oracle-ads 2.11.15__py3-none-any.whl → 2.11.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. ads/aqua/common/entities.py +17 -0
  2. ads/aqua/common/enums.py +5 -1
  3. ads/aqua/common/utils.py +32 -2
  4. ads/aqua/config/config.py +1 -1
  5. ads/aqua/config/deployment_config_defaults.json +29 -1
  6. ads/aqua/config/resource_limit_names.json +1 -0
  7. ads/aqua/constants.py +5 -1
  8. ads/aqua/evaluation/entities.py +0 -1
  9. ads/aqua/evaluation/evaluation.py +47 -14
  10. ads/aqua/extension/common_ws_msg_handler.py +57 -0
  11. ads/aqua/extension/deployment_handler.py +14 -13
  12. ads/aqua/extension/deployment_ws_msg_handler.py +54 -0
  13. ads/aqua/extension/errors.py +1 -1
  14. ads/aqua/extension/evaluation_ws_msg_handler.py +28 -6
  15. ads/aqua/extension/model_handler.py +31 -6
  16. ads/aqua/extension/models/ws_models.py +78 -3
  17. ads/aqua/extension/models_ws_msg_handler.py +49 -0
  18. ads/aqua/extension/ui_websocket_handler.py +7 -1
  19. ads/aqua/model/entities.py +11 -1
  20. ads/aqua/model/model.py +260 -90
  21. ads/aqua/modeldeployment/deployment.py +52 -7
  22. ads/aqua/modeldeployment/entities.py +9 -20
  23. ads/aqua/ui.py +152 -28
  24. ads/common/object_storage_details.py +2 -5
  25. ads/common/serializer.py +2 -3
  26. ads/jobs/builders/infrastructure/dsc_job.py +29 -3
  27. ads/jobs/builders/infrastructure/dsc_job_runtime.py +74 -27
  28. ads/jobs/builders/runtimes/container_runtime.py +83 -4
  29. ads/opctl/operator/lowcode/anomaly/const.py +1 -0
  30. ads/opctl/operator/lowcode/anomaly/model/base_model.py +23 -7
  31. ads/opctl/operator/lowcode/anomaly/operator_config.py +1 -0
  32. ads/opctl/operator/lowcode/anomaly/schema.yaml +4 -0
  33. ads/opctl/operator/lowcode/common/errors.py +6 -0
  34. ads/opctl/operator/lowcode/forecast/model/base_model.py +21 -13
  35. ads/opctl/operator/lowcode/forecast/model_evaluator.py +11 -2
  36. ads/pipeline/ads_pipeline_run.py +13 -2
  37. {oracle_ads-2.11.15.dist-info → oracle_ads-2.11.16.dist-info}/METADATA +1 -1
  38. {oracle_ads-2.11.15.dist-info → oracle_ads-2.11.16.dist-info}/RECORD +41 -37
  39. {oracle_ads-2.11.15.dist-info → oracle_ads-2.11.16.dist-info}/LICENSE.txt +0 -0
  40. {oracle_ads-2.11.15.dist-info → oracle_ads-2.11.16.dist-info}/WHEEL +0 -0
  41. {oracle_ads-2.11.15.dist-info → oracle_ads-2.11.16.dist-info}/entry_points.txt +0 -0
@@ -3,9 +3,12 @@
3
3
 
4
4
  # Copyright (c) 2021, 2024 Oracle and/or its affiliates.
5
5
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
+ import logging
6
7
  from typing import Union
7
8
  from ads.jobs.builders.runtimes.base import MultiNodeRuntime
8
9
 
10
+ logger = logging.getLogger(__name__)
11
+
9
12
 
10
13
  class ContainerRuntime(MultiNodeRuntime):
11
14
  """Represents a container job runtime
@@ -13,18 +16,23 @@ class ContainerRuntime(MultiNodeRuntime):
13
16
  To define container runtime:
14
17
 
15
18
  >>> ContainerRuntime()
16
- >>> .with_image("iad.ocir.io/<your_tenancy>/<your_image>")
19
+ >>> .with_image("iad.ocir.io/<your_tenancy>/<your_image>:<tag>")
17
20
  >>> .with_cmd("sleep 5 && echo Hello World")
18
21
  >>> .with_entrypoint(["/bin/sh", "-c"])
22
+ >>> .with_image_digest("<image_digest>")
23
+ >>> .with_image_signature_id("<image_signature_id>")
19
24
  >>> .with_environment_variable(MY_ENV="MY_VALUE")
20
25
 
21
- Alternatively, you can define the ``entrypoint`` and ``cmd`` along with the image.
26
+ Alternatively, you can define the ``entrypoint``, ``cmd``,
27
+ ``image_digest``and ``image_signature_id`` along with the image.
22
28
 
23
29
  >>> ContainerRuntime()
24
30
  >>> .with_image(
25
- >>> "iad.ocir.io/<your_tenancy>/<your_image>",
31
+ >>> "iad.ocir.io/<your_tenancy>/<your_image>:<tag>",
26
32
  >>> entrypoint=["/bin/sh", "-c"],
27
33
  >>> cmd="sleep 5 && echo Hello World",
34
+ >>> image_digest="<image_digest>",
35
+ >>> image_signature_id="<image_signature_id>",
28
36
  >>> )
29
37
  >>> .with_environment_variable(MY_ENV="MY_VALUE")
30
38
 
@@ -46,20 +54,34 @@ class ContainerRuntime(MultiNodeRuntime):
46
54
  CONST_IMAGE = "image"
47
55
  CONST_ENTRYPOINT = "entrypoint"
48
56
  CONST_CMD = "cmd"
57
+ CONST_IMAGE_DIGEST = "imageDigest"
58
+ CONST_IMAGE_SIGNATURE_ID = "imageSignatureId"
49
59
  attribute_map = {
50
60
  CONST_IMAGE: CONST_IMAGE,
51
61
  CONST_ENTRYPOINT: CONST_ENTRYPOINT,
52
62
  CONST_CMD: CONST_CMD,
63
+ CONST_IMAGE_DIGEST: "image_digest",
64
+ CONST_IMAGE_SIGNATURE_ID: "image_signature_id",
53
65
  }
54
66
  attribute_map.update(MultiNodeRuntime.attribute_map)
55
67
 
68
+ @property
69
+ def job_env_type(self) -> str:
70
+ """The container type"""
71
+ return "OCIR_CONTAINER"
72
+
56
73
  @property
57
74
  def image(self) -> str:
58
75
  """The container image"""
59
76
  return self.get_spec(self.CONST_IMAGE)
60
77
 
61
78
  def with_image(
62
- self, image: str, entrypoint: Union[str, list, None] = None, cmd: str = None
79
+ self,
80
+ image: str,
81
+ entrypoint: Union[str, list, None] = None,
82
+ cmd: str = None,
83
+ image_digest: str = None,
84
+ image_signature_id: str = None,
63
85
  ) -> "ContainerRuntime":
64
86
  """Specify the image for the container job.
65
87
 
@@ -71,16 +93,73 @@ class ContainerRuntime(MultiNodeRuntime):
71
93
  Entrypoint for the job, by default None (the entrypoint defined in the image will be used).
72
94
  cmd : str, optional
73
95
  Command for the job, by default None.
96
+ image_digest: str, optional
97
+ The image digest, by default None.
98
+ image_signature_id: str, optional
99
+ The image signature id, by default None.
74
100
 
75
101
  Returns
76
102
  -------
77
103
  ContainerRuntime
78
104
  The runtime instance.
79
105
  """
106
+ if not isinstance(image, str):
107
+ raise ValueError(
108
+ "Custom image must be provided as a string."
109
+ )
110
+ if image.find(":") < 0:
111
+ logger.warning(
112
+ "Tag is required for custom image. Accepted format: iad.ocir.io/<tenancy>/<image>:<tag>."
113
+ )
80
114
  self.with_entrypoint(entrypoint)
81
115
  self.set_spec(self.CONST_CMD, cmd)
116
+ self.with_image_digest(image_digest)
117
+ self.with_image_signature_id(image_signature_id)
82
118
  return self.set_spec(self.CONST_IMAGE, image)
83
119
 
120
+ @property
121
+ def image_digest(self) -> str:
122
+ """The container image digest."""
123
+ return self.get_spec(self.CONST_IMAGE_DIGEST)
124
+
125
+ def with_image_digest(self, image_digest: str) -> "ContainerRuntime":
126
+ """Sets the digest of custom image.
127
+
128
+ Parameters
129
+ ----------
130
+ image_digest: str
131
+ The image digest.
132
+
133
+ Returns
134
+ -------
135
+ ContainerRuntime
136
+ The runtime instance.
137
+ """
138
+ return self.set_spec(self.CONST_IMAGE_DIGEST, image_digest)
139
+
140
+ @property
141
+ def image_signature_id(self) -> str:
142
+ """The container image signature id."""
143
+ return self.get_spec(self.CONST_IMAGE_SIGNATURE_ID)
144
+
145
+ def with_image_signature_id(self, image_signature_id: str) -> "ContainerRuntime":
146
+ """Sets the signature id of custom image.
147
+
148
+ Parameters
149
+ ----------
150
+ image_signature_id: str
151
+ The image signature id.
152
+
153
+ Returns
154
+ -------
155
+ ContainerRuntime
156
+ The runtime instance.
157
+ """
158
+ return self.set_spec(
159
+ self.CONST_IMAGE_SIGNATURE_ID,
160
+ image_signature_id
161
+ )
162
+
84
163
  @property
85
164
  def entrypoint(self) -> str:
86
165
  """Entrypoint of the container job"""
@@ -94,3 +94,4 @@ class OutputColumns(str, metaclass=ExtendedEnumMeta):
94
94
 
95
95
 
96
96
  TODS_DEFAULT_MODEL = "ocsvm"
97
+ SUBSAMPLE_THRESHOLD = 1000
@@ -16,7 +16,7 @@ from sklearn import linear_model
16
16
 
17
17
  from ads.common.object_storage_details import ObjectStorageDetails
18
18
  from ads.opctl import logger
19
- from ads.opctl.operator.lowcode.anomaly.const import OutputColumns, SupportedMetrics
19
+ from ads.opctl.operator.lowcode.anomaly.const import OutputColumns, SupportedMetrics, SUBSAMPLE_THRESHOLD
20
20
  from ads.opctl.operator.lowcode.anomaly.utils import _build_metrics_df, default_signer
21
21
  from ads.opctl.operator.lowcode.common.utils import (
22
22
  disable_print,
@@ -79,7 +79,7 @@ class AnomalyOperatorBaseModel(ABC):
79
79
  anomaly_output, test_data, elapsed_time
80
80
  )
81
81
  table_blocks = [
82
- rc.DataTable(df, label=col, index=True)
82
+ rc.DataTable(df.head(SUBSAMPLE_THRESHOLD) if self.spec.subsample_report_data and len(df) > SUBSAMPLE_THRESHOLD else df, label=col, index=True)
83
83
  for col, df in self.datasets.full_data_dict.items()
84
84
  ]
85
85
  data_table = rc.Select(blocks=table_blocks)
@@ -94,20 +94,36 @@ class AnomalyOperatorBaseModel(ABC):
94
94
  anomaly_col = anomaly_output.get_anomalies_by_cat(category=target)[
95
95
  OutputColumns.ANOMALY_COL
96
96
  ]
97
+ anomaly_indices = [i for i, index in enumerate(anomaly_col) if index == 1]
98
+ downsampled_time_col = time_col
99
+ selected_indices = list(range(len(time_col)))
100
+ if self.spec.subsample_report_data:
101
+ non_anomaly_indices = [i for i in range(len(time_col)) if i not in anomaly_indices]
102
+ # Downsample non-anomalous data if it exceeds the threshold (1000)
103
+ if len(non_anomaly_indices) > SUBSAMPLE_THRESHOLD:
104
+ downsampled_non_anomaly_indices = non_anomaly_indices[::len(non_anomaly_indices)//SUBSAMPLE_THRESHOLD]
105
+ selected_indices = anomaly_indices + downsampled_non_anomaly_indices
106
+ selected_indices.sort()
107
+ downsampled_time_col = time_col[selected_indices]
108
+
97
109
  columns = set(df.columns).difference({date_column})
98
110
  for col in columns:
99
111
  y = df[col].reset_index(drop=True)
112
+
113
+ downsampled_y = y[selected_indices]
114
+
100
115
  fig, ax = plt.subplots(figsize=(8, 3), layout="constrained")
101
116
  ax.grid()
102
- ax.plot(time_col, y, color="black")
103
- for i, index in enumerate(anomaly_col):
104
- if index == 1:
105
- ax.scatter(time_col[i], y[i], color="red", marker="o")
117
+ ax.plot(downsampled_time_col, downsampled_y, color="black")
118
+ # Plot anomalies
119
+ for i in anomaly_indices:
120
+ ax.scatter(time_col[i], y[i], color="red", marker="o")
106
121
  plt.xlabel(date_column)
107
122
  plt.ylabel(col)
108
123
  plt.title(f"`{col}` with reference to anomalies")
109
124
  figure_blocks.append(rc.Widget(ax))
110
- blocks.append(rc.Group(*figure_blocks, label=target))
125
+
126
+ blocks.append(rc.Group(*figure_blocks, label=target))
111
127
  plots = rc.Select(blocks)
112
128
 
113
129
  report_sections = []
@@ -77,6 +77,7 @@ class AnomalyOperatorSpec(DataClassSerializable):
77
77
  model: str = None
78
78
  model_kwargs: Dict = field(default_factory=dict)
79
79
  contamination: float = None
80
+ subsample_report_data: bool = None
80
81
 
81
82
  def __post_init__(self):
82
83
  """Adjusts the specification details."""
@@ -377,4 +377,8 @@ spec:
377
377
  type: dict
378
378
  required: false
379
379
 
380
+ subsample_report_data:
381
+ type: boolean
382
+ required: false
383
+
380
384
  type: dict
@@ -39,3 +39,9 @@ class PermissionsError(Exception):
39
39
  "complies with the required schema for the operator. \n"
40
40
  f"{error}"
41
41
  )
42
+
43
+
44
+ class InsufficientDataError(Exception):
45
+ def __init__(self, message: str):
46
+ self.message = message
47
+ super().__init__(message)
@@ -249,20 +249,28 @@ class ForecastOperatorBaseModel(ABC):
249
249
  train_metrics_sections = [sec9_text, sec9]
250
250
 
251
251
  backtest_sections = []
252
+ output_dir = self.spec.output_directory.url
253
+ backtest_report_name = "backtest_stats.csv"
254
+ file_path = f"{output_dir}/{backtest_report_name}"
252
255
  if self.spec.model == AUTO_SELECT:
253
- output_dir = self.spec.output_directory.url
254
- backtest_report_name = "backtest_stats.csv"
255
- backtest_stats = pd.read_csv(f"{output_dir}/{backtest_report_name}")
256
- average_dict = backtest_stats.mean().to_dict()
257
- del average_dict['backtest']
258
- best_model = min(average_dict, key=average_dict.get)
259
- backtest_text = rc.Heading("Back Testing Metrics", level=2)
260
- summary_text = rc.Text(
261
- f"Overall, the average scores for the models are {average_dict}, with {best_model}"
262
- f" being identified as the top-performing model during backtesting.")
263
- backtest_table = rc.DataTable(backtest_stats, index=True)
264
- liner_plot = get_auto_select_plot(backtest_stats)
265
- backtest_sections = [backtest_text, backtest_table, summary_text, liner_plot]
256
+ backtest_sections.append(rc.Heading("Auto-select statistics", level=2))
257
+ if not os.path.exists(file_path):
258
+ failure_msg = rc.Text("auto-select could not be executed. Please check the "
259
+ "logs for more details.")
260
+ backtest_sections.append(failure_msg)
261
+ else:
262
+ backtest_stats = pd.read_csv(file_path)
263
+ average_dict = backtest_stats.mean().to_dict()
264
+ del average_dict['backtest']
265
+ best_model = min(average_dict, key=average_dict.get)
266
+ backtest_text = rc.Heading("Back Testing Metrics", level=3)
267
+ summary_text = rc.Text(
268
+ f"Overall, the average scores for the models are {average_dict}, with {best_model}"
269
+ f" being identified as the top-performing model during backtesting.")
270
+ backtest_table = rc.DataTable(backtest_stats, index=True)
271
+ liner_plot = get_auto_select_plot(backtest_stats)
272
+ backtest_sections.extend([backtest_text, backtest_table, summary_text,
273
+ liner_plot])
266
274
 
267
275
 
268
276
  forecast_plots = []
@@ -12,7 +12,8 @@ from ads.opctl import logger
12
12
  from ads.opctl.operator.lowcode.common.const import DataColumns
13
13
  from .model.forecast_datasets import ForecastDatasets
14
14
  from .operator_config import ForecastOperatorConfig
15
-
15
+ from ads.opctl.operator.lowcode.forecast.model.factory import SupportedModels
16
+ from ads.opctl.operator.lowcode.common.errors import InsufficientDataError
16
17
 
17
18
  class ModelEvaluator:
18
19
  """
@@ -61,6 +62,9 @@ class ModelEvaluator:
61
62
  unique_dates = min_series_data[date_col].unique()
62
63
 
63
64
  cut_offs = self.generate_cutoffs(unique_dates, horizon)
65
+ if not len(cut_offs):
66
+ raise InsufficientDataError("Insufficient data to evaluate multiple models. Please specify a model "
67
+ "instead of using auto-select.")
64
68
  training_datasets = [sampled_historical_data[sampled_historical_data[date_col] <= cut_off_date] for cut_off_date
65
69
  in cut_offs]
66
70
  test_datasets = [sampled_historical_data[sampled_historical_data[date_col] > cut_offs[0]]]
@@ -137,7 +141,12 @@ class ModelEvaluator:
137
141
  return metrics
138
142
 
139
143
  def find_best_model(self, datasets: ForecastDatasets, operator_config: ForecastOperatorConfig):
140
- metrics = self.run_all_models(datasets, operator_config)
144
+ try:
145
+ metrics = self.run_all_models(datasets, operator_config)
146
+ except InsufficientDataError as e:
147
+ model = SupportedModels.Prophet
148
+ logger.error(f"Running {model} model as auto-select failed with the following error: {e.message}")
149
+ return model
141
150
  avg_backtests_metrics = {key: sum(value.values()) / len(value.values()) for key, value in metrics.items()}
142
151
  best_model = min(avg_backtests_metrics, key=avg_backtests_metrics.get)
143
152
  logger.info(f"Among models {self.models}, {best_model} model shows better performance during backtesting.")
@@ -1,7 +1,7 @@
1
1
  #!/usr/bin/env python
2
2
  # -*- coding: utf-8; -*-
3
3
 
4
- # Copyright (c) 2022, 2023 Oracle and/or its affiliates.
4
+ # Copyright (c) 2022, 2024 Oracle and/or its affiliates.
5
5
  # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
6
6
  import copy
7
7
  import logging
@@ -689,6 +689,16 @@ class PipelineRun(
689
689
  sources = []
690
690
  subjects = []
691
691
  skipped_step_list = []
692
+
693
+ is_service_logging_enabled = False
694
+ try:
695
+ if self.service_logging:
696
+ is_service_logging_enabled = True
697
+ except LogNotConfiguredError:
698
+ logger.warning(
699
+ "Service log is not configured for pipeline. Streaming custom log."
700
+ )
701
+
692
702
  for step_run in self.step_runs:
693
703
  if not steps or (step_run.step_name in steps):
694
704
  step_name = step_run.step_name
@@ -703,7 +713,8 @@ class PipelineRun(
703
713
  subjects.append(f"subject = '{step_name}'")
704
714
  else:
705
715
  sources.append(f"source = '*{job_run_id}'")
706
- subjects.append(f"subject = '{step_name}'")
716
+ if is_service_logging_enabled:
717
+ subjects.append(f"subject = '{step_name}'")
707
718
  else:
708
719
  subjects.append(f"subject = '{step_name}'")
709
720
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: oracle_ads
3
- Version: 2.11.15
3
+ Version: 2.11.16
4
4
  Summary: Oracle Accelerated Data Science SDK
5
5
  Keywords: Oracle Cloud Infrastructure,OCI,Machine Learning,ML,Artificial Intelligence,AI,Data Science,Cloud,Oracle
6
6
  Author: Oracle Data Science
@@ -4,54 +4,58 @@ ads/config.py,sha256=t_zDKftVYOLPP-t8IcnzEbtmMRX-6a8QKY9E_SnqA8M,8163
4
4
  ads/aqua/__init__.py,sha256=IUKZAsxUGVicsyeSwsGwK6rAUJ1vIUW9ywduA3U22xc,1015
5
5
  ads/aqua/app.py,sha256=wKnvSiD4nROcRUjGJ2FktRDeF4rWGTT_BjekMqHd9Nw,11994
6
6
  ads/aqua/cli.py,sha256=W-0kswzRDEilqHyw5GSMOrARgvOyPRtkEtpy54ew0Jo,3907
7
- ads/aqua/constants.py,sha256=yyH0_m_yohWTULzDok586BGpeEdpyuzyONDbXYujd7U,2729
7
+ ads/aqua/constants.py,sha256=09pZD-wfsyDiDRRHnhPd3cBiQesrZDOHwqR8fRjElqY,2840
8
8
  ads/aqua/data.py,sha256=7T7kdHGnEH6FXL_7jv_Da0CjEWXfjQZTFkaZWQikis4,932
9
- ads/aqua/ui.py,sha256=pL9RVQoKNJPtLjPGt43PWXikIhCqxTeNBk2JYqFuXSM,20507
9
+ ads/aqua/ui.py,sha256=vLQSBcrQ-7zyPJIlpGEHYaz2sf_90lsadOxq6v80tjg,25227
10
10
  ads/aqua/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
11
11
  ads/aqua/common/decorator.py,sha256=XFS7tYGkN4dVzmB1wTYiJk1XqJ-VLhvzfZjExiQClgc,3640
12
- ads/aqua/common/enums.py,sha256=wgpKif1SIXFRLhceZtYuTm8jUG5r3E3pVKPWvHZX_KA,2136
12
+ ads/aqua/common/entities.py,sha256=UsP8CczuifLOLr_gAhulh8VmgGSFir3rli1MMQ-CZhk,537
13
+ ads/aqua/common/enums.py,sha256=ILdA-73g8rIwB9DZvPqT063LgaivgpycQBM28X-trxw,2299
13
14
  ads/aqua/common/errors.py,sha256=Ev2xbaqkDqeCYDx4ZgOKOoM0sXsOXP3GIV6N1lhIUxM,3085
14
- ads/aqua/common/utils.py,sha256=L31Mc40YawJ_BBRN0K5d0d7qhhk2J_2dTfIkDeA5PY8,28350
15
- ads/aqua/config/config.py,sha256=i-AIqNyIvdzI60l11XBfH22wMnxj-mkiRienZwCfqHc,744
16
- ads/aqua/config/deployment_config_defaults.json,sha256=SoGP0J3BChwhR7L0HHpgLfSxLi0DsDfuLSGwWnrh5Zk,121
17
- ads/aqua/config/resource_limit_names.json,sha256=Nsd_Ll5X09Wzhab7alAc2Utg8Bt2BSABK-E6JefUeA0,195
15
+ ads/aqua/common/utils.py,sha256=Z54j_OxdpulznI_ouyshihDMrYuLcnX3FfeWV5tz-gc,29461
16
+ ads/aqua/config/config.py,sha256=tOGyuXlBRw4b4HkJgc1T3y1umqu_ME_-ImXX3pt_aB0,782
17
+ ads/aqua/config/deployment_config_defaults.json,sha256=1fzb8EZOcFMjwktes40qgetKvdmUtEGCl4Jp4eb8tJg,665
18
+ ads/aqua/config/resource_limit_names.json,sha256=0ecGLCLxll9qt3E7fVZPtzpurqe1PGdTk0Rjn_cWh8k,235
18
19
  ads/aqua/dummy_data/icon.txt,sha256=wlB79r3A4mUBbrK5yVVXrNEEKpvfZiwBx2sKlj7wzA4,6326
19
20
  ads/aqua/dummy_data/oci_model_deployments.json,sha256=xSBj6CEbFHHk9Ytgfu-lOgqWOss2DgSaK6tk2vgziEI,1939
20
21
  ads/aqua/dummy_data/oci_models.json,sha256=mxUU8o3plmAFfr06fQmIQuiGe2qFFBlUB7QNPUNB1cE,36997
21
22
  ads/aqua/dummy_data/readme.md,sha256=AlBPt0HBSOFA5HbYVsFsdTm-BC3R5NRpcKrTxdjEnlI,1256
22
23
  ads/aqua/evaluation/__init__.py,sha256=Fd7WL7MpQ1FtJjlftMY2KHli5cz1wr5MDu3hGmV89a0,298
23
24
  ads/aqua/evaluation/constants.py,sha256=GvcXvPIw-VDKw4a8WNKs36uWdT-f7VJrWSpnnRnthGg,1533
24
- ads/aqua/evaluation/entities.py,sha256=an9C33BdsUTAUr-ghVU-08PXJqRQKB_bgjHfVgpSRYg,5699
25
+ ads/aqua/evaluation/entities.py,sha256=h6aEskUgJcR_360kNxMU13qLEg_9MrZQQ73dJJZ8IAY,5675
25
26
  ads/aqua/evaluation/errors.py,sha256=qzR63YEIA8haCh4HcBHFFm7j4g6jWDfGszqrPkXx9zQ,4564
26
- ads/aqua/evaluation/evaluation.py,sha256=c1dxREWBbK-MkdmD2y-OQg3Oxq--oLK_qsU3yxFzPnw,59153
27
+ ads/aqua/evaluation/evaluation.py,sha256=96JnuO7YZHUHqv16g24kVgoh_7GIHM5c_xhuSPWIPVM,60906
27
28
  ads/aqua/extension/__init__.py,sha256=mRArjU6UZpZYVr0qHSSkPteA_CKcCZIczOFaK421m9o,1453
28
29
  ads/aqua/extension/aqua_ws_msg_handler.py,sha256=PcRhBqGpq5aOPP0ibhaKfmkA8ajimldsvJC32o9JeTw,3291
29
30
  ads/aqua/extension/base_handler.py,sha256=MuVxsJG66NdatL-Hh99UD3VQOQw1ir-q2YBajwh9cJk,5132
30
31
  ads/aqua/extension/common_handler.py,sha256=UtfXsLmxUAG9J6nFmaGgWPJ_pwvUnz2UoGuG-z3AQXU,2106
31
- ads/aqua/extension/deployment_handler.py,sha256=NUZsTik-1-m2ChXOxvBNq-06CMLNQtHnD07tCTIFqjY,9228
32
- ads/aqua/extension/errors.py,sha256=Bae_yX15c4F-gjBwwC2O0CksRos6y1o3MSNtMnPzywE,401
32
+ ads/aqua/extension/common_ws_msg_handler.py,sha256=bNtuCpCD5ZIULYqs1ANsYgYnu81f9nZGb2NeTR5gCmw,2280
33
+ ads/aqua/extension/deployment_handler.py,sha256=_fq61ZhEfV92LizJsFSxc-BTTxcSPyCYV3xuDVvTtP4,9386
34
+ ads/aqua/extension/deployment_ws_msg_handler.py,sha256=JX3ZHRtscrflSxT7ZTEEI_p_owtk3m5FZq3QXE96AGY,2013
35
+ ads/aqua/extension/errors.py,sha256=i37EnRzxGgvxzUNoyEORzHYmB296DGOUb6pm7VwEyTU,451
33
36
  ads/aqua/extension/evaluation_handler.py,sha256=Q8l_Mnzp1NOx6N9vXpUWN2kGKdICSRR7dPvm-dNqJBE,4464
34
- ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=UYC79Y4AyxzsQLJZQGeqwziHg1Bi4Lko9tvTY-JjIKg,1315
37
+ ads/aqua/extension/evaluation_ws_msg_handler.py,sha256=dv0iwOSTxYj1kQ1rPEoDmGgFBzLUCLXq5h7rpmY2T1M,2098
35
38
  ads/aqua/extension/finetune_handler.py,sha256=ZCdXoEYzfViZfJsk0solCB6HQkg0skG1jFfqq1zF-vw,3312
36
- ads/aqua/extension/model_handler.py,sha256=N-df-4yFtRoUzdI-L_a0FSluStH_VQqOejoOg3hSw-g,3694
39
+ ads/aqua/extension/model_handler.py,sha256=xVWXzmC-Mk2ib-ODu_bNSlBwqe7atS_fXFFC20WMf20,4704
40
+ ads/aqua/extension/models_ws_msg_handler.py,sha256=3CPfzWl1xfrE2Dpn_WYP9zY0kY5zlsAE8tU_6Y2-i18,1801
37
41
  ads/aqua/extension/ui_handler.py,sha256=IYhtyL4oE8zlxe-kfbvWSmFsayyXaZZZButDdxM3hcA,9850
38
- ads/aqua/extension/ui_websocket_handler.py,sha256=_zdnNwo2FN9y0b8TukmpCrwaYtxAVirA2IMKoZ42Xr4,4630
42
+ ads/aqua/extension/ui_websocket_handler.py,sha256=oLFjaDrqkSERbhExdvxjLJX0oRcP-DVJ_aWn0qy0uvo,5084
39
43
  ads/aqua/extension/utils.py,sha256=3pUTKoy-mXuLl7cGF0gFID32_RCCADCb5UlaMs0QWqs,840
40
44
  ads/aqua/extension/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
- ads/aqua/extension/models/ws_models.py,sha256=Kv1N6ua7LA2FagCRXjHA8ahDGwwetmwBu09JO2_0kAM,1624
45
+ ads/aqua/extension/models/ws_models.py,sha256=-m6IJRS-4I6AMLDwgu19XdrvHyOStuBx9t4B0LgS07g,3348
42
46
  ads/aqua/finetuning/__init__.py,sha256=vwYT5PluMR0mDQwVIavn_8Icms7LmvfV_FOrJ8fJx8I,296
43
47
  ads/aqua/finetuning/constants.py,sha256=7LGF-rbbp-3IS8APjM9ABVHvm0EsaoC9A7XvxTgnRz4,743
44
48
  ads/aqua/finetuning/entities.py,sha256=ZGFqewDV_YIGgmJqIXjrprSZE0yFZQF_tdbmQlvhTrQ,4045
45
49
  ads/aqua/finetuning/finetuning.py,sha256=5GXya26dmerhwlCxQ4TZJWZh5pr0h-TnkZ6WahJITvY,24497
46
50
  ads/aqua/model/__init__.py,sha256=j2iylvERdANxgrEDp7b_mLcKMz1CF5Go0qgYCiMwdos,278
47
51
  ads/aqua/model/constants.py,sha256=eUVl3FK8SRpfnDc1jNF09CkbWXyxmfTgW6Nqvus8lx0,1476
48
- ads/aqua/model/entities.py,sha256=i_C8LseYExHhcPf8LhonzjfJidTwy5ZHHZVnujhROa8,8671
52
+ ads/aqua/model/entities.py,sha256=6EPZG0aAdUHxKhu6L0ZPH4G3_0icofa2Jdo_geCknM4,9012
49
53
  ads/aqua/model/enums.py,sha256=t8GbK2nblIPm3gClR8W31RmbtTuqpoSzoN4W3JfD6AI,1004
50
- ads/aqua/model/model.py,sha256=Z-GLtJoOvvx20z6_Jzv9lrS8XNC4AmJkhWlKd8F4UQo,36133
54
+ ads/aqua/model/model.py,sha256=MuBg4WfiRGiU2b7dQpGtYeFbXd5SknMWYPkdzOxfLww,43578
51
55
  ads/aqua/modeldeployment/__init__.py,sha256=RJCfU1yazv3hVWi5rS08QVLTpTwZLnlC8wU8diwFjnM,391
52
56
  ads/aqua/modeldeployment/constants.py,sha256=lJF77zwxmlECljDYjwFAMprAUR_zctZHmawiP-4alLg,296
53
- ads/aqua/modeldeployment/deployment.py,sha256=dsXyriQ6S-8bGRTWXfAuXCfqCGw5-maftkSzwZpfos8,26042
54
- ads/aqua/modeldeployment/entities.py,sha256=zWRUC8H4O1ISxfhnSFCqk1-l49B8Tzvh_Hg469zyP_k,4818
57
+ ads/aqua/modeldeployment/deployment.py,sha256=R19Fy-yp-H7AzcsoaxEzMUoMqzZm2noejhUbd9JgLqk,28098
58
+ ads/aqua/modeldeployment/entities.py,sha256=QgiLxdWfoNg-u4P7DqauZh9oQQ-WjSs37s8WR84m164,4744
55
59
  ads/aqua/modeldeployment/inference.py,sha256=JPqzbHJoM-PpIU_Ft9lHudO9_1vFr7OPQ2GHjPoAufU,2142
56
60
  ads/aqua/training/__init__.py,sha256=w2DNWltXtASQgbrHyvKo0gMs5_chZoG-CSDMI4qe7i0,202
57
61
  ads/aqua/training/exceptions.py,sha256=S5gHUeUiiPErxuwqG0TB1Yf11mhsAGNYb9o3zd1L1dI,13627
@@ -81,13 +85,13 @@ ads/common/model_artifact.py,sha256=ySyT8BA8GmLlBOfpcQ1L4CSuHjPbE_Ivxw_pXXdLC3M,
81
85
  ads/common/model_artifact_schema.json,sha256=aNwC9bW5HHMXJK-XAWV56RosqOqiCkzKHBiJXvaBl3o,2557
82
86
  ads/common/model_export_util.py,sha256=rQjL_bb0ecGV2fj0jQXS2-aRbXl4ONDwuNVqdr3DiAQ,26574
83
87
  ads/common/model_metadata.py,sha256=Md1soURHww8GHMG3q_HV0RHVb6dPtg9FZ_7Wmd9L-Yc,641
84
- ads/common/object_storage_details.py,sha256=K1dj-VugV_Fi7H4Mpn6pDjlKZva_cqPQNeAXXyLoI7g,9554
88
+ ads/common/object_storage_details.py,sha256=bvqIyB-zLpr5NMnZW8YtSupVH3RpWLBgbR3wPYlQhPU,9531
85
89
  ads/common/oci_client.py,sha256=SmME1qdCFtOdMtC7-703C732e4lEK71kNfTSqBRFkSM,6053
86
90
  ads/common/oci_datascience.py,sha256=biBgm-udtSYRL46XYfBFJjpkPFcw2ew-xvp3rbbpwmI,1698
87
91
  ads/common/oci_logging.py,sha256=U0HRAUkpnycGpo2kWMrT3wjQVFZaWqLL6pZ2B6_epsM,41925
88
92
  ads/common/oci_mixin.py,sha256=mhja5UomrhXH43uB0jT-u2KaT37op9tM-snxvtGfc40,34548
89
93
  ads/common/oci_resource.py,sha256=zRa4z5yh5GoOW_6ZE57nhMmK2d94WUqyFqvaNvje9Co,4484
90
- ads/common/serializer.py,sha256=dwAEqZCJRNXt9YxBsW8hICdBzMehPtUlHLnrA7GX5hY,18854
94
+ ads/common/serializer.py,sha256=JyUJWNybuCwFO_oem41F8477QR2Mj-1P-PKJ-3D3_qw,18813
91
95
  ads/common/utils.py,sha256=TrwoRgycYnkgr3zkJ5a7L1glUwgSOTjSuEaz-uIOv88,52193
92
96
  ads/common/word_lists.py,sha256=luyfSHWZtwAYKuRsSmUYd1VskKYR_8jG_Y26D3j2Vc8,22306
93
97
  ads/common/work_request.py,sha256=z7OGroZNKs9FnOVCi89QnrxOh4PEWEdTsyXWUUydKwM,6591
@@ -413,13 +417,13 @@ ads/jobs/builders/base.py,sha256=o_njFwWQpGY755KbYwpYhvup7UGdcDnN06RdVtAbOkM,483
413
417
  ads/jobs/builders/infrastructure/__init__.py,sha256=SgpGnF6ppE6LneSPWysGVdBrYMvVd-jYZD8oQfqtR34,246
414
418
  ads/jobs/builders/infrastructure/base.py,sha256=cm4QXdQ-3Qk3Jz-oVzmeKqLaWW06HgSpc4Q9P3vIHFQ,4405
415
419
  ads/jobs/builders/infrastructure/dataflow.py,sha256=XTuDhcz96vqskE5dFXWqzic1YcYcD5qPlKGhP4J82J0,39281
416
- ads/jobs/builders/infrastructure/dsc_job.py,sha256=fPvLE5XzS74UMjR19Pru4AGYjv_jHK7DaAYquaC5f80,63464
417
- ads/jobs/builders/infrastructure/dsc_job_runtime.py,sha256=l7xfmYO63ali8GZx3Iu80L5fttt-OMNxlebDH5od69g,45101
420
+ ads/jobs/builders/infrastructure/dsc_job.py,sha256=znZ8uMddI4QHvcpafW2bOF9f7gqHcMcv2Klf80b75fA,64780
421
+ ads/jobs/builders/infrastructure/dsc_job_runtime.py,sha256=IMCRImp6zwAUmjPQDY1Q3YXM2gfa0cLoCdTLtskFaYw,46559
418
422
  ads/jobs/builders/infrastructure/utils.py,sha256=SfGvKiIUsbnMnYFxmMnRtmCDkaiJR0_CuRenP94iQyI,1623
419
423
  ads/jobs/builders/runtimes/__init__.py,sha256=-aGtuFul2fJIMa7xNoOKNFaBAQeBNcZk71hf6dVSohA,204
420
424
  ads/jobs/builders/runtimes/artifact.py,sha256=w5ZLRSeXxHbhK1cCSrlp-oloJNNLmmibNuJNvkiwiV0,12823
421
425
  ads/jobs/builders/runtimes/base.py,sha256=KcZMZnyL4eA7EVawYCfa7M11f6lvGbuXZRnqsaVFZBQ,10436
422
- ads/jobs/builders/runtimes/container_runtime.py,sha256=4blnMa4Owj6cscrun1_Yi94DkEfaDFKMubYOEkUTPvY,4403
426
+ ads/jobs/builders/runtimes/container_runtime.py,sha256=WPgq7L2YU8HRcnvNTRPFJcUpQgM8cOU1oCYAFjLNuGc,6891
423
427
  ads/jobs/builders/runtimes/python_runtime.py,sha256=lr4XIAfJ-c_cuewf8E-qq-gSNgT2C2qFG57VNwCLODY,35568
424
428
  ads/jobs/builders/runtimes/pytorch_runtime.py,sha256=jQ7iIS3juvzkK9qAPuQdMM_YVk4QepM14e8P6RY0D4E,7238
425
429
  ads/jobs/schema/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
@@ -627,16 +631,16 @@ ads/opctl/operator/lowcode/anomaly/README.md,sha256=E3vpyc5iKvIq8iuvGj8ZvLq3i_Q5
627
631
  ads/opctl/operator/lowcode/anomaly/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
628
632
  ads/opctl/operator/lowcode/anomaly/__main__.py,sha256=q7TSFpSmLSAXlwjWNMi_M5y9ndF86RPd7KJ_kanltjM,3328
629
633
  ads/opctl/operator/lowcode/anomaly/cmd.py,sha256=e6ATBJcPXEdZ85hlSb7aWselA-8LlvtpI0AuO4Yw6Iw,1002
630
- ads/opctl/operator/lowcode/anomaly/const.py,sha256=DXMNIFEIv1-D9jbv0G_9VZSIQugmiRmg1SzzWgjJOB4,2863
634
+ ads/opctl/operator/lowcode/anomaly/const.py,sha256=oHsguh6vr5YdrjC80uiugA00NfgUyn6QQ_1dQRUztQU,2890
631
635
  ads/opctl/operator/lowcode/anomaly/environment.yaml,sha256=J6KiIHOb5a2AcgZm1sisMgbjABlizyYRUq_aYZBk228,156
632
- ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=97tveaJ0rm43CEqdVvwNePVmNkjwdFvXjHrJnIxgSWY,4289
633
- ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=-oUlulnpsady0FHtwgJLwxoDSzU8v5QCCJOYeUAic1A,9104
636
+ ads/opctl/operator/lowcode/anomaly/operator_config.py,sha256=A1LBD0n3_M6M_2NuFQ6FrLq4vukUL47iPbPDBkIS3OY,4328
637
+ ads/opctl/operator/lowcode/anomaly/schema.yaml,sha256=oWfFO_AyzMImEkgpWNpkoR8xm-YnMHeMZ76LYT32oeo,9174
634
638
  ads/opctl/operator/lowcode/anomaly/utils.py,sha256=Uj98FO5oM-sLjoqsOnoBmgSMF7iJiL0XX-gvphw9yiU,2746
635
639
  ads/opctl/operator/lowcode/anomaly/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPOj9HmSkpTnLh9wkzysuGd8AXk,204
636
640
  ads/opctl/operator/lowcode/anomaly/model/anomaly_dataset.py,sha256=zpRRAtbjRgX9HPJb_7-eZ96c1AGQgDjjs-CsLTvYtuY,5402
637
641
  ads/opctl/operator/lowcode/anomaly/model/automlx.py,sha256=Zn4ySrGfLbaKW0KIduwdnY0-YK8XAprCcMhElA4g-Vc,3401
638
642
  ads/opctl/operator/lowcode/anomaly/model/autots.py,sha256=WlA39DA3GeQfW5HYiBLCArVQBXGzIVQH3D09cZYGjtg,3689
639
- ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=0MfwTb4CwWn7J_m_BgIj0XaOvovyKWj5vwf96SlSIY8,13703
643
+ ads/opctl/operator/lowcode/anomaly/model/base_model.py,sha256=BKT9nIHXUQfdX1yzg5dd9WGJlTRybpc2xXvfIU3gbXc,14692
640
644
  ads/opctl/operator/lowcode/anomaly/model/factory.py,sha256=fgtWEkkMIlfThNvXvccRfLXmWmJ_kKuOLNVm0uhKeRA,3126
641
645
  ads/opctl/operator/lowcode/anomaly/model/isolationforest.py,sha256=Kjsuio7cM-dKv63p58B9Jj0XPly6Z0hqfghs5nnXepA,2671
642
646
  ads/opctl/operator/lowcode/anomaly/model/oneclasssvm.py,sha256=eQpNyax1hnufLHhL8Rbzee28comD2fF7TLn3TpzMrs8,2583
@@ -644,7 +648,7 @@ ads/opctl/operator/lowcode/anomaly/model/tods.py,sha256=_v0KkdTKD3nqzOu3P5tE7bSV
644
648
  ads/opctl/operator/lowcode/common/__init__.py,sha256=rZrmh1nho40OCeabXCNWtze-mXi-PGKetcZdxZSn3_0,204
645
649
  ads/opctl/operator/lowcode/common/const.py,sha256=1dUhgup4L_U0s6BSYmgLPpZAe6xqfSHPPoLqW0j46U8,265
646
650
  ads/opctl/operator/lowcode/common/data.py,sha256=L96XltNUllEYn8VOGVnJ3CrqBn_MRMRJCvU0npiBHnc,4149
647
- ads/opctl/operator/lowcode/common/errors.py,sha256=4pHYq2v66BPUFvDK1V9rLIXB8u-jUlgqswtP787CdWs,1389
651
+ ads/opctl/operator/lowcode/common/errors.py,sha256=LvQ_Qzh6cqD6uP91DMFFVXPrcc3010EE8LfBH-CH0ho,1534
648
652
  ads/opctl/operator/lowcode/common/transformations.py,sha256=Minukbv9Ja1yNJYgTQICU9kykIdbBELhrFFyWECgtes,9630
649
653
  ads/opctl/operator/lowcode/common/utils.py,sha256=jQIyjtg4i4hfrhBIGhSOzkry2-ziZrn8cBj8lcTv66E,9292
650
654
  ads/opctl/operator/lowcode/feature_store_marketplace/MLoperator,sha256=JO5ulr32WsFnbpk1KN97h8-D70jcFt1kRQ08UMkP4rU,346
@@ -669,7 +673,7 @@ ads/opctl/operator/lowcode/forecast/cmd.py,sha256=Q-R3yfK7aPfE4-0zIqzLFSjnz1tVMx
669
673
  ads/opctl/operator/lowcode/forecast/const.py,sha256=K1skrAliy2xceSDmzDfsNTeDMl11rsFhHQXaRitBOYs,2616
670
674
  ads/opctl/operator/lowcode/forecast/environment.yaml,sha256=eVMf9pcjADI14_GRGdZOB_gK5_MyG_-cX037TXqzFho,330
671
675
  ads/opctl/operator/lowcode/forecast/errors.py,sha256=X9zuV2Lqb5N9FuBHHshOFYyhvng5r9KGLHnQijZ5b8c,911
672
- ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=mN7dI5dcPgVJ9JuZqzlGXWI-DW9O-tmD3JZrucOED8k,8305
676
+ ads/opctl/operator/lowcode/forecast/model_evaluator.py,sha256=dSV1aj25wzv0V3y72YdYj4rCPjXAog13ppxYDNY9HQU,8913
673
677
  ads/opctl/operator/lowcode/forecast/operator_config.py,sha256=XskXuOWtZZb6_EcR_t6XAEdr6jt1wT30oBcWt-8zeWA,6396
674
678
  ads/opctl/operator/lowcode/forecast/schema.yaml,sha256=Y5j5qZQukjytZwXr2Gj0Fb9KeFjQbdzUNuAnUcH6k0Q,10137
675
679
  ads/opctl/operator/lowcode/forecast/utils.py,sha256=oc6eBH9naYg4BB14KS2HL0uFdZHMgKsxx9vG28dJrXA,14347
@@ -677,7 +681,7 @@ ads/opctl/operator/lowcode/forecast/model/__init__.py,sha256=sAqmLhogrLXb3xI7dPO
677
681
  ads/opctl/operator/lowcode/forecast/model/arima.py,sha256=sFjIMSBRqc2ePK24VX5sgNqqoRhiIOPgmH3STsYOQWU,10658
678
682
  ads/opctl/operator/lowcode/forecast/model/automlx.py,sha256=bN-lqb5J7YlccEY0KfZ_oPruXvAtupQHjNW7oZDSKVI,14610
679
683
  ads/opctl/operator/lowcode/forecast/model/autots.py,sha256=EruAl4BFEOPGT0iM0bnCbDVNKDB0wOf3v25li4MW8Gw,13057
680
- ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=yCQ89FNfvbpltTq-znVQbM3cxzrC09cIx3tzGzezKiI,30319
684
+ ads/opctl/operator/lowcode/forecast/model/base_model.py,sha256=s4_lvasasCqvrj49ubD0H_2wA9pvh16_f5BiivqvL20,30876
681
685
  ads/opctl/operator/lowcode/forecast/model/factory.py,sha256=GPwbZCe65-HZBUcg05_xaL1VPX8R1022E5W-NGJOohA,3487
682
686
  ads/opctl/operator/lowcode/forecast/model/forecast_datasets.py,sha256=d9rDmrIAbKTStOVroIKZkTEP1FP2AP0dq9XDEWt6w2c,16968
683
687
  ads/opctl/operator/lowcode/forecast/model/ml_forecast.py,sha256=W2EgOrI-GswygxeDRlICbdeEkIQArEsHHKZlQy2ZnTA,9106
@@ -734,7 +738,7 @@ ads/oracledb/__init__.py,sha256=xMyuwB5xsIEW9MFmvyjmF1YnRarsIjeFe2Ib-aprCG4,210
734
738
  ads/oracledb/oracle_db.py,sha256=_8Z8DL45RrWdaVZA464ICDtgm8tBoPGoX_wQTozDPHE,12889
735
739
  ads/pipeline/__init__.py,sha256=AAxC4BtaiTO4fj5odxTPWBToqxSKfKzQzRHW_9ozIOY,1268
736
740
  ads/pipeline/ads_pipeline.py,sha256=NkeryW1guYghFkbOlPdN-Kh_LlyZMwJV3c6eAC56V28,84882
737
- ads/pipeline/ads_pipeline_run.py,sha256=ea7yKc183g5wrmuFSJp5T3--7NywWHWBanxPh0TOCUY,28006
741
+ ads/pipeline/ads_pipeline_run.py,sha256=sNczf-1B0sROoFno9LbbND5HDUPtTTHOpFlIXB-IUH4,28374
738
742
  ads/pipeline/ads_pipeline_step.py,sha256=Wo0SYmin2aY2Nqm_DRMoTZ2nGUcpPLA791goic9K14A,20267
739
743
  ads/pipeline/cli.py,sha256=H_Z5vRSZmdW1iFIbbjKPnHa8pp4YS55M95HP9Naqi0Y,3480
740
744
  ads/pipeline/extension.py,sha256=l8U0R4t7v9BHONXF4GW_f5W1HoYK7Ik9y8KBK66RWdE,9067
@@ -800,8 +804,8 @@ ads/type_discovery/unknown_detector.py,sha256=yZuYQReO7PUyoWZE7onhhtYaOg6088wf1y
800
804
  ads/type_discovery/zipcode_detector.py,sha256=3AlETg_ZF4FT0u914WXvTT3F3Z6Vf51WiIt34yQMRbw,1421
801
805
  ads/vault/__init__.py,sha256=x9tMdDAOdF5iDHk9u2di_K-ze5Nq068x25EWOBoWwqY,245
802
806
  ads/vault/vault.py,sha256=hFBkpYE-Hfmzu1L0sQwUfYcGxpWmgG18JPndRl0NOXI,8624
803
- oracle_ads-2.11.15.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
804
- oracle_ads-2.11.15.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
805
- oracle_ads-2.11.15.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
806
- oracle_ads-2.11.15.dist-info/METADATA,sha256=nDxCy6uG6OfwP5ptsmhKwmzvEhhtaXtibOxj9-rEiw8,15837
807
- oracle_ads-2.11.15.dist-info/RECORD,,
807
+ oracle_ads-2.11.16.dist-info/entry_points.txt,sha256=9VFnjpQCsMORA4rVkvN8eH6D3uHjtegb9T911t8cqV0,35
808
+ oracle_ads-2.11.16.dist-info/LICENSE.txt,sha256=zoGmbfD1IdRKx834U0IzfFFFo5KoFK71TND3K9xqYqo,1845
809
+ oracle_ads-2.11.16.dist-info/WHEEL,sha256=EZbGkh7Ie4PoZfRQ8I0ZuP9VklN_TvcZ6DSE5Uar4z4,81
810
+ oracle_ads-2.11.16.dist-info/METADATA,sha256=eOcRKB-87weeImM-kRgnQk9HWqDbbPLCs9u0i8GaGG8,15837
811
+ oracle_ads-2.11.16.dist-info/RECORD,,