
+ ads/aqua/constants.py,sha256=4CqHFsxyCYfEUlYbzRVFnR0I5tw18iKlCDXHJUXeJxU,2869
8
8
  ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
9
9
  ads/aqua/ui.py,sha256=vLQSBcrQ-7zyPJIlpGEHYaz2sf_90lsadOxq6v80tjg,25227
10
10
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
11
11
  ads/aqua/common/decorator.py,sha256=XFS7tYGkN4dVzmB1wTYiJk1XqJ-VLhvzfZjExiQClgc,3640
12
12
  ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
13
- ads/aqua/common/enums.py,sha256=ILdA-73g8rIwB9DZvPqT063LgaivgpycQBM28X-trxw,2299
13
+ ads/aqua/common/enums.py,sha256=hJABLhORCnAkZ6OxsjxhhkmZQQcMzfBzOQkAZLgxNXs,2603
14
14
  ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
15
- ads/aqua/common/utils.py,sha256=Z54j_OxdpulznI_ouyshihDMrYuLcnX3FfeWV5tz-gc,29461
15
+ ads/aqua/common/utils.py,sha256=qAwIBdTQ5abd0b2Q68nzUJ0FuijGniYS3NcoMoB_lAI,34370
16
16
  ads/aqua/config/config.py,sha256=tOGyuXlBRw4b4HkJgc1T3y1umqu_ME_-ImXX3pt_aB0,782
17
17
  ads/aqua/config/deployment_config_defaults.json,sha256=1fzb8EZOcFMjwktes40qgetKvdmUtEGCl4Jp4eb8tJg,665
18
18
  ads/aqua/config/resource_limit_names.json,sha256=0ecGLCLxll9qt3E7fVZPtzpurqe1PGdTk0Rjn_cWh8k,235
@@ -24,19 +24,19 @@ ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89
24
24
  ads/aqua/evaluation/constants.py,sha256=GvcXvPIw-VDKw4a8WNKs36uWdT-f7VJrWSpnnRnthGg,1533
25
25
  ads/aqua/evaluation/entities.py,sha256=h6aEskUgJcR_360kNxMU13qLEg_9MrZQQ73dJJZ8IAY,5675
26
26
  ads/aqua/evaluation/errors.py,sha256=qzR63YEIA8haCh4HcBHFFm7j4g6jWDfGszqrPkXx9zQ,4564
27
- ads/aqua/evaluation/evaluation.py,sha256=96JnuO7YZHUHqv16g24kVgoh_7GIHM5c_xhuSPWIPVM,60906
27
+ ads/aqua/evaluation/evaluation.py,sha256=lc6CpOZ-f9lZfGG32gA4Ut0oJnxGGzRRYkuM0viW7wA,60919
28
28
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
29
29
  ads/aqua/extension/aqua_ws_msg_handler.py,sha256=PcRhBqGpq5aOPP0ibhaKfmkA8ajimldsvJC32o9JeTw,3291
30
30
  ads/aqua/extension/base_handler.py,sha256=MuVxsJG66NdatL-Hh99UD3VQOQw1ir-q2YBajwh9cJk,5132
31
- ads/aqua/extension/common_handler.py,sha256=UtfXsLmxUAG9J6nFmaGgWPJ_pwvUnz2UoGuG-z3AQXU,2106
31
+ ads/aqua/extension/common_handler.py,sha256=nU_1lgFhXHHMX7DPgm1yOVx-wWggCMWEF1l4Qoi6BJw,4250
32
32
  ads/aqua/extension/common_ws_msg_handler.py,sha256=bNtuCpCD5ZIULYqs1ANsYgYnu81f9nZGb2NeTR5gCmw,2280
33
- ads/aqua/extension/deployment_handler.py,sha256=_fq61ZhEfV92LizJsFSxc-BTTxcSPyCYV3xuDVvTtP4,9386
33
+ ads/aqua/extension/deployment_handler.py,sha256=8MafpUaN-1gqyIksJ9EO55mbdGV57IWf1GmJ-zs9h8c,9475
34
34
  ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
35
35
  ads/aqua/extension/errors.py,sha256=i37EnRzxGgvxzUNoyEORzHYmB296DGOUb6pm7VwEyTU,451
36
36
  ads/aqua/extension/evaluation_handler.py,sha256=Q8l_Mnzp1NOx6N9vXpUWN2kGKdICSRR7dPvm-dNqJBE,4464
37
37
  ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
38
38
  ads/aqua/extension/finetune_handler.py,sha256=ZCdXoEYzfViZfJsk0solCB6HQkg0skG1jFfqq1zF-vw,3312
39
- ads/aqua/extension/model_handler.py,sha256=xVWXzmC-Mk2ib-ODu_bNSlBwqe7atS_fXFFC20WMf20,4704
39
+ ads/aqua/extension/model_handler.py,sha256=j5YzZ6hkLaTPbUZd1ax8ts1kF1NTvK3glTBM29gZr-o,8428
40
40
  ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
41
41
  ads/aqua/extension/ui_handler.py,sha256=IYhtyL4oE8zlxe-kfbvWSmFsayyXaZZZButDdxM3hcA,9850
42
42
  ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
@@ -49,12 +49,12 @@ ads/aqua/finetuning/entities.py,sha256=ZGFqewDV_YIGgmJqIXjrprSZE0yFZQF_tdbmQlvhT
49
49
  ads/aqua/finetuning/finetuning.py,sha256=5GXya26dmerhwlCxQ4TZJWZh5pr0h-TnkZ6WahJITvY,24497
50
50
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
51
51
  ads/aqua/model/constants.py,sha256=eUVl3FK8SRpfnDc1jNF09CkbWXyxmfTgW6Nqvus8lx0,1476
52
- ads/aqua/model/entities.py,sha256=6EPZG0aAdUHxKhu6L0ZPH4G3_0icofa2Jdo_geCknM4,9012
52
+ ads/aqua/model/entities.py,sha256=5S2WFvDDt2XaQKYkWFAgs3P_g-VPpt74rpNQRM6-ssY,9580
53
53
  ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
54
- ads/aqua/model/model.py,sha256=MuBg4WfiRGiU2b7dQpGtYeFbXd5SknMWYPkdzOxfLww,43578
54
+ ads/aqua/model/model.py,sha256=gMoELf_HjuUYYcW05XfNRghXk3IhBP0PPaQDgP_-QUA,54277
55
55
  ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
56
56
  ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
57
- ads/aqua/modeldeployment/deployment.py,sha256=R19Fy-yp-H7AzcsoaxEzMUoMqzZm2noejhUbd9JgLqk,28098
57
+ ads/aqua/modeldeployment/deployment.py,sha256=srpf-U9Nm7_RUT_jvVPUxbRFFpfC9RjogMHI-vFsJ4E,29020
58
58
  ads/aqua/modeldeployment/entities.py,sha256=QgiLxdWfoNg-u4P7DqauZh9oQQ-WjSs37s8WR84m164,4744
59
59
  ads/aqua/modeldeployment/inference.py,sha256=JPqzbHJoM-PpIU_Ft9lHudO9_1vFr7OPQ2GHjPoAufU,2142
60
60
  ads/aqua/training/__init__.py,sha256=w2DNWltXtASQgbrHyvKo0gMs5_chZoG-CSDMI4qe7i0,202
@@ -72,7 +72,7 @@ ads/catalog/project.py,sha256=eiCBOu9bHyQUH9SquSi880PDQftyRy3dONO_Qxtdeyk,16092
72
72
  ads/catalog/summary.py,sha256=Zy_koBb5FTsP64zyNbqmQZJEWqtoV0lOvI-ZRCQSXa4,5790
73
73
  ads/common/__init__.py,sha256=NBFa_nDAtft8NSiHIfDh5yfxbcJnXISamVH6DrJR_50,293
74
74
  ads/common/analyzer.py,sha256=MrFxBNJwFJwv_kbuJheqvOTz537z7ITE3Il244l3eZU,1893
75
- ads/common/auth.py,sha256=3Jw-O_aC06B9XS4-crvt17a4i8lrIw8Cz4f_SxO6lls,45733
75
+ ads/common/auth.py,sha256=xU9R_WwtOhe9x815lgmdn0Q2lXlxaY6RDCcfjyjhhFI,45961
76
76
  ads/common/card_identifier.py,sha256=csCCSQNka8wpHE90IGUJqFmFvjbFd42eEIlmUZuOwMA,2458
77
77
  ads/common/config.py,sha256=5QNJaJ5A2tMrDRJemJt62jxZ0pSGRz4bPkn9HGA__N0,20253
78
78
  ads/common/data.py,sha256=jQHf9Kc7llzdnQjseGgMhVuR0XLRafBvEQVk0OY2s_8,6939
@@ -417,13 +417,13 @@ ads/jobs/builders/base.py,sha256=o_njFwWQpGY755KbYwpYhvup7UGdcDnN06RdVtAbOkM,483
417
417
  ads/jobs/builders/infrastructure/__init__.py,sha256=SgpGnF6ppE6LneSPWysGVdBrYMvVd-jYZD8oQfqtR34,246
418
418
  ads/jobs/builders/infrastructure/base.py,sha256=cm4QXdQ-3Qk3Jz-oVzmeKqLaWW06HgSpc4Q9P3vIHFQ,4405
419
419
  ads/jobs/builders/infrastructure/dataflow.py,sha256=XTuDhcz96vqskE5dFXWqzic1YcYcD5qPlKGhP4J82J0,39281
420
- ads/jobs/builders/infrastructure/dsc_job.py,sha256=znZ8uMddI4QHvcpafW2bOF9f7gqHcMcv2Klf80b75fA,64780
421
- ads/jobs/builders/infrastructure/dsc_job_runtime.py,sha256=IMCRImp6zwAUmjPQDY1Q3YXM2gfa0cLoCdTLtskFaYw,46559
420
+ ads/jobs/builders/infrastructure/dsc_job.py,sha256=xnFAP-vH20UraYndQPniHnvC7grZ8BmmctQynkeoua8,65028
421
+ ads/jobs/builders/infrastructure/dsc_job_runtime.py,sha256=uY_HsBIA5fdfUKIQPdrXq_iu_ZJ32zrVzk-oNV0BWDA,46294
422
422
  ads/jobs/builders/infrastructure/utils.py,sha256=SfGvKiIUsbnMnYFxmMnRtmCDkaiJR0_CuRenP94iQyI,1623
423
423
  ads/jobs/builders/runtimes/__init__.py,sha256=-aGtuFul2fJIMa7xNoOKNFaBAQeBNcZk71hf6dVSohA,204
424
- ads/jobs/builders/runtimes/artifact.py,sha256=w5ZLRSeXxHbhK1cCSrlp-oloJNNLmmibNuJNvkiwiV0,12823
424
+ ads/jobs/builders/runtimes/artifact.py,sha256=7RPm-7hd8zG15iCJDIBbfMr7d003Bed9_0ioM-mu5nE,12555
425
425
  ads/jobs/builders/runtimes/base.py,sha256=KcZMZnyL4eA7EVawYCfa7M11f6lvGbuXZRnqsaVFZBQ,10436
426
- ads/jobs/builders/runtimes/container_runtime.py,sha256=WPgq7L2YU8HRcnvNTRPFJcUpQgM8cOU1oCYAFjLNuGc,6891
426
+ ads/jobs/builders/runtimes/container_runtime.py,sha256=T_M7uQW-2tTd9taYC6kz5OD1dG_urIkhNhpQPbatO00,7598
427
427
  ads/jobs/builders/runtimes/python_runtime.py,sha256=lr4XIAfJ-c_cuewf8E-qq-gSNgT2C2qFG57VNwCLODY,35568
428
428
  ads/jobs/builders/runtimes/pytorch_runtime.py,sha256=jQ7iIS3juvzkK9qAPuQdMM_YVk4QepM14e8P6RY0D4E,7238
429
429
  ads/jobs/schema/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
@@ -561,11 +561,11 @@ ads/opctl/backend/marketplace/models/marketplace_type.py,sha256=Uy_trT3jTlzMINFE
561
561
  ads/opctl/backend/marketplace/models/ocir_details.py,sha256=SHCCMXUR1Bn3IdcIW5rrJ48XXF50bGNYjVUQKGjZU8w,1606
562
562
  ads/opctl/conda/__init__.py,sha256=DwYupQz6SOfMLmmAjJ9danchK0shQRJKTGPU--naQgY,204
563
563
  ads/opctl/conda/cli.py,sha256=D6PPHebEXS4srO9dEBTE4YGUJjQvwx0w9v2M5VWs27A,4873
564
- ads/opctl/conda/cmds.py,sha256=_eodC2A0FINrsBAE_d7K91TBNduKNIhelKZfRbDjpn4,24247
564
+ ads/opctl/conda/cmds.py,sha256=grUBw6CI4bzSixtZhaYwKjM7HnFRoD9ewFpmw4kX5gk,26334
565
565
  ads/opctl/conda/config.yaml,sha256=yDg1cQOCxG2-BvHLfIuc1YT9adlm9kDqDpe4Q882ngY,1026
566
566
  ads/opctl/conda/manifest_template.yaml,sha256=V_uxOhe_eGgsV92u_6onPK-w0rKTLHL_tIhZ9FKqmAI,194
567
567
  ads/opctl/conda/multipart_uploader.py,sha256=1R09ajToBYZsQjgM3-ASnheIOsnZf7sYCHIcBoCjB30,6180
568
- ads/opctl/conda/pack.py,sha256=HNkb-5YnBCi4LvOx3lV4dRpchQHGowBHQFW6-TRyYx4,2829
568
+ ads/opctl/conda/pack.py,sha256=ghv-mudoS2KVZ2qbEjW7cK1bRu6R3Hto1_3bga0HCMQ,2921
569
569
  ads/opctl/config/__init__.py,sha256=DwYupQz6SOfMLmmAjJ9danchK0shQRJKTGPU--naQgY,204
570
570
  ads/opctl/config/base.py,sha256=R4Grgdjjnax7LLNiNC90VzeUHtsPPjbOcOs1WN5Tlxs,1472
571
571
  ads/opctl/config/merger.py,sha256=DMSTnZj7OOmbO_QM4uKrWUjS9REvMn8zkK8V0uZHO1I,11332
@@ -631,19 +631,20 @@ ads/opctl/operator/lowcode/anomaly/README.md,sha256=E3vpyc5iKvIq8iuvGj8ZvLq3i_Q5
631
631
  ads/opctl/operator/lowcode/anomaly/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
632
632
  ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9ndF86RPd7KJ_kanltjM,3328
633
633
  ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
634
- ads/opctl/operator/lowcode/anomaly/const.py,sha256=oHsguh6vr5YdrjC80uiugA00NfgUyn6QQ_1dQRUztQU,2890
634
+ ads/opctl/operator/lowcode/anomaly/const.py,sha256=nNZqjH-YNB2GVsk890v3B88pml15xrSOPjvfW2P5M1o,2930
635
635
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
636
636
  ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
637
- ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=oWfFO_AyzMImEkgpWNpkoR8xm-YnMHeMZ76LYT32oeo,9174
637
+ ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=jMSoCqb58Dz4_LeB55LO9_NRQ8TKPeVdl5VkGZHlqYs,9200
638
638
  ads/opctl/operator/lowcode/anomaly/utils.py,sha256=Uj98FO5oM-sLjoqsOnoBmgSMF7iJiL0XX-gvphw9yiU,2746
639
639
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
640
640
  ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
641
641
  ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=Zn4ySrGfLbaKW0KIduwdnY0-YK8XAprCcMhElA4g-Vc,3401
642
642
  ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=WlA39DA3GeQfW5HYiBLCArVQBXGzIVQH3D09cZYGjtg,3689
643
- ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=BKT9nIHXUQfdX1yzg5dd9WGJlTRybpc2xXvfIU3gbXc,14692
644
- ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=fgtWEkkMIlfThNvXvccRfLXmWmJ_kKuOLNVm0uhKeRA,3126
643
+ ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=bq2VgRxLIRFov8pEoYCPGw3AXUmTJktA2nszQN8La2c,15365
644
+ ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=XEh5bdnWDjIEBswrOb36CeTmRcWQ2uUGDrC3e3iJVxY,3264
645
645
  ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=Kjsuio7cM-dKv63p58B9Jj0XPly6Z0hqfghs5nnXepA,2671
646
646
  ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eQpNyax1hnufLHhL8Rbzee28comD2fF7TLn3TpzMrs8,2583
647
+ ads/opctl/operator/lowcode/anomaly/model/randomcutforest.py,sha256=HUyWQOFjfLkIWsnmhfEn9354slKStlv6jIwQi5xzVj0,4270
647
648
  ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=_v0KkdTKD3nqzOu3P5tE7bSV63Jy91h6Hr88Eequ0RU,4175
648
649
  ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
649
650
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
@@ -670,23 +671,23 @@ ads/opctl/operator/lowcode/forecast/README.md,sha256=kbCCEdo-0pwKlZp9ctnWUK6Z31n
670
671
  ads/opctl/operator/lowcode/forecast/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
671
672
  ads/opctl/operator/lowcode/forecast/__main__.py,sha256=5Vh-kClwxTsvZLEuECyQBvbZFfH37HQW2G09RwX11Kw,2503
672
673
  ads/opctl/operator/lowcode/forecast/cmd.py,sha256=Q-R3yfK7aPfE4-0zIqzLFSjnz1tVMxJ1bbvrCirVZHQ,1246
673
- ads/opctl/operator/lowcode/forecast/const.py,sha256=K1skrAliy2xceSDmzDfsNTeDMl11rsFhHQXaRitBOYs,2616
674
+ ads/opctl/operator/lowcode/forecast/const.py,sha256=PBEhOGZaFWzkd5H9Vw687lq2A5q5RZNlS6Mj6ZelOuw,2618
674
675
  ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
675
676
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
676
677
  ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=dSV1aj25wzv0V3y72YdYj4rCPjXAog13ppxYDNY9HQU,8913
677
678
  ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=XskXuOWtZZb6_EcR_t6XAEdr6jt1wT30oBcWt-8zeWA,6396
678
- ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=Y5j5qZQukjytZwXr2Gj0Fb9KeFjQbdzUNuAnUcH6k0Q,10137
679
+ ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=Zfhh_wfWxNeTtN4bqAe623Vf0HbQWCLyNx8LkiCTCgo,10138
679
680
  ads/opctl/operator/lowcode/forecast/utils.py,sha256=oc6eBH9naYg4BB14KS2HL0uFdZHMgKsxx9vG28dJrXA,14347
680
681
  ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
681
- ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=sFjIMSBRqc2ePK24VX5sgNqqoRhiIOPgmH3STsYOQWU,10658
682
- ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=bN-lqb5J7YlccEY0KfZ_oPruXvAtupQHjNW7oZDSKVI,14610
683
- ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=EruAl4BFEOPGT0iM0bnCbDVNKDB0wOf3v25li4MW8Gw,13057
682
+ ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=6ZXtzXcqoEMVF9DChzX0cnTJ-9tXKdbPiiSPQq4a9oM,10914
683
+ ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=nMqljeHnhuYGMmRa8e0PkDtx-ClSclQeJVowBIkq0Sk,14848
684
+ ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=QxU24eZeaRpnC5rTqBFe6-5ylMorPN0sCamHUiNQVaE,13162
684
685
  ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s4_lvasasCqvrj49ubD0H_2wA9pvh16_f5BiivqvL20,30876
685
- ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=GPwbZCe65-HZBUcg05_xaL1VPX8R1022E5W-NGJOohA,3487
686
+ ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=NV_m2sEgj3byHHqLs9Vbth7d5yfvFuXj8QI3-y9x2Po,3488
686
687
  ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=d9rDmrIAbKTStOVroIKZkTEP1FP2AP0dq9XDEWt6w2c,16968
687
- ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=W2EgOrI-GswygxeDRlICbdeEkIQArEsHHKZlQy2ZnTA,9106
688
- ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=SSJPFnrDqoWYIm96c48UQ5WHvEa72a6G4bLNqv8R2tQ,19198
689
- ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=3OEy8YSbuJd3ayhPNt93LBVffgdpuaQZh5nuChze1cQ,14453
688
+ ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=EOFZR5wjZcpKACW3ZNnxd31Okz_ehOSaO5_dKL-Ktgw,9558
689
+ ads/opctl/operator/lowcode/forecast/model/neuralprophet.py,sha256=pRmhLHjP027gmPbkgqzR2SZYKvj1rG9Heev2P8mSZ_k,19347
690
+ ads/opctl/operator/lowcode/forecast/model/prophet.py,sha256=0OBnyVP9bFpo1zSAqA5qtobZxICRTLVT9mwPOlHb3sM,14554
690
691
  ads/opctl/operator/lowcode/pii/MLoperator,sha256=GKCuiXRwfGLyBqELbtgtg-kJPtNWNVA-kSprYTqhF64,6406
691
692
  ads/opctl/operator/lowcode/pii/README.md,sha256=2P3tpKv6v__Eehj6iLfTXgyDhS4lmi1BTfEdmJhT0K4,9237
692
693
  ads/opctl/operator/lowcode/pii/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
@@ -804,8 +805,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
804
805
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
805
806
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
806
807
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
807
- oracle_ads-2.11.16.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
808
- oracle_ads-2.11.16.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
809
- oracle_ads-2.11.16.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
810
- oracle_ads-2.11.16.dist-info/METADATA,sha256=eOcRKB-87weeImM-kRgnQk9HWqDbbPLCs9u0i8GaGG8,15837
811
- oracle_ads-2.11.16.dist-info/RECORD,,
808
+ oracle_ads-2.11.18.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
809
+ oracle_ads-2.11.18.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
810
+ oracle_ads-2.11.18.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
811
+ oracle_ads-2.11.18.dist-info/METADATA,sha256=iFxKKVAC8wzz6V79zwLCYZHHPx741I_hEsdXY4fKjpo,16037
812
+ oracle_ads-2.11.18.dist-info/RECORD,,